neovim/src/nvim/spell.c

7283 lines
222 KiB
C

// This is an open source non-commercial project. Dear PVS-Studio, please check
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
// spell.c: code for spell checking
//
// See spellfile.c for the Vim spell file format.
//
// The spell checking mechanism uses a tree (aka trie). Each node in the tree
// has a list of bytes that can appear (siblings). For each byte there is a
// pointer to the node with the byte that follows in the word (child).
//
// A NUL byte is used where the word may end. The bytes are sorted, so that
// binary searching can be used and the NUL bytes are at the start. The
// number of possible bytes is stored before the list of bytes.
//
// The tree uses two arrays: "byts" stores the characters, "idxs" stores
// either the next index or flags. The tree starts at index 0. For example,
// to lookup "vi" this sequence is followed:
// i = 0
// len = byts[i]
// n = where "v" appears in byts[i + 1] to byts[i + len]
// i = idxs[n]
// len = byts[i]
// n = where "i" appears in byts[i + 1] to byts[i + len]
// i = idxs[n]
// len = byts[i]
// find that byts[i + 1] is 0, idxs[i + 1] has flags for "vi".
//
// There are two word trees: one with case-folded words and one with words in
// original case. The second one is only used for keep-case words and is
// usually small.
//
// There is one additional tree for when not all prefixes are applied when
// generating the .spl file. This tree stores all the possible prefixes, as
// if they were words. At each word (prefix) end the prefix nr is stored, the
// following word must support this prefix nr. And the condition nr is
// stored, used to lookup the condition that the word must match with.
//
// Thanks to Olaf Seibert for providing an example implementation of this tree
// and the compression mechanism.
// LZ trie ideas:
// http://www.irb.hr/hr/home/ristov/papers/RistovLZtrieRevision1.pdf
// More papers: http://www-igm.univ-mlv.fr/~laporte/publi_en.html
//
// Matching involves checking the caps type: Onecap ALLCAP KeepCap.
//
// Why doesn't Vim use aspell/ispell/myspell/etc.?
// See ":help develop-spell".
// Use SPELL_PRINTTREE for debugging: dump the word tree after adding a word.
// Only use it for small word lists!
// Use SPELL_COMPRESS_ALLWAYS for debugging: compress the word tree after
// adding a word. Only use it for small word lists!
// Use DEBUG_TRIEWALK to print the changes made in suggest_trie_walk() for a
// specific word.
// Use this to adjust the score after finding suggestions, based on the
// suggested word sounding like the bad word. This is much faster than doing
// it for every possible suggestion.
// Disadvantage: When "the" is typed as "hte" it sounds quite different ("@"
// vs "ht") and goes down in the list.
// Used when 'spellsuggest' is set to "best".
#define RESCORE(word_score, sound_score) ((3 * word_score + sound_score) / 4)
// Do the opposite: based on a maximum end score and a known sound score,
// compute the maximum word score that can be used.
#define MAXSCORE(word_score, sound_score) ((4 * word_score - sound_score) / 3)
#include <assert.h>
#include <inttypes.h>
#include <limits.h>
#include <stdbool.h>
#include <string.h>
#include <stdlib.h>
#include <wctype.h>
/* for offsetof() */
#include <stddef.h>
#include "nvim/vim.h"
#include "nvim/ascii.h"
#include "nvim/spell.h"
#include "nvim/buffer.h"
#include "nvim/change.h"
#include "nvim/charset.h"
#include "nvim/cursor.h"
#include "nvim/edit.h"
#include "nvim/eval.h"
#include "nvim/ex_cmds.h"
#include "nvim/ex_cmds2.h"
#include "nvim/ex_docmd.h"
#include "nvim/fileio.h"
#include "nvim/func_attr.h"
#include "nvim/getchar.h"
#include "nvim/hashtab.h"
#include "nvim/mark.h"
#include "nvim/mbyte.h"
#include "nvim/memline.h"
#include "nvim/memory.h"
#include "nvim/message.h"
#include "nvim/misc1.h"
#include "nvim/garray.h"
#include "nvim/normal.h"
#include "nvim/option.h"
#include "nvim/os_unix.h"
#include "nvim/path.h"
#include "nvim/regexp.h"
#include "nvim/screen.h"
#include "nvim/search.h"
#include "nvim/spellfile.h"
#include "nvim/strings.h"
#include "nvim/syntax.h"
#include "nvim/undo.h"
#include "nvim/os/os.h"
#include "nvim/os/input.h"
// only used for su_badflags
#define WF_MIXCAP 0x20 // mix of upper and lower case: macaRONI
#define WF_CAPMASK (WF_ONECAP | WF_ALLCAP | WF_KEEPCAP | WF_FIXCAP)
// Result values. Lower number is accepted over higher one.
#define SP_BANNED -1
#define SP_RARE 0
#define SP_OK 1
#define SP_LOCAL 2
#define SP_BAD 3
// First language that is loaded, start of the linked list of loaded
// languages.
slang_T *first_lang = NULL;
// file used for "zG" and "zW"
char_u *int_wordlist = NULL;
typedef struct wordcount_S {
uint16_t wc_count; // nr of times word was seen
char_u wc_word[1]; // word, actually longer
} wordcount_T;
#define WC_KEY_OFF offsetof(wordcount_T, wc_word)
#define HI2WC(hi) ((wordcount_T *)((hi)->hi_key - WC_KEY_OFF))
#define MAXWORDCOUNT 0xffff
// Information used when looking for suggestions.
typedef struct suginfo_S {
garray_T su_ga; // suggestions, contains "suggest_T"
int su_maxcount; // max. number of suggestions displayed
int su_maxscore; // maximum score for adding to su_ga
int su_sfmaxscore; // idem, for when doing soundfold words
garray_T su_sga; // like su_ga, sound-folded scoring
char_u *su_badptr; // start of bad word in line
int su_badlen; // length of detected bad word in line
int su_badflags; // caps flags for bad word
char_u su_badword[MAXWLEN]; // bad word truncated at su_badlen
char_u su_fbadword[MAXWLEN]; // su_badword case-folded
char_u su_sal_badword[MAXWLEN]; // su_badword soundfolded
hashtab_T su_banned; // table with banned words
slang_T *su_sallang; // default language for sound folding
} suginfo_T;
// One word suggestion. Used in "si_ga".
typedef struct {
char_u *st_word; // suggested word, allocated string
int st_wordlen; // STRLEN(st_word)
int st_orglen; // length of replaced text
int st_score; // lower is better
int st_altscore; // used when st_score compares equal
bool st_salscore; // st_score is for soundalike
bool st_had_bonus; // bonus already included in score
slang_T *st_slang; // language used for sound folding
} suggest_T;
#define SUG(ga, i) (((suggest_T *)(ga).ga_data)[i])
// True if a word appears in the list of banned words.
#define WAS_BANNED(su, word) (!HASHITEM_EMPTY(hash_find(&su->su_banned, word)))
// Number of suggestions kept when cleaning up. We need to keep more than
// what is displayed, because when rescore_suggestions() is called the score
// may change and wrong suggestions may be removed later.
#define SUG_CLEAN_COUNT(su) ((su)->su_maxcount < \
130 ? 150 : (su)->su_maxcount + 20)
// Threshold for sorting and cleaning up suggestions. Don't want to keep lots
// of suggestions that are not going to be displayed.
#define SUG_MAX_COUNT(su) (SUG_CLEAN_COUNT(su) + 50)
// score for various changes
#define SCORE_SPLIT 149 // split bad word
#define SCORE_SPLIT_NO 249 // split bad word with NOSPLITSUGS
#define SCORE_ICASE 52 // slightly different case
#define SCORE_REGION 200 // word is for different region
#define SCORE_RARE 180 // rare word
#define SCORE_SWAP 75 // swap two characters
#define SCORE_SWAP3 110 // swap two characters in three
#define SCORE_REP 65 // REP replacement
#define SCORE_SUBST 93 // substitute a character
#define SCORE_SIMILAR 33 // substitute a similar character
#define SCORE_SUBCOMP 33 // substitute a composing character
#define SCORE_DEL 94 // delete a character
#define SCORE_DELDUP 66 // delete a duplicated character
#define SCORE_DELCOMP 28 // delete a composing character
#define SCORE_INS 96 // insert a character
#define SCORE_INSDUP 67 // insert a duplicate character
#define SCORE_INSCOMP 30 // insert a composing character
#define SCORE_NONWORD 103 // change non-word to word char
#define SCORE_FILE 30 // suggestion from a file
#define SCORE_MAXINIT 350 // Initial maximum score: higher == slower.
// 350 allows for about three changes.
#define SCORE_COMMON1 30 // subtracted for words seen before
#define SCORE_COMMON2 40 // subtracted for words often seen
#define SCORE_COMMON3 50 // subtracted for words very often seen
#define SCORE_THRES2 10 // word count threshold for COMMON2
#define SCORE_THRES3 100 // word count threshold for COMMON3
// When trying changed soundfold words it becomes slow when trying more than
// two changes. With less then two changes it's slightly faster but we miss a
// few good suggestions. In rare cases we need to try three of four changes.
#define SCORE_SFMAX1 200 // maximum score for first try
#define SCORE_SFMAX2 300 // maximum score for second try
#define SCORE_SFMAX3 400 // maximum score for third try
#define SCORE_BIG SCORE_INS * 3 // big difference
#define SCORE_MAXMAX 999999 // accept any score
#define SCORE_LIMITMAX 350 // for spell_edit_score_limit()
// for spell_edit_score_limit() we need to know the minimum value of
// SCORE_ICASE, SCORE_SWAP, SCORE_DEL, SCORE_SIMILAR and SCORE_INS
#define SCORE_EDIT_MIN SCORE_SIMILAR
// Structure to store info for word matching.
typedef struct matchinf_S {
langp_T *mi_lp; // info for language and region
// pointers to original text to be checked
char_u *mi_word; // start of word being checked
char_u *mi_end; // end of matching word so far
char_u *mi_fend; // next char to be added to mi_fword
char_u *mi_cend; // char after what was used for
// mi_capflags
// case-folded text
char_u mi_fword[MAXWLEN + 1]; // mi_word case-folded
int mi_fwordlen; // nr of valid bytes in mi_fword
// for when checking word after a prefix
int mi_prefarridx; // index in sl_pidxs with list of
// affixID/condition
int mi_prefcnt; // number of entries at mi_prefarridx
int mi_prefixlen; // byte length of prefix
int mi_cprefixlen; // byte length of prefix in original
// case
// for when checking a compound word
int mi_compoff; // start of following word offset
char_u mi_compflags[MAXWLEN]; // flags for compound words used
int mi_complen; // nr of compound words used
int mi_compextra; // nr of COMPOUNDROOT words
// others
int mi_result; // result so far: SP_BAD, SP_OK, etc.
int mi_capflags; // WF_ONECAP WF_ALLCAP WF_KEEPCAP
win_T *mi_win; // buffer being checked
// for NOBREAK
int mi_result2; // "mi_resul" without following word
char_u *mi_end2; // "mi_end" without following word
} matchinf_T;
// Structure used for the cookie argument of do_in_runtimepath().
typedef struct spelload_S {
char_u sl_lang[MAXWLEN + 1]; // language name
slang_T *sl_slang; // resulting slang_T struct
int sl_nobreak; // NOBREAK language found
} spelload_T;
#define SY_MAXLEN 30
typedef struct syl_item_S {
char_u sy_chars[SY_MAXLEN]; // the sequence of chars
int sy_len;
} syl_item_T;
spelltab_T spelltab;
int did_set_spelltab;
// structure used to store soundfolded words that add_sound_suggest() has
// handled already.
typedef struct {
short sft_score; // lowest score used
char_u sft_word[1]; // soundfolded word, actually longer
} sftword_T;
typedef struct {
int badi;
int goodi;
int score;
} limitscore_T;
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "spell.c.generated.h"
#endif
// values for ts_isdiff
#define DIFF_NONE 0 // no different byte (yet)
#define DIFF_YES 1 // different byte found
#define DIFF_INSERT 2 // inserting character
// values for ts_flags
#define TSF_PREFIXOK 1 // already checked that prefix is OK
#define TSF_DIDSPLIT 2 // tried split at this point
#define TSF_DIDDEL 4 // did a delete, "ts_delidx" has index
// special values ts_prefixdepth
#define PFD_NOPREFIX 0xff // not using prefixes
#define PFD_PREFIXTREE 0xfe // walking through the prefix tree
#define PFD_NOTSPECIAL 0xfd // highest value that's not special
// mode values for find_word
#define FIND_FOLDWORD 0 // find word case-folded
#define FIND_KEEPWORD 1 // find keep-case word
#define FIND_PREFIX 2 // find word after prefix
#define FIND_COMPOUND 3 // find case-folded compound word
#define FIND_KEEPCOMPOUND 4 // find keep-case compound word
char *e_format = N_("E759: Format error in spell file");
// Remember what "z?" replaced.
static char_u *repl_from = NULL;
static char_u *repl_to = NULL;
// Main spell-checking function.
// "ptr" points to a character that could be the start of a word.
// "*attrp" is set to the highlight index for a badly spelled word. For a
// non-word or when it's OK it remains unchanged.
// This must only be called when 'spelllang' is not empty.
//
// "capcol" is used to check for a Capitalised word after the end of a
// sentence. If it's zero then perform the check. Return the column where to
// check next, or -1 when no sentence end was found. If it's NULL then don't
// worry.
//
// Returns the length of the word in bytes, also when it's OK, so that the
// caller can skip over the word.
size_t spell_check(
win_T *wp, // current window
char_u *ptr,
hlf_T *attrp,
int *capcol, // column to check for Capital
bool docount // count good words
)
{
matchinf_T mi; // Most things are put in "mi" so that it can
// be passed to functions quickly.
size_t nrlen = 0; // found a number first
int c;
size_t wrongcaplen = 0;
int lpi;
bool count_word = docount;
// A word never starts at a space or a control character. Return quickly
// then, skipping over the character.
if (*ptr <= ' ') {
return 1;
}
// Return here when loading language files failed.
if (GA_EMPTY(&wp->w_s->b_langp)) {
return 1;
}
memset(&mi, 0, sizeof(matchinf_T));
// A number is always OK. Also skip hexadecimal numbers 0xFF99 and
// 0X99FF. But always do check spelling to find "3GPP" and "11
// julifeest".
if (*ptr >= '0' && *ptr <= '9') {
if (*ptr == '0' && (ptr[1] == 'b' || ptr[1] == 'B')) {
mi.mi_end = (char_u*) skipbin((char*) ptr + 2);
} else if (*ptr == '0' && (ptr[1] == 'x' || ptr[1] == 'X')) {
mi.mi_end = skiphex(ptr + 2);
} else {
mi.mi_end = skipdigits(ptr);
}
nrlen = (size_t)(mi.mi_end - ptr);
}
// Find the normal end of the word (until the next non-word character).
mi.mi_word = ptr;
mi.mi_fend = ptr;
if (spell_iswordp(mi.mi_fend, wp)) {
do {
MB_PTR_ADV(mi.mi_fend);
} while (*mi.mi_fend != NUL && spell_iswordp(mi.mi_fend, wp));
if (capcol != NULL && *capcol == 0 && wp->w_s->b_cap_prog != NULL) {
// Check word starting with capital letter.
c = PTR2CHAR(ptr);
if (!SPELL_ISUPPER(c)) {
wrongcaplen = (size_t)(mi.mi_fend - ptr);
}
}
}
if (capcol != NULL) {
*capcol = -1;
}
// We always use the characters up to the next non-word character,
// also for bad words.
mi.mi_end = mi.mi_fend;
// Check caps type later.
mi.mi_capflags = 0;
mi.mi_cend = NULL;
mi.mi_win = wp;
// case-fold the word with one non-word character, so that we can check
// for the word end.
if (*mi.mi_fend != NUL) {
MB_PTR_ADV(mi.mi_fend);
}
(void)spell_casefold(ptr, (int)(mi.mi_fend - ptr), mi.mi_fword, MAXWLEN + 1);
mi.mi_fwordlen = (int)STRLEN(mi.mi_fword);
// The word is bad unless we recognize it.
mi.mi_result = SP_BAD;
mi.mi_result2 = SP_BAD;
// Loop over the languages specified in 'spelllang'.
// We check them all, because a word may be matched longer in another
// language.
for (lpi = 0; lpi < wp->w_s->b_langp.ga_len; ++lpi) {
mi.mi_lp = LANGP_ENTRY(wp->w_s->b_langp, lpi);
// If reloading fails the language is still in the list but everything
// has been cleared.
if (mi.mi_lp->lp_slang->sl_fidxs == NULL) {
continue;
}
// Check for a matching word in case-folded words.
find_word(&mi, FIND_FOLDWORD);
// Check for a matching word in keep-case words.
find_word(&mi, FIND_KEEPWORD);
// Check for matching prefixes.
find_prefix(&mi, FIND_FOLDWORD);
// For a NOBREAK language, may want to use a word without a following
// word as a backup.
if (mi.mi_lp->lp_slang->sl_nobreak && mi.mi_result == SP_BAD
&& mi.mi_result2 != SP_BAD) {
mi.mi_result = mi.mi_result2;
mi.mi_end = mi.mi_end2;
}
// Count the word in the first language where it's found to be OK.
if (count_word && mi.mi_result == SP_OK) {
count_common_word(mi.mi_lp->lp_slang, ptr,
(int)(mi.mi_end - ptr), 1);
count_word = false;
}
}
if (mi.mi_result != SP_OK) {
// If we found a number skip over it. Allows for "42nd". Do flag
// rare and local words, e.g., "3GPP".
if (nrlen > 0) {
if (mi.mi_result == SP_BAD || mi.mi_result == SP_BANNED) {
return nrlen;
}
} else if (!spell_iswordp_nmw(ptr, wp)) {
// When we are at a non-word character there is no error, just
// skip over the character (try looking for a word after it).
if (capcol != NULL && wp->w_s->b_cap_prog != NULL) {
regmatch_T regmatch;
// Check for end of sentence.
regmatch.regprog = wp->w_s->b_cap_prog;
regmatch.rm_ic = false;
int r = vim_regexec(&regmatch, ptr, 0);
wp->w_s->b_cap_prog = regmatch.regprog;
if (r) {
*capcol = (int)(regmatch.endp[0] - ptr);
}
}
if (has_mbyte) {
return (size_t)(*mb_ptr2len)(ptr);
}
return 1;
} else if (mi.mi_end == ptr) {
// Always include at least one character. Required for when there
// is a mixup in "midword".
MB_PTR_ADV(mi.mi_end);
} else if (mi.mi_result == SP_BAD
&& LANGP_ENTRY(wp->w_s->b_langp, 0)->lp_slang->sl_nobreak) {
char_u *p, *fp;
int save_result = mi.mi_result;
// First language in 'spelllang' is NOBREAK. Find first position
// at which any word would be valid.
mi.mi_lp = LANGP_ENTRY(wp->w_s->b_langp, 0);
if (mi.mi_lp->lp_slang->sl_fidxs != NULL) {
p = mi.mi_word;
fp = mi.mi_fword;
for (;;) {
MB_PTR_ADV(p);
MB_PTR_ADV(fp);
if (p >= mi.mi_end) {
break;
}
mi.mi_compoff = (int)(fp - mi.mi_fword);
find_word(&mi, FIND_COMPOUND);
if (mi.mi_result != SP_BAD) {
mi.mi_end = p;
break;
}
}
mi.mi_result = save_result;
}
}
if (mi.mi_result == SP_BAD || mi.mi_result == SP_BANNED) {
*attrp = HLF_SPB;
} else if (mi.mi_result == SP_RARE) {
*attrp = HLF_SPR;
} else {
*attrp = HLF_SPL;
}
}
if (wrongcaplen > 0 && (mi.mi_result == SP_OK || mi.mi_result == SP_RARE)) {
// Report SpellCap only when the word isn't badly spelled.
*attrp = HLF_SPC;
return wrongcaplen;
}
return (size_t)(mi.mi_end - ptr);
}
// Check if the word at "mip->mi_word" is in the tree.
// When "mode" is FIND_FOLDWORD check in fold-case word tree.
// When "mode" is FIND_KEEPWORD check in keep-case word tree.
// When "mode" is FIND_PREFIX check for word after prefix in fold-case word
// tree.
//
// For a match mip->mi_result is updated.
static void find_word(matchinf_T *mip, int mode)
{
int wlen = 0;
int flen;
char_u *ptr;
slang_T *slang = mip->mi_lp->lp_slang;
char_u *byts;
idx_T *idxs;
if (mode == FIND_KEEPWORD || mode == FIND_KEEPCOMPOUND) {
// Check for word with matching case in keep-case tree.
ptr = mip->mi_word;
flen = 9999; // no case folding, always enough bytes
byts = slang->sl_kbyts;
idxs = slang->sl_kidxs;
if (mode == FIND_KEEPCOMPOUND)
// Skip over the previously found word(s).
wlen += mip->mi_compoff;
} else {
// Check for case-folded in case-folded tree.
ptr = mip->mi_fword;
flen = mip->mi_fwordlen; // available case-folded bytes
byts = slang->sl_fbyts;
idxs = slang->sl_fidxs;
if (mode == FIND_PREFIX) {
// Skip over the prefix.
wlen = mip->mi_prefixlen;
flen -= mip->mi_prefixlen;
} else if (mode == FIND_COMPOUND) {
// Skip over the previously found word(s).
wlen = mip->mi_compoff;
flen -= mip->mi_compoff;
}
}
if (byts == NULL)
return; // array is empty
idx_T arridx = 0;
int endlen[MAXWLEN]; // length at possible word endings
idx_T endidx[MAXWLEN]; // possible word endings
int endidxcnt = 0;
int len;
int c;
// Repeat advancing in the tree until:
// - there is a byte that doesn't match,
// - we reach the end of the tree,
// - or we reach the end of the line.
for (;; ) {
if (flen <= 0 && *mip->mi_fend != NUL)
flen = fold_more(mip);
len = byts[arridx++];
// If the first possible byte is a zero the word could end here.
// Remember this index, we first check for the longest word.
if (byts[arridx] == 0) {
if (endidxcnt == MAXWLEN) {
// Must be a corrupted spell file.
EMSG(_(e_format));
return;
}
endlen[endidxcnt] = wlen;
endidx[endidxcnt++] = arridx++;
--len;
// Skip over the zeros, there can be several flag/region
// combinations.
while (len > 0 && byts[arridx] == 0) {
++arridx;
--len;
}
if (len == 0)
break; // no children, word must end here
}
// Stop looking at end of the line.
if (ptr[wlen] == NUL)
break;
// Perform a binary search in the list of accepted bytes.
c = ptr[wlen];
if (c == TAB) // <Tab> is handled like <Space>
c = ' ';
idx_T lo = arridx;
idx_T hi = arridx + len - 1;
while (lo < hi) {
idx_T m = (lo + hi) / 2;
if (byts[m] > c)
hi = m - 1;
else if (byts[m] < c)
lo = m + 1;
else {
lo = hi = m;
break;
}
}
// Stop if there is no matching byte.
if (hi < lo || byts[lo] != c)
break;
// Continue at the child (if there is one).
arridx = idxs[lo];
++wlen;
--flen;
// One space in the good word may stand for several spaces in the
// checked word.
if (c == ' ') {
for (;; ) {
if (flen <= 0 && *mip->mi_fend != NUL)
flen = fold_more(mip);
if (ptr[wlen] != ' ' && ptr[wlen] != TAB)
break;
++wlen;
--flen;
}
}
}
char_u *p;
bool word_ends;
// Verify that one of the possible endings is valid. Try the longest
// first.
while (endidxcnt > 0) {
--endidxcnt;
arridx = endidx[endidxcnt];
wlen = endlen[endidxcnt];
if (utf_head_off(ptr, ptr + wlen) > 0) {
continue; // not at first byte of character
}
if (spell_iswordp(ptr + wlen, mip->mi_win)) {
if (slang->sl_compprog == NULL && !slang->sl_nobreak)
continue; // next char is a word character
word_ends = false;
} else
word_ends = true;
// The prefix flag is before compound flags. Once a valid prefix flag
// has been found we try compound flags.
bool prefix_found = false;
if (mode != FIND_KEEPWORD && has_mbyte) {
// Compute byte length in original word, length may change
// when folding case. This can be slow, take a shortcut when the
// case-folded word is equal to the keep-case word.
p = mip->mi_word;
if (STRNCMP(ptr, p, wlen) != 0) {
for (char_u *s = ptr; s < ptr + wlen; MB_PTR_ADV(s)) {
MB_PTR_ADV(p);
}
wlen = (int)(p - mip->mi_word);
}
}
// Check flags and region. For FIND_PREFIX check the condition and
// prefix ID.
// Repeat this if there are more flags/region alternatives until there
// is a match.
for (len = byts[arridx - 1]; len > 0 && byts[arridx] == 0;
--len, ++arridx) {
uint32_t flags = idxs[arridx];
// For the fold-case tree check that the case of the checked word
// matches with what the word in the tree requires.
// For keep-case tree the case is always right. For prefixes we
// don't bother to check.
if (mode == FIND_FOLDWORD) {
if (mip->mi_cend != mip->mi_word + wlen) {
// mi_capflags was set for a different word length, need
// to do it again.
mip->mi_cend = mip->mi_word + wlen;
mip->mi_capflags = captype(mip->mi_word, mip->mi_cend);
}
if (mip->mi_capflags == WF_KEEPCAP
|| !spell_valid_case(mip->mi_capflags, flags))
continue;
}
// When mode is FIND_PREFIX the word must support the prefix:
// check the prefix ID and the condition. Do that for the list at
// mip->mi_prefarridx that find_prefix() filled.
else if (mode == FIND_PREFIX && !prefix_found) {
c = valid_word_prefix(mip->mi_prefcnt, mip->mi_prefarridx,
flags,
mip->mi_word + mip->mi_cprefixlen, slang,
false);
if (c == 0)
continue;
// Use the WF_RARE flag for a rare prefix.
if (c & WF_RAREPFX)
flags |= WF_RARE;
prefix_found = true;
}
if (slang->sl_nobreak) {
if ((mode == FIND_COMPOUND || mode == FIND_KEEPCOMPOUND)
&& (flags & WF_BANNED) == 0) {
// NOBREAK: found a valid following word. That's all we
// need to know, so return.
mip->mi_result = SP_OK;
break;
}
} else if ((mode == FIND_COMPOUND || mode == FIND_KEEPCOMPOUND
|| !word_ends)) {
// If there is no compound flag or the word is shorter than
// COMPOUNDMIN reject it quickly.
// Makes you wonder why someone puts a compound flag on a word
// that's too short... Myspell compatibility requires this
// anyway.
if (((unsigned)flags >> 24) == 0
|| wlen - mip->mi_compoff < slang->sl_compminlen)
continue;
// For multi-byte chars check character length against
// COMPOUNDMIN.
if (has_mbyte
&& slang->sl_compminlen > 0
&& mb_charlen_len(mip->mi_word + mip->mi_compoff,
wlen - mip->mi_compoff) < slang->sl_compminlen)
continue;
// Limit the number of compound words to COMPOUNDWORDMAX if no
// maximum for syllables is specified.
if (!word_ends && mip->mi_complen + mip->mi_compextra + 2
> slang->sl_compmax
&& slang->sl_compsylmax == MAXWLEN)
continue;
// Don't allow compounding on a side where an affix was added,
// unless COMPOUNDPERMITFLAG was used.
if (mip->mi_complen > 0 && (flags & WF_NOCOMPBEF))
continue;
if (!word_ends && (flags & WF_NOCOMPAFT))
continue;
// Quickly check if compounding is possible with this flag.
if (!byte_in_str(mip->mi_complen == 0
? slang->sl_compstartflags
: slang->sl_compallflags,
((unsigned)flags >> 24)))
continue;
// If there is a match with a CHECKCOMPOUNDPATTERN rule
// discard the compound word.
if (match_checkcompoundpattern(ptr, wlen, &slang->sl_comppat))
continue;
if (mode == FIND_COMPOUND) {
int capflags;
// Need to check the caps type of the appended compound
// word.
if (has_mbyte && STRNCMP(ptr, mip->mi_word,
mip->mi_compoff) != 0) {
// case folding may have changed the length
p = mip->mi_word;
for (char_u *s = ptr; s < ptr + mip->mi_compoff; MB_PTR_ADV(s)) {
MB_PTR_ADV(p);
}
} else {
p = mip->mi_word + mip->mi_compoff;
}
capflags = captype(p, mip->mi_word + wlen);
if (capflags == WF_KEEPCAP || (capflags == WF_ALLCAP
&& (flags & WF_FIXCAP) != 0))
continue;
if (capflags != WF_ALLCAP) {
// When the character before the word is a word
// character we do not accept a Onecap word. We do
// accept a no-caps word, even when the dictionary
// word specifies ONECAP.
MB_PTR_BACK(mip->mi_word, p);
if (spell_iswordp_nmw(p, mip->mi_win)
? capflags == WF_ONECAP
: (flags & WF_ONECAP) != 0
&& capflags != WF_ONECAP) {
continue;
}
}
}
// If the word ends the sequence of compound flags of the
// words must match with one of the COMPOUNDRULE items and
// the number of syllables must not be too large.
mip->mi_compflags[mip->mi_complen] = ((unsigned)flags >> 24);
mip->mi_compflags[mip->mi_complen + 1] = NUL;
if (word_ends) {
char_u fword[MAXWLEN] = { 0 };
if (slang->sl_compsylmax < MAXWLEN) {
// "fword" is only needed for checking syllables.
if (ptr == mip->mi_word)
(void)spell_casefold(ptr, wlen, fword, MAXWLEN);
else
STRLCPY(fword, ptr, endlen[endidxcnt] + 1);
}
if (!can_compound(slang, fword, mip->mi_compflags))
continue;
} else if (slang->sl_comprules != NULL
&& !match_compoundrule(slang, mip->mi_compflags))
// The compound flags collected so far do not match any
// COMPOUNDRULE, discard the compounded word.
continue;
}
// Check NEEDCOMPOUND: can't use word without compounding.
else if (flags & WF_NEEDCOMP)
continue;
int nobreak_result = SP_OK;
if (!word_ends) {
int save_result = mip->mi_result;
char_u *save_end = mip->mi_end;
langp_T *save_lp = mip->mi_lp;
// Check that a valid word follows. If there is one and we
// are compounding, it will set "mi_result", thus we are
// always finished here. For NOBREAK we only check that a
// valid word follows.
// Recursive!
if (slang->sl_nobreak)
mip->mi_result = SP_BAD;
// Find following word in case-folded tree.
mip->mi_compoff = endlen[endidxcnt];
if (has_mbyte && mode == FIND_KEEPWORD) {
// Compute byte length in case-folded word from "wlen":
// byte length in keep-case word. Length may change when
// folding case. This can be slow, take a shortcut when
// the case-folded word is equal to the keep-case word.
p = mip->mi_fword;
if (STRNCMP(ptr, p, wlen) != 0) {
for (char_u *s = ptr; s < ptr + wlen; MB_PTR_ADV(s)) {
MB_PTR_ADV(p);
}
mip->mi_compoff = (int)(p - mip->mi_fword);
}
}
#if 0
c = mip->mi_compoff;
#endif
++mip->mi_complen;
if (flags & WF_COMPROOT)
++mip->mi_compextra;
// For NOBREAK we need to try all NOBREAK languages, at least
// to find the ".add" file(s).
for (int lpi = 0; lpi < mip->mi_win->w_s->b_langp.ga_len; ++lpi) {
if (slang->sl_nobreak) {
mip->mi_lp = LANGP_ENTRY(mip->mi_win->w_s->b_langp, lpi);
if (mip->mi_lp->lp_slang->sl_fidxs == NULL
|| !mip->mi_lp->lp_slang->sl_nobreak)
continue;
}
find_word(mip, FIND_COMPOUND);
// When NOBREAK any word that matches is OK. Otherwise we
// need to find the longest match, thus try with keep-case
// and prefix too.
if (!slang->sl_nobreak || mip->mi_result == SP_BAD) {
// Find following word in keep-case tree.
mip->mi_compoff = wlen;
find_word(mip, FIND_KEEPCOMPOUND);
#if 0 // Disabled, a prefix must not appear halfway through a compound
// word, unless the COMPOUNDPERMITFLAG is used, in which case it
// can't be a postponed prefix.
if (!slang->sl_nobreak || mip->mi_result == SP_BAD) {
// Check for following word with prefix.
mip->mi_compoff = c;
find_prefix(mip, FIND_COMPOUND);
}
#endif
}
if (!slang->sl_nobreak)
break;
}
--mip->mi_complen;
if (flags & WF_COMPROOT)
--mip->mi_compextra;
mip->mi_lp = save_lp;
if (slang->sl_nobreak) {
nobreak_result = mip->mi_result;
mip->mi_result = save_result;
mip->mi_end = save_end;
} else {
if (mip->mi_result == SP_OK)
break;
continue;
}
}
int res = SP_BAD;
if (flags & WF_BANNED)
res = SP_BANNED;
else if (flags & WF_REGION) {
// Check region.
if ((mip->mi_lp->lp_region & (flags >> 16)) != 0)
res = SP_OK;
else
res = SP_LOCAL;
} else if (flags & WF_RARE)
res = SP_RARE;
else
res = SP_OK;
// Always use the longest match and the best result. For NOBREAK
// we separately keep the longest match without a following good
// word as a fall-back.
if (nobreak_result == SP_BAD) {
if (mip->mi_result2 > res) {
mip->mi_result2 = res;
mip->mi_end2 = mip->mi_word + wlen;
} else if (mip->mi_result2 == res
&& mip->mi_end2 < mip->mi_word + wlen)
mip->mi_end2 = mip->mi_word + wlen;
} else if (mip->mi_result > res) {
mip->mi_result = res;
mip->mi_end = mip->mi_word + wlen;
} else if (mip->mi_result == res && mip->mi_end < mip->mi_word + wlen)
mip->mi_end = mip->mi_word + wlen;
if (mip->mi_result == SP_OK)
break;
}
if (mip->mi_result == SP_OK)
break;
}
}
// Returns true if there is a match between the word ptr[wlen] and
// CHECKCOMPOUNDPATTERN rules, assuming that we will concatenate with another
// word.
// A match means that the first part of CHECKCOMPOUNDPATTERN matches at the
// end of ptr[wlen] and the second part matches after it.
static bool
match_checkcompoundpattern (
char_u *ptr,
int wlen,
garray_T *gap // &sl_comppat
)
{
char_u *p;
int len;
for (int i = 0; i + 1 < gap->ga_len; i += 2) {
p = ((char_u **)gap->ga_data)[i + 1];
if (STRNCMP(ptr + wlen, p, STRLEN(p)) == 0) {
// Second part matches at start of following compound word, now
// check if first part matches at end of previous word.
p = ((char_u **)gap->ga_data)[i];
len = (int)STRLEN(p);
if (len <= wlen && STRNCMP(ptr + wlen - len, p, len) == 0)
return true;
}
}
return false;
}
// Returns true if "flags" is a valid sequence of compound flags and "word"
// does not have too many syllables.
static bool can_compound(slang_T *slang, const char_u *word,
const char_u *flags)
FUNC_ATTR_NONNULL_ALL
{
char_u uflags[MAXWLEN * 2] = { 0 };
if (slang->sl_compprog == NULL) {
return false;
}
// Need to convert the single byte flags to utf8 characters.
char_u *p = uflags;
for (int i = 0; flags[i] != NUL; i++) {
p += utf_char2bytes(flags[i], p);
}
*p = NUL;
p = uflags;
if (!vim_regexec_prog(&slang->sl_compprog, false, p, 0)) {
return false;
}
// Count the number of syllables. This may be slow, do it last. If there
// are too many syllables AND the number of compound words is above
// COMPOUNDWORDMAX then compounding is not allowed.
if (slang->sl_compsylmax < MAXWLEN
&& count_syllables(slang, word) > slang->sl_compsylmax)
return (int)STRLEN(flags) < slang->sl_compmax;
return true;
}
// Returns true when the sequence of flags in "compflags" plus "flag" can
// possibly form a valid compounded word. This also checks the COMPOUNDRULE
// lines if they don't contain wildcards.
static bool can_be_compound(trystate_T *sp, slang_T *slang, char_u *compflags, int flag)
{
// If the flag doesn't appear in sl_compstartflags or sl_compallflags
// then it can't possibly compound.
if (!byte_in_str(sp->ts_complen == sp->ts_compsplit
? slang->sl_compstartflags : slang->sl_compallflags, flag))
return false;
// If there are no wildcards, we can check if the flags collected so far
// possibly can form a match with COMPOUNDRULE patterns. This only
// makes sense when we have two or more words.
if (slang->sl_comprules != NULL && sp->ts_complen > sp->ts_compsplit) {
compflags[sp->ts_complen] = flag;
compflags[sp->ts_complen + 1] = NUL;
bool v = match_compoundrule(slang, compflags + sp->ts_compsplit);
compflags[sp->ts_complen] = NUL;
return v;
}
return true;
}
// Returns true if the compound flags in compflags[] match the start of any
// compound rule. This is used to stop trying a compound if the flags
// collected so far can't possibly match any compound rule.
// Caller must check that slang->sl_comprules is not NULL.
static bool match_compoundrule(slang_T *slang, char_u *compflags)
{
char_u *p;
int i;
int c;
// loop over all the COMPOUNDRULE entries
for (p = slang->sl_comprules; *p != NUL; ++p) {
// loop over the flags in the compound word we have made, match
// them against the current rule entry
for (i = 0;; ++i) {
c = compflags[i];
if (c == NUL)
// found a rule that matches for the flags we have so far
return true;
if (*p == '/' || *p == NUL)
break; // end of rule, it's too short
if (*p == '[') {
bool match = false;
// compare against all the flags in []
++p;
while (*p != ']' && *p != NUL)
if (*p++ == c)
match = true;
if (!match)
break; // none matches
} else if (*p != c)
break; // flag of word doesn't match flag in pattern
++p;
}
// Skip to the next "/", where the next pattern starts.
p = vim_strchr(p, '/');
if (p == NULL)
break;
}
// Checked all the rules and none of them match the flags, so there
// can't possibly be a compound starting with these flags.
return false;
}
// Return non-zero if the prefix indicated by "arridx" matches with the prefix
// ID in "flags" for the word "word".
// The WF_RAREPFX flag is included in the return value for a rare prefix.
static int
valid_word_prefix (
int totprefcnt, // nr of prefix IDs
int arridx, // idx in sl_pidxs[]
int flags,
char_u *word,
slang_T *slang,
bool cond_req // only use prefixes with a condition
)
{
int prefcnt;
int pidx;
int prefid;
prefid = (unsigned)flags >> 24;
for (prefcnt = totprefcnt - 1; prefcnt >= 0; --prefcnt) {
pidx = slang->sl_pidxs[arridx + prefcnt];
// Check the prefix ID.
if (prefid != (pidx & 0xff))
continue;
// Check if the prefix doesn't combine and the word already has a
// suffix.
if ((flags & WF_HAS_AFF) && (pidx & WF_PFX_NC))
continue;
// Check the condition, if there is one. The condition index is
// stored in the two bytes above the prefix ID byte.
regprog_T **rp = &slang->sl_prefprog[((unsigned)pidx >> 8) & 0xffff];
if (*rp != NULL) {
if (!vim_regexec_prog(rp, false, word, 0)) {
continue;
}
} else if (cond_req)
continue;
// It's a match! Return the WF_ flags.
return pidx;
}
return 0;
}
// Check if the word at "mip->mi_word" has a matching prefix.
// If it does, then check the following word.
//
// If "mode" is "FIND_COMPOUND" then do the same after another word, find a
// prefix in a compound word.
//
// For a match mip->mi_result is updated.
static void find_prefix(matchinf_T *mip, int mode)
{
idx_T arridx = 0;
int len;
int wlen = 0;
int flen;
int c;
char_u *ptr;
idx_T lo, hi, m;
slang_T *slang = mip->mi_lp->lp_slang;
char_u *byts;
idx_T *idxs;
byts = slang->sl_pbyts;
if (byts == NULL)
return; // array is empty
// We use the case-folded word here, since prefixes are always
// case-folded.
ptr = mip->mi_fword;
flen = mip->mi_fwordlen; // available case-folded bytes
if (mode == FIND_COMPOUND) {
// Skip over the previously found word(s).
ptr += mip->mi_compoff;
flen -= mip->mi_compoff;
}
idxs = slang->sl_pidxs;
// Repeat advancing in the tree until:
// - there is a byte that doesn't match,
// - we reach the end of the tree,
// - or we reach the end of the line.
for (;; ) {
if (flen == 0 && *mip->mi_fend != NUL)
flen = fold_more(mip);
len = byts[arridx++];
// If the first possible byte is a zero the prefix could end here.
// Check if the following word matches and supports the prefix.
if (byts[arridx] == 0) {
// There can be several prefixes with different conditions. We
// try them all, since we don't know which one will give the
// longest match. The word is the same each time, pass the list
// of possible prefixes to find_word().
mip->mi_prefarridx = arridx;
mip->mi_prefcnt = len;
while (len > 0 && byts[arridx] == 0) {
++arridx;
--len;
}
mip->mi_prefcnt -= len;
// Find the word that comes after the prefix.
mip->mi_prefixlen = wlen;
if (mode == FIND_COMPOUND)
// Skip over the previously found word(s).
mip->mi_prefixlen += mip->mi_compoff;
if (has_mbyte) {
// Case-folded length may differ from original length.
mip->mi_cprefixlen = nofold_len(mip->mi_fword,
mip->mi_prefixlen, mip->mi_word);
} else
mip->mi_cprefixlen = mip->mi_prefixlen;
find_word(mip, FIND_PREFIX);
if (len == 0)
break; // no children, word must end here
}
// Stop looking at end of the line.
if (ptr[wlen] == NUL)
break;
// Perform a binary search in the list of accepted bytes.
c = ptr[wlen];
lo = arridx;
hi = arridx + len - 1;
while (lo < hi) {
m = (lo + hi) / 2;
if (byts[m] > c)
hi = m - 1;
else if (byts[m] < c)
lo = m + 1;
else {
lo = hi = m;
break;
}
}
// Stop if there is no matching byte.
if (hi < lo || byts[lo] != c)
break;
// Continue at the child (if there is one).
arridx = idxs[lo];
++wlen;
--flen;
}
}
// Need to fold at least one more character. Do until next non-word character
// for efficiency. Include the non-word character too.
// Return the length of the folded chars in bytes.
static int fold_more(matchinf_T *mip)
{
int flen;
char_u *p;
p = mip->mi_fend;
do {
MB_PTR_ADV(mip->mi_fend);
} while (*mip->mi_fend != NUL && spell_iswordp(mip->mi_fend, mip->mi_win));
// Include the non-word character so that we can check for the word end.
if (*mip->mi_fend != NUL) {
MB_PTR_ADV(mip->mi_fend);
}
(void)spell_casefold(p, (int)(mip->mi_fend - p),
mip->mi_fword + mip->mi_fwordlen,
MAXWLEN - mip->mi_fwordlen);
flen = (int)STRLEN(mip->mi_fword + mip->mi_fwordlen);
mip->mi_fwordlen += flen;
return flen;
}
/// Checks case flags for a word. Returns true, if the word has the requested
/// case.
///
/// @param wordflags Flags for the checked word.
/// @param treeflags Flags for the word in the spell tree.
static bool spell_valid_case(int wordflags, int treeflags)
{
return (wordflags == WF_ALLCAP && (treeflags & WF_FIXCAP) == 0)
|| ((treeflags & (WF_ALLCAP | WF_KEEPCAP)) == 0
&& ((treeflags & WF_ONECAP) == 0
|| (wordflags & WF_ONECAP) != 0));
}
// Returns true if spell checking is not enabled.
static bool no_spell_checking(win_T *wp)
{
if (!wp->w_p_spell || *wp->w_s->b_p_spl == NUL
|| GA_EMPTY(&wp->w_s->b_langp)) {
EMSG(_("E756: Spell checking is not enabled"));
return true;
}
return false;
}
// Moves to the next spell error.
// "curline" is false for "[s", "]s", "[S" and "]S".
// "curline" is true to find word under/after cursor in the same line.
// For Insert mode completion "dir" is BACKWARD and "curline" is true: move
// to after badly spelled word before the cursor.
// Return 0 if not found, length of the badly spelled word otherwise.
size_t
spell_move_to (
win_T *wp,
int dir, // FORWARD or BACKWARD
bool allwords, // true for "[s"/"]s", false for "[S"/"]S"
bool curline,
hlf_T *attrp // return: attributes of bad word or NULL
// (only when "dir" is FORWARD)
)
{
linenr_T lnum;
pos_T found_pos;
size_t found_len = 0;
char_u *line;
char_u *p;
char_u *endp;
hlf_T attr = HLF_COUNT;
size_t len;
int has_syntax = syntax_present(wp);
int col;
bool can_spell;
char_u *buf = NULL;
size_t buflen = 0;
int skip = 0;
int capcol = -1;
bool found_one = false;
bool wrapped = false;
if (no_spell_checking(wp))
return 0;
// Start looking for bad word at the start of the line, because we can't
// start halfway through a word, we don't know where it starts or ends.
//
// When searching backwards, we continue in the line to find the last
// bad word (in the cursor line: before the cursor).
//
// We concatenate the start of the next line, so that wrapped words work
// (e.g. "et<line-break>cetera"). Doesn't work when searching backwards
// though...
lnum = wp->w_cursor.lnum;
clearpos(&found_pos);
while (!got_int) {
line = ml_get_buf(wp->w_buffer, lnum, FALSE);
len = STRLEN(line);
if (buflen < len + MAXWLEN + 2) {
xfree(buf);
buflen = len + MAXWLEN + 2;
buf = xmalloc(buflen);
}
assert(buf && buflen >= len + MAXWLEN + 2);
// In first line check first word for Capital.
if (lnum == 1)
capcol = 0;
// For checking first word with a capital skip white space.
if (capcol == 0) {
capcol = (int)getwhitecols(line);
} else if (curline && wp == curwin) {
// For spellbadword(): check if first word needs a capital.
col = (int)getwhitecols(line);
if (check_need_cap(lnum, col)) {
capcol = col;
}
// Need to get the line again, may have looked at the previous
// one.
line = ml_get_buf(wp->w_buffer, lnum, FALSE);
}
// Copy the line into "buf" and append the start of the next line if
// possible.
STRCPY(buf, line);
if (lnum < wp->w_buffer->b_ml.ml_line_count)
spell_cat_line(buf + STRLEN(buf),
ml_get_buf(wp->w_buffer, lnum + 1, FALSE),
MAXWLEN);
p = buf + skip;
endp = buf + len;
while (p < endp) {
// When searching backward don't search after the cursor. Unless
// we wrapped around the end of the buffer.
if (dir == BACKWARD
&& lnum == wp->w_cursor.lnum
&& !wrapped
&& (colnr_T)(p - buf) >= wp->w_cursor.col)
break;
// start of word
attr = HLF_COUNT;
len = spell_check(wp, p, &attr, &capcol, false);
if (attr != HLF_COUNT) {
// We found a bad word. Check the attribute.
if (allwords || attr == HLF_SPB) {
// When searching forward only accept a bad word after
// the cursor.
if (dir == BACKWARD
|| lnum != wp->w_cursor.lnum
|| wrapped
|| ((colnr_T)(curline
? p - buf + (ptrdiff_t)len
: p - buf) > wp->w_cursor.col)) {
if (has_syntax) {
col = (int)(p - buf);
(void)syn_get_id(wp, lnum, (colnr_T)col,
FALSE, &can_spell, FALSE);
if (!can_spell)
attr = HLF_COUNT;
} else
can_spell = true;
if (can_spell) {
found_one = true;
found_pos.lnum = lnum;
found_pos.col = (int)(p - buf);
found_pos.coladd = 0;
if (dir == FORWARD) {
// No need to search further.
wp->w_cursor = found_pos;
xfree(buf);
if (attrp != NULL)
*attrp = attr;
return len;
} else if (curline) {
// Insert mode completion: put cursor after
// the bad word.
assert(len <= INT_MAX);
found_pos.col += (int)len;
}
found_len = len;
}
} else
found_one = true;
}
}
// advance to character after the word
p += len;
assert(len <= INT_MAX);
capcol -= (int)len;
}
if (dir == BACKWARD && found_pos.lnum != 0) {
// Use the last match in the line (before the cursor).
wp->w_cursor = found_pos;
xfree(buf);
return found_len;
}
if (curline) {
break; // only check cursor line
}
// If we are back at the starting line and searched it again there
// is no match, give up.
if (lnum == wp->w_cursor.lnum && wrapped) {
break;
}
// Advance to next line.
if (dir == BACKWARD) {
if (lnum > 1) {
lnum--;
} else if (!p_ws) {
break; // at first line and 'nowrapscan'
} else {
// Wrap around to the end of the buffer. May search the
// starting line again and accept the last match.
lnum = wp->w_buffer->b_ml.ml_line_count;
wrapped = true;
if (!shortmess(SHM_SEARCH))
give_warning((char_u *)_(top_bot_msg), true);
}
capcol = -1;
} else {
if (lnum < wp->w_buffer->b_ml.ml_line_count)
++lnum;
else if (!p_ws)
break; // at first line and 'nowrapscan'
else {
// Wrap around to the start of the buffer. May search the
// starting line again and accept the first match.
lnum = 1;
wrapped = true;
if (!shortmess(SHM_SEARCH))
give_warning((char_u *)_(bot_top_msg), true);
}
// If we are back at the starting line and there is no match then
// give up.
if (lnum == wp->w_cursor.lnum && !found_one) {
break;
}
// Skip the characters at the start of the next line that were
// included in a match crossing line boundaries.
if (attr == HLF_COUNT)
skip = (int)(p - endp);
else
skip = 0;
// Capcol skips over the inserted space.
--capcol;
// But after empty line check first word in next line
if (*skipwhite(line) == NUL)
capcol = 0;
}
line_breakcheck();
}
xfree(buf);
return 0;
}
// For spell checking: concatenate the start of the following line "line" into
// "buf", blanking-out special characters. Copy less then "maxlen" bytes.
// Keep the blanks at the start of the next line, this is used in win_line()
// to skip those bytes if the word was OK.
void spell_cat_line(char_u *buf, char_u *line, int maxlen)
{
char_u *p;
int n;
p = skipwhite(line);
while (vim_strchr((char_u *)"*#/\"\t", *p) != NULL)
p = skipwhite(p + 1);
if (*p != NUL) {
// Only worth concatenating if there is something else than spaces to
// concatenate.
n = (int)(p - line) + 1;
if (n < maxlen - 1) {
memset(buf, ' ', n);
STRLCPY(buf + n, p, maxlen - n);
}
}
}
// Load word list(s) for "lang" from Vim spell file(s).
// "lang" must be the language without the region: e.g., "en".
static void spell_load_lang(char_u *lang)
{
char_u fname_enc[85];
int r;
spelload_T sl;
int round;
// Copy the language name to pass it to spell_load_cb() as a cookie.
// It's truncated when an error is detected.
STRCPY(sl.sl_lang, lang);
sl.sl_slang = NULL;
sl.sl_nobreak = false;
// We may retry when no spell file is found for the language, an
// autocommand may load it then.
for (round = 1; round <= 2; ++round) {
// Find the first spell file for "lang" in 'runtimepath' and load it.
vim_snprintf((char *)fname_enc, sizeof(fname_enc) - 5,
"spell/%s.%s.spl", lang, spell_enc());
r = do_in_runtimepath(fname_enc, 0, spell_load_cb, &sl);
if (r == FAIL && *sl.sl_lang != NUL) {
// Try loading the ASCII version.
vim_snprintf((char *)fname_enc, sizeof(fname_enc) - 5,
"spell/%s.ascii.spl", lang);
r = do_in_runtimepath(fname_enc, 0, spell_load_cb, &sl);
if (r == FAIL && *sl.sl_lang != NUL && round == 1
&& apply_autocmds(EVENT_SPELLFILEMISSING, lang,
curbuf->b_fname, FALSE, curbuf))
continue;
break;
}
break;
}
if (r == FAIL) {
if (starting) {
// Prompt the user at VimEnter if spell files are missing. #3027
// Plugins aren't loaded yet, so spellfile.vim cannot handle this case.
char autocmd_buf[512] = { 0 };
snprintf(autocmd_buf, sizeof(autocmd_buf),
"autocmd VimEnter * call spellfile#LoadFile('%s')|set spell",
lang);
do_cmdline_cmd(autocmd_buf);
} else {
smsg(
_("Warning: Cannot find word list \"%s.%s.spl\" or \"%s.ascii.spl\""),
lang, spell_enc(), lang);
}
} else if (sl.sl_slang != NULL) {
// At least one file was loaded, now load ALL the additions.
STRCPY(fname_enc + STRLEN(fname_enc) - 3, "add.spl");
do_in_runtimepath(fname_enc, DIP_ALL, spell_load_cb, &sl);
}
}
// Return the encoding used for spell checking: Use 'encoding', except that we
// use "latin1" for "latin9". And limit to 60 characters (just in case).
char_u *spell_enc(void)
{
if (STRLEN(p_enc) < 60 && STRCMP(p_enc, "iso-8859-15") != 0)
return p_enc;
return (char_u *)"latin1";
}
// Get the name of the .spl file for the internal wordlist into
// "fname[MAXPATHL]".
static void int_wordlist_spl(char_u *fname)
{
vim_snprintf((char *)fname, MAXPATHL, SPL_FNAME_TMPL,
int_wordlist, spell_enc());
}
// Allocate a new slang_T for language "lang". "lang" can be NULL.
// Caller must fill "sl_next".
slang_T *slang_alloc(char_u *lang)
{
slang_T *lp = xcalloc(1, sizeof(slang_T));
if (lang != NULL)
lp->sl_name = vim_strsave(lang);
ga_init(&lp->sl_rep, sizeof(fromto_T), 10);
ga_init(&lp->sl_repsal, sizeof(fromto_T), 10);
lp->sl_compmax = MAXWLEN;
lp->sl_compsylmax = MAXWLEN;
hash_init(&lp->sl_wordcount);
return lp;
}
// Free the contents of an slang_T and the structure itself.
void slang_free(slang_T *lp)
{
xfree(lp->sl_name);
xfree(lp->sl_fname);
slang_clear(lp);
xfree(lp);
}
/// Frees a salitem_T
static void free_salitem(salitem_T *smp) {
xfree(smp->sm_lead);
// Don't free sm_oneof and sm_rules, they point into sm_lead.
xfree(smp->sm_to);
xfree(smp->sm_lead_w);
xfree(smp->sm_oneof_w);
xfree(smp->sm_to_w);
}
/// Frees a fromto_T
static void free_fromto(fromto_T *ftp) {
xfree(ftp->ft_from);
xfree(ftp->ft_to);
}
// Clear an slang_T so that the file can be reloaded.
void slang_clear(slang_T *lp)
{
garray_T *gap;
XFREE_CLEAR(lp->sl_fbyts);
XFREE_CLEAR(lp->sl_kbyts);
XFREE_CLEAR(lp->sl_pbyts);
XFREE_CLEAR(lp->sl_fidxs);
XFREE_CLEAR(lp->sl_kidxs);
XFREE_CLEAR(lp->sl_pidxs);
GA_DEEP_CLEAR(&lp->sl_rep, fromto_T, free_fromto);
GA_DEEP_CLEAR(&lp->sl_repsal, fromto_T, free_fromto);
gap = &lp->sl_sal;
if (lp->sl_sofo) {
// "ga_len" is set to 1 without adding an item for latin1
GA_DEEP_CLEAR_PTR(gap);
} else {
// SAL items: free salitem_T items
GA_DEEP_CLEAR(gap, salitem_T, free_salitem);
}
for (int i = 0; i < lp->sl_prefixcnt; ++i) {
vim_regfree(lp->sl_prefprog[i]);
}
lp->sl_prefixcnt = 0;
XFREE_CLEAR(lp->sl_prefprog);
XFREE_CLEAR(lp->sl_info);
XFREE_CLEAR(lp->sl_midword);
vim_regfree(lp->sl_compprog);
lp->sl_compprog = NULL;
XFREE_CLEAR(lp->sl_comprules);
XFREE_CLEAR(lp->sl_compstartflags);
XFREE_CLEAR(lp->sl_compallflags);
XFREE_CLEAR(lp->sl_syllable);
ga_clear(&lp->sl_syl_items);
ga_clear_strings(&lp->sl_comppat);
hash_clear_all(&lp->sl_wordcount, WC_KEY_OFF);
hash_init(&lp->sl_wordcount);
hash_clear_all(&lp->sl_map_hash, 0);
// Clear info from .sug file.
slang_clear_sug(lp);
lp->sl_compmax = MAXWLEN;
lp->sl_compminlen = 0;
lp->sl_compsylmax = MAXWLEN;
lp->sl_regions[0] = NUL;
}
// Clear the info from the .sug file in "lp".
void slang_clear_sug(slang_T *lp)
{
XFREE_CLEAR(lp->sl_sbyts);
XFREE_CLEAR(lp->sl_sidxs);
close_spellbuf(lp->sl_sugbuf);
lp->sl_sugbuf = NULL;
lp->sl_sugloaded = false;
lp->sl_sugtime = 0;
}
// Load one spell file and store the info into a slang_T.
// Invoked through do_in_runtimepath().
static void spell_load_cb(char_u *fname, void *cookie)
{
spelload_T *slp = (spelload_T *)cookie;
slang_T *slang;
slang = spell_load_file(fname, slp->sl_lang, NULL, false);
if (slang != NULL) {
// When a previously loaded file has NOBREAK also use it for the
// ".add" files.
if (slp->sl_nobreak && slang->sl_add)
slang->sl_nobreak = true;
else if (slang->sl_nobreak)
slp->sl_nobreak = true;
slp->sl_slang = slang;
}
}
/// Add a word to the hashtable of common words.
/// If it's already there then the counter is increased.
///
/// @param[in] lp
/// @param[in] word added to common words hashtable
/// @param[in] len length of word or -1 for NUL terminated
/// @param[in] count 1 to count once, 10 to init
void count_common_word(slang_T *lp, char_u *word, int len, int count)
{
hash_T hash;
hashitem_T *hi;
wordcount_T *wc;
char_u buf[MAXWLEN];
char_u *p;
if (len == -1) {
p = word;
} else if (len >= MAXWLEN) {
return;
} else {
STRLCPY(buf, word, len + 1);
p = buf;
}
hash = hash_hash(p);
const size_t p_len = STRLEN(p);
hi = hash_lookup(&lp->sl_wordcount, (const char *)p, p_len, hash);
if (HASHITEM_EMPTY(hi)) {
wc = xmalloc(sizeof(wordcount_T) + p_len);
memcpy(wc->wc_word, p, p_len + 1);
wc->wc_count = count;
hash_add_item(&lp->sl_wordcount, hi, wc->wc_word, hash);
} else {
wc = HI2WC(hi);
if ((wc->wc_count += count) < (unsigned)count) // check for overflow
wc->wc_count = MAXWORDCOUNT;
}
}
// Adjust the score of common words.
static int
score_wordcount_adj (
slang_T *slang,
int score,
char_u *word,
bool split // word was split, less bonus
)
{
hashitem_T *hi;
wordcount_T *wc;
int bonus;
int newscore;
hi = hash_find(&slang->sl_wordcount, word);
if (!HASHITEM_EMPTY(hi)) {
wc = HI2WC(hi);
if (wc->wc_count < SCORE_THRES2)
bonus = SCORE_COMMON1;
else if (wc->wc_count < SCORE_THRES3)
bonus = SCORE_COMMON2;
else
bonus = SCORE_COMMON3;
if (split)
newscore = score - bonus / 2;
else
newscore = score - bonus;
if (newscore < 0)
return 0;
return newscore;
}
return score;
}
// Returns true if byte "n" appears in "str".
// Like strchr() but independent of locale.
bool byte_in_str(char_u *str, int n)
{
char_u *p;
for (p = str; *p != NUL; ++p)
if (*p == n)
return true;
return false;
}
// Truncate "slang->sl_syllable" at the first slash and put the following items
// in "slang->sl_syl_items".
int init_syl_tab(slang_T *slang)
{
char_u *p;
char_u *s;
int l;
ga_init(&slang->sl_syl_items, sizeof(syl_item_T), 4);
p = vim_strchr(slang->sl_syllable, '/');
while (p != NULL) {
*p++ = NUL;
if (*p == NUL) // trailing slash
break;
s = p;
p = vim_strchr(p, '/');
if (p == NULL)
l = (int)STRLEN(s);
else
l = (int)(p - s);
if (l >= SY_MAXLEN)
return SP_FORMERROR;
syl_item_T *syl = GA_APPEND_VIA_PTR(syl_item_T, &slang->sl_syl_items);
STRLCPY(syl->sy_chars, s, l + 1);
syl->sy_len = l;
}
return OK;
}
// Count the number of syllables in "word".
// When "word" contains spaces the syllables after the last space are counted.
// Returns zero if syllables are not defines.
static int count_syllables(slang_T *slang, const char_u *word)
FUNC_ATTR_NONNULL_ALL
{
int cnt = 0;
bool skip = false;
int len;
syl_item_T *syl;
int c;
if (slang->sl_syllable == NULL)
return 0;
for (const char_u *p = word; *p != NUL; p += len) {
// When running into a space reset counter.
if (*p == ' ') {
len = 1;
cnt = 0;
continue;
}
// Find longest match of syllable items.
len = 0;
for (int i = 0; i < slang->sl_syl_items.ga_len; ++i) {
syl = ((syl_item_T *)slang->sl_syl_items.ga_data) + i;
if (syl->sy_len > len
&& STRNCMP(p, syl->sy_chars, syl->sy_len) == 0)
len = syl->sy_len;
}
if (len != 0) { // found a match, count syllable
++cnt;
skip = false;
} else {
// No recognized syllable item, at least a syllable char then?
c = utf_ptr2char(p);
len = (*mb_ptr2len)(p);
if (vim_strchr(slang->sl_syllable, c) == NULL)
skip = false; // No, search for next syllable
else if (!skip) {
++cnt; // Yes, count it
skip = true; // don't count following syllable chars
}
}
}
return cnt;
}
// Parse 'spelllang' and set w_s->b_langp accordingly.
// Returns NULL if it's OK, an error message otherwise.
char_u *did_set_spelllang(win_T *wp)
{
garray_T ga;
char_u *splp;
char_u *region;
char_u region_cp[3];
bool filename;
int region_mask;
slang_T *slang;
int c;
char_u lang[MAXWLEN + 1];
char_u spf_name[MAXPATHL];
int len;
char_u *p;
int round;
char_u *spf;
char_u *use_region = NULL;
bool dont_use_region = false;
bool nobreak = false;
langp_T *lp, *lp2;
static bool recursive = false;
char_u *ret_msg = NULL;
char_u *spl_copy;
bufref_T bufref;
set_bufref(&bufref, wp->w_buffer);
// We don't want to do this recursively. May happen when a language is
// not available and the SpellFileMissing autocommand opens a new buffer
// in which 'spell' is set.
if (recursive)
return NULL;
recursive = true;
ga_init(&ga, sizeof(langp_T), 2);
clear_midword(wp);
// Make a copy of 'spelllang', the SpellFileMissing autocommands may change
// it under our fingers.
spl_copy = vim_strsave(wp->w_s->b_p_spl);
wp->w_s->b_cjk = 0;
// Loop over comma separated language names.
for (splp = spl_copy; *splp != NUL; ) {
// Get one language name.
copy_option_part(&splp, lang, MAXWLEN, ",");
region = NULL;
len = (int)STRLEN(lang);
if (!valid_spelllang(lang)) {
continue;
}
if (STRCMP(lang, "cjk") == 0) {
wp->w_s->b_cjk = 1;
continue;
}
// If the name ends in ".spl" use it as the name of the spell file.
// If there is a region name let "region" point to it and remove it
// from the name.
if (len > 4 && fnamecmp(lang + len - 4, ".spl") == 0) {
filename = true;
// Locate a region and remove it from the file name.
p = vim_strchr(path_tail(lang), '_');
if (p != NULL && ASCII_ISALPHA(p[1]) && ASCII_ISALPHA(p[2])
&& !ASCII_ISALPHA(p[3])) {
STRLCPY(region_cp, p + 1, 3);
memmove(p, p + 3, len - (p - lang) - 2);
region = region_cp;
} else
dont_use_region = true;
// Check if we loaded this language before.
for (slang = first_lang; slang != NULL; slang = slang->sl_next) {
if (path_full_compare(lang, slang->sl_fname, false, true)
== kEqualFiles) {
break;
}
}
} else {
filename = false;
if (len > 3 && lang[len - 3] == '_') {
region = lang + len - 2;
lang[len - 3] = NUL;
} else
dont_use_region = true;
// Check if we loaded this language before.
for (slang = first_lang; slang != NULL; slang = slang->sl_next)
if (STRICMP(lang, slang->sl_name) == 0)
break;
}
if (region != NULL) {
// If the region differs from what was used before then don't
// use it for 'spellfile'.
if (use_region != NULL && STRCMP(region, use_region) != 0)
dont_use_region = true;
use_region = region;
}
// If not found try loading the language now.
if (slang == NULL) {
if (filename)
(void)spell_load_file(lang, lang, NULL, false);
else {
spell_load_lang(lang);
// SpellFileMissing autocommands may do anything, including
// destroying the buffer we are using...
if (!bufref_valid(&bufref)) {
ret_msg =
(char_u *)N_("E797: SpellFileMissing autocommand deleted buffer");
goto theend;
}
}
}
// Loop over the languages, there can be several files for "lang".
for (slang = first_lang; slang != NULL; slang = slang->sl_next) {
if (filename
? path_full_compare(lang, slang->sl_fname, false, true) == kEqualFiles
: STRICMP(lang, slang->sl_name) == 0) {
region_mask = REGION_ALL;
if (!filename && region != NULL) {
// find region in sl_regions
c = find_region(slang->sl_regions, region);
if (c == REGION_ALL) {
if (slang->sl_add) {
if (*slang->sl_regions != NUL)
// This addition file is for other regions.
region_mask = 0;
} else
// This is probably an error. Give a warning and
// accept the words anyway.
smsg(_("Warning: region %s not supported"),
region);
} else
region_mask = 1 << c;
}
if (region_mask != 0) {
langp_T *p_ = GA_APPEND_VIA_PTR(langp_T, &ga);
p_->lp_slang = slang;
p_->lp_region = region_mask;
use_midword(slang, wp);
if (slang->sl_nobreak)
nobreak = true;
}
}
}
}
// round 0: load int_wordlist, if possible.
// round 1: load first name in 'spellfile'.
// round 2: load second name in 'spellfile.
// etc.
spf = curwin->w_s->b_p_spf;
for (round = 0; round == 0 || *spf != NUL; ++round) {
if (round == 0) {
// Internal wordlist, if there is one.
if (int_wordlist == NULL)
continue;
int_wordlist_spl(spf_name);
} else {
// One entry in 'spellfile'.
copy_option_part(&spf, spf_name, MAXPATHL - 5, ",");
STRCAT(spf_name, ".spl");
// If it was already found above then skip it.
for (c = 0; c < ga.ga_len; ++c) {
p = LANGP_ENTRY(ga, c)->lp_slang->sl_fname;
if (p != NULL
&& path_full_compare(spf_name, p, false, true) == kEqualFiles) {
break;
}
}
if (c < ga.ga_len)
continue;
}
// Check if it was loaded already.
for (slang = first_lang; slang != NULL; slang = slang->sl_next) {
if (path_full_compare(spf_name, slang->sl_fname, false, true)
== kEqualFiles) {
break;
}
}
if (slang == NULL) {
// Not loaded, try loading it now. The language name includes the
// region name, the region is ignored otherwise. for int_wordlist
// use an arbitrary name.
if (round == 0)
STRCPY(lang, "internal wordlist");
else {
STRLCPY(lang, path_tail(spf_name), MAXWLEN + 1);
p = vim_strchr(lang, '.');
if (p != NULL)
*p = NUL; // truncate at ".encoding.add"
}
slang = spell_load_file(spf_name, lang, NULL, true);
// If one of the languages has NOBREAK we assume the addition
// files also have this.
if (slang != NULL && nobreak)
slang->sl_nobreak = true;
}
if (slang != NULL) {
region_mask = REGION_ALL;
if (use_region != NULL && !dont_use_region) {
// find region in sl_regions
c = find_region(slang->sl_regions, use_region);
if (c != REGION_ALL)
region_mask = 1 << c;
else if (*slang->sl_regions != NUL)
// This spell file is for other regions.
region_mask = 0;
}
if (region_mask != 0) {
langp_T *p_ = GA_APPEND_VIA_PTR(langp_T, &ga);
p_->lp_slang = slang;
p_->lp_sallang = NULL;
p_->lp_replang = NULL;
p_->lp_region = region_mask;
use_midword(slang, wp);
}
}
}
// Everything is fine, store the new b_langp value.
ga_clear(&wp->w_s->b_langp);
wp->w_s->b_langp = ga;
// For each language figure out what language to use for sound folding and
// REP items. If the language doesn't support it itself use another one
// with the same name. E.g. for "en-math" use "en".
for (int i = 0; i < ga.ga_len; ++i) {
lp = LANGP_ENTRY(ga, i);
// sound folding
if (!GA_EMPTY(&lp->lp_slang->sl_sal))
// language does sound folding itself
lp->lp_sallang = lp->lp_slang;
else
// find first similar language that does sound folding
for (int j = 0; j < ga.ga_len; ++j) {
lp2 = LANGP_ENTRY(ga, j);
if (!GA_EMPTY(&lp2->lp_slang->sl_sal)
&& STRNCMP(lp->lp_slang->sl_name,
lp2->lp_slang->sl_name, 2) == 0) {
lp->lp_sallang = lp2->lp_slang;
break;
}
}
// REP items
if (!GA_EMPTY(&lp->lp_slang->sl_rep))
// language has REP items itself
lp->lp_replang = lp->lp_slang;
else
// find first similar language that has REP items
for (int j = 0; j < ga.ga_len; ++j) {
lp2 = LANGP_ENTRY(ga, j);
if (!GA_EMPTY(&lp2->lp_slang->sl_rep)
&& STRNCMP(lp->lp_slang->sl_name,
lp2->lp_slang->sl_name, 2) == 0) {
lp->lp_replang = lp2->lp_slang;
break;
}
}
}
theend:
xfree(spl_copy);
recursive = false;
redraw_win_later(wp, NOT_VALID);
return ret_msg;
}
// Clear the midword characters for buffer "buf".
static void clear_midword(win_T *wp)
{
memset(wp->w_s->b_spell_ismw, 0, 256);
XFREE_CLEAR(wp->w_s->b_spell_ismw_mb);
}
// Use the "sl_midword" field of language "lp" for buffer "buf".
// They add up to any currently used midword characters.
static void use_midword(slang_T *lp, win_T *wp)
{
char_u *p;
if (lp->sl_midword == NULL) // there aren't any
return;
for (p = lp->sl_midword; *p != NUL; )
if (has_mbyte) {
int c, l, n;
char_u *bp;
c = utf_ptr2char(p);
l = (*mb_ptr2len)(p);
if (c < 256 && l <= 2)
wp->w_s->b_spell_ismw[c] = true;
else if (wp->w_s->b_spell_ismw_mb == NULL)
// First multi-byte char in "b_spell_ismw_mb".
wp->w_s->b_spell_ismw_mb = vim_strnsave(p, l);
else {
// Append multi-byte chars to "b_spell_ismw_mb".
n = (int)STRLEN(wp->w_s->b_spell_ismw_mb);
bp = vim_strnsave(wp->w_s->b_spell_ismw_mb, n + l);
xfree(wp->w_s->b_spell_ismw_mb);
wp->w_s->b_spell_ismw_mb = bp;
STRLCPY(bp + n, p, l + 1);
}
p += l;
} else
wp->w_s->b_spell_ismw[*p++] = true;
}
// Find the region "region[2]" in "rp" (points to "sl_regions").
// Each region is simply stored as the two characters of its name.
// Returns the index if found (first is 0), REGION_ALL if not found.
static int find_region(char_u *rp, char_u *region)
{
int i;
for (i = 0;; i += 2) {
if (rp[i] == NUL)
return REGION_ALL;
if (rp[i] == region[0] && rp[i + 1] == region[1])
break;
}
return i / 2;
}
/// Return case type of word:
/// w word 0
/// Word WF_ONECAP
/// W WORD WF_ALLCAP
/// WoRd wOrd WF_KEEPCAP
///
/// @param[in] word
/// @param[in] end End of word or NULL for NUL delimited string
///
/// @returns Case type of word
int captype(char_u *word, char_u *end)
FUNC_ATTR_NONNULL_ARG(1)
{
char_u *p;
int c;
int firstcap;
bool allcap;
bool past_second = false; // past second word char
// find first letter
for (p = word; !spell_iswordp_nmw(p, curwin); MB_PTR_ADV(p)) {
if (end == NULL ? *p == NUL : p >= end) {
return 0; // only non-word characters, illegal word
}
}
if (has_mbyte) {
c = mb_ptr2char_adv((const char_u **)&p);
} else {
c = *p++;
}
firstcap = allcap = SPELL_ISUPPER(c);
// Need to check all letters to find a word with mixed upper/lower.
// But a word with an upper char only at start is a ONECAP.
for (; end == NULL ? *p != NUL : p < end; MB_PTR_ADV(p)) {
if (spell_iswordp_nmw(p, curwin)) {
c = PTR2CHAR(p);
if (!SPELL_ISUPPER(c)) {
// UUl -> KEEPCAP
if (past_second && allcap) {
return WF_KEEPCAP;
}
allcap = false;
} else if (!allcap) {
// UlU -> KEEPCAP
return WF_KEEPCAP;
}
past_second = true;
}
}
if (allcap)
return WF_ALLCAP;
if (firstcap)
return WF_ONECAP;
return 0;
}
// Like captype() but for a KEEPCAP word add ONECAP if the word starts with a
// capital. So that make_case_word() can turn WOrd into Word.
// Add ALLCAP for "WOrD".
static int badword_captype(char_u *word, char_u *end)
FUNC_ATTR_NONNULL_ALL
{
int flags = captype(word, end);
int c;
int l, u;
bool first;
char_u *p;
if (flags & WF_KEEPCAP) {
// Count the number of UPPER and lower case letters.
l = u = 0;
first = false;
for (p = word; p < end; MB_PTR_ADV(p)) {
c = PTR2CHAR(p);
if (SPELL_ISUPPER(c)) {
++u;
if (p == word)
first = true;
} else
++l;
}
// If there are more UPPER than lower case letters suggest an
// ALLCAP word. Otherwise, if the first letter is UPPER then
// suggest ONECAP. Exception: "ALl" most likely should be "All",
// require three upper case letters.
if (u > l && u > 2)
flags |= WF_ALLCAP;
else if (first)
flags |= WF_ONECAP;
if (u >= 2 && l >= 2) // maCARONI maCAroni
flags |= WF_MIXCAP;
}
return flags;
}
// Delete the internal wordlist and its .spl file.
void spell_delete_wordlist(void)
{
char_u fname[MAXPATHL] = {0};
if (int_wordlist != NULL) {
os_remove((char *)int_wordlist);
int_wordlist_spl(fname);
os_remove((char *)fname);
XFREE_CLEAR(int_wordlist);
}
}
// Free all languages.
void spell_free_all(void)
{
slang_T *slang;
// Go through all buffers and handle 'spelllang'. <VN>
FOR_ALL_BUFFERS(buf) {
ga_clear(&buf->b_s.b_langp);
}
while (first_lang != NULL) {
slang = first_lang;
first_lang = slang->sl_next;
slang_free(slang);
}
spell_delete_wordlist();
XFREE_CLEAR(repl_to);
XFREE_CLEAR(repl_from);
}
// Clear all spelling tables and reload them.
// Used after 'encoding' is set and when ":mkspell" was used.
void spell_reload(void)
{
// Initialize the table for spell_iswordp().
init_spell_chartab();
// Unload all allocated memory.
spell_free_all();
// Go through all buffers and handle 'spelllang'.
FOR_ALL_WINDOWS_IN_TAB(wp, curtab) {
// Only load the wordlists when 'spelllang' is set and there is a
// window for this buffer in which 'spell' is set.
if (*wp->w_s->b_p_spl != NUL) {
if (wp->w_p_spell) {
(void)did_set_spelllang(wp);
break;
}
}
}
}
// Opposite of offset2bytes().
// "pp" points to the bytes and is advanced over it.
// Returns the offset.
static int bytes2offset(char_u **pp)
{
char_u *p = *pp;
int nr;
int c;
c = *p++;
if ((c & 0x80) == 0x00) { // 1 byte
nr = c - 1;
} else if ((c & 0xc0) == 0x80) { // 2 bytes
nr = (c & 0x3f) - 1;
nr = nr * 255 + (*p++ - 1);
} else if ((c & 0xe0) == 0xc0) { // 3 bytes
nr = (c & 0x1f) - 1;
nr = nr * 255 + (*p++ - 1);
nr = nr * 255 + (*p++ - 1);
} else { // 4 bytes
nr = (c & 0x0f) - 1;
nr = nr * 255 + (*p++ - 1);
nr = nr * 255 + (*p++ - 1);
nr = nr * 255 + (*p++ - 1);
}
*pp = p;
return nr;
}
// Open a spell buffer. This is a nameless buffer that is not in the buffer
// list and only contains text lines. Can use a swapfile to reduce memory
// use.
// Most other fields are invalid! Esp. watch out for string options being
// NULL and there is no undo info.
buf_T *open_spellbuf(void)
{
buf_T *buf = xcalloc(1, sizeof(buf_T));
buf->b_spell = true;
buf->b_p_swf = true; // may create a swap file
if (ml_open(buf) == FAIL) {
ELOG("Error opening a new memline");
}
ml_open_file(buf); // create swap file now
return buf;
}
// Close the buffer used for spell info.
void close_spellbuf(buf_T *buf)
{
if (buf != NULL) {
ml_close(buf, TRUE);
xfree(buf);
}
}
// Init the chartab used for spelling for ASCII.
void clear_spell_chartab(spelltab_T *sp)
{
int i;
// Init everything to false.
memset(sp->st_isw, false, sizeof(sp->st_isw));
memset(sp->st_isu, false, sizeof(sp->st_isu));
for (i = 0; i < 256; ++i) {
sp->st_fold[i] = i;
sp->st_upper[i] = i;
}
// We include digits. A word shouldn't start with a digit, but handling
// that is done separately.
for (i = '0'; i <= '9'; ++i)
sp->st_isw[i] = true;
for (i = 'A'; i <= 'Z'; ++i) {
sp->st_isw[i] = true;
sp->st_isu[i] = true;
sp->st_fold[i] = i + 0x20;
}
for (i = 'a'; i <= 'z'; ++i) {
sp->st_isw[i] = true;
sp->st_upper[i] = i - 0x20;
}
}
// Init the chartab used for spelling. Called once while starting up.
// The default is to use isalpha(), but the spell file should define the word
// characters to make it possible that 'encoding' differs from the current
// locale. For utf-8 we don't use isalpha() but our own functions.
void init_spell_chartab(void)
{
int i;
did_set_spelltab = false;
clear_spell_chartab(&spelltab);
for (i = 128; i < 256; i++) {
int f = utf_fold(i);
int u = mb_toupper(i);
spelltab.st_isu[i] = mb_isupper(i);
spelltab.st_isw[i] = spelltab.st_isu[i] || mb_islower(i);
// The folded/upper-cased value is different between latin1 and
// utf8 for 0xb5, causing E763 for no good reason. Use the latin1
// value for utf-8 to avoid this.
spelltab.st_fold[i] = (f < 256) ? f : i;
spelltab.st_upper[i] = (u < 256) ? u : i;
}
}
/// Returns true if "p" points to a word character.
/// As a special case we see "midword" characters as word character when it is
/// followed by a word character. This finds they'there but not 'they there'.
/// Thus this only works properly when past the first character of the word.
///
/// @param wp Buffer used.
static bool spell_iswordp(const char_u *p, const win_T *wp)
FUNC_ATTR_NONNULL_ALL
{
int c;
const int l = utfc_ptr2len(p);
const char_u *s = p;
if (l == 1) {
// be quick for ASCII
if (wp->w_s->b_spell_ismw[*p]) {
s = p + 1; // skip a mid-word character
}
} else {
c = utf_ptr2char(p);
if (c < 256
? wp->w_s->b_spell_ismw[c]
: (wp->w_s->b_spell_ismw_mb != NULL
&& vim_strchr(wp->w_s->b_spell_ismw_mb, c) != NULL)) {
s = p + l;
}
}
c = utf_ptr2char(s);
if (c > 255) {
return spell_mb_isword_class(mb_get_class(s), wp);
}
return spelltab.st_isw[c];
}
// Returns true if "p" points to a word character.
// Unlike spell_iswordp() this doesn't check for "midword" characters.
bool spell_iswordp_nmw(const char_u *p, win_T *wp)
{
int c = utf_ptr2char(p);
if (c > 255) {
return spell_mb_isword_class(mb_get_class(p), wp);
}
return spelltab.st_isw[c];
}
// Returns true if word class indicates a word character.
// Only for characters above 255.
// Unicode subscript and superscript are not considered word characters.
// See also utf_class() in mbyte.c.
static bool spell_mb_isword_class(int cl, const win_T *wp)
FUNC_ATTR_PURE FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
if (wp->w_s->b_cjk)
// East Asian characters are not considered word characters.
return cl == 2 || cl == 0x2800;
return cl >= 2 && cl != 0x2070 && cl != 0x2080 && cl != 3;
}
// Returns true if "p" points to a word character.
// Wide version of spell_iswordp().
static bool spell_iswordp_w(const int *p, const win_T *wp)
FUNC_ATTR_NONNULL_ALL
{
const int *s;
if (*p < 256 ? wp->w_s->b_spell_ismw[*p]
: (wp->w_s->b_spell_ismw_mb != NULL
&& vim_strchr(wp->w_s->b_spell_ismw_mb, *p) != NULL))
s = p + 1;
else
s = p;
if (*s > 255) {
return spell_mb_isword_class(utf_class(*s), wp);
}
return spelltab.st_isw[*s];
}
// Case-fold "str[len]" into "buf[buflen]". The result is NUL terminated.
// Uses the character definitions from the .spl file.
// When using a multi-byte 'encoding' the length may change!
// Returns FAIL when something wrong.
int spell_casefold(char_u *str, int len, char_u *buf, int buflen)
{
int i;
if (len >= buflen) {
buf[0] = NUL;
return FAIL; // result will not fit
}
if (has_mbyte) {
int outi = 0;
char_u *p;
int c;
// Fold one character at a time.
for (p = str; p < str + len; ) {
if (outi + MB_MAXBYTES > buflen) {
buf[outi] = NUL;
return FAIL;
}
c = mb_cptr2char_adv((const char_u **)&p);
outi += utf_char2bytes(SPELL_TOFOLD(c), buf + outi);
}
buf[outi] = NUL;
} else {
// Be quick for non-multibyte encodings.
for (i = 0; i < len; ++i)
buf[i] = spelltab.st_fold[str[i]];
buf[i] = NUL;
}
return OK;
}
// values for sps_flags
#define SPS_BEST 1
#define SPS_FAST 2
#define SPS_DOUBLE 4
static int sps_flags = SPS_BEST; // flags from 'spellsuggest'
static int sps_limit = 9999; // max nr of suggestions given
// Check the 'spellsuggest' option. Return FAIL if it's wrong.
// Sets "sps_flags" and "sps_limit".
int spell_check_sps(void)
{
char_u *p;
char_u *s;
char_u buf[MAXPATHL];
int f;
sps_flags = 0;
sps_limit = 9999;
for (p = p_sps; *p != NUL; ) {
copy_option_part(&p, buf, MAXPATHL, ",");
f = 0;
if (ascii_isdigit(*buf)) {
s = buf;
sps_limit = getdigits_int(&s, true, 0);
if (*s != NUL && !ascii_isdigit(*s)) {
f = -1;
}
} else if (STRCMP(buf, "best") == 0) {
f = SPS_BEST;
} else if (STRCMP(buf, "fast") == 0) {
f = SPS_FAST;
} else if (STRCMP(buf, "double") == 0) {
f = SPS_DOUBLE;
} else if (STRNCMP(buf, "expr:", 5) != 0
&& STRNCMP(buf, "file:", 5) != 0) {
f = -1;
}
if (f == -1 || (sps_flags != 0 && f != 0)) {
sps_flags = SPS_BEST;
sps_limit = 9999;
return FAIL;
}
if (f != 0)
sps_flags = f;
}
if (sps_flags == 0)
sps_flags = SPS_BEST;
return OK;
}
// "z=": Find badly spelled word under or after the cursor.
// Give suggestions for the properly spelled word.
// In Visual mode use the highlighted word as the bad word.
// When "count" is non-zero use that suggestion.
void spell_suggest(int count)
{
char_u *line;
pos_T prev_cursor = curwin->w_cursor;
char_u wcopy[MAXWLEN + 2];
char_u *p;
int c;
suginfo_T sug;
suggest_T *stp;
int mouse_used;
int need_cap;
int limit;
int selected = count;
int badlen = 0;
int msg_scroll_save = msg_scroll;
if (no_spell_checking(curwin))
return;
if (VIsual_active) {
// Use the Visually selected text as the bad word. But reject
// a multi-line selection.
if (curwin->w_cursor.lnum != VIsual.lnum) {
vim_beep(BO_SPELL);
return;
}
badlen = (int)curwin->w_cursor.col - (int)VIsual.col;
if (badlen < 0) {
badlen = -badlen;
} else {
curwin->w_cursor.col = VIsual.col;
}
badlen++;
end_visual_mode();
} else
// Find the start of the badly spelled word.
if (spell_move_to(curwin, FORWARD, true, true, NULL) == 0
|| curwin->w_cursor.col > prev_cursor.col) {
// No bad word or it starts after the cursor: use the word under the
// cursor.
curwin->w_cursor = prev_cursor;
line = get_cursor_line_ptr();
p = line + curwin->w_cursor.col;
// Backup to before start of word.
while (p > line && spell_iswordp_nmw(p, curwin)) {
MB_PTR_BACK(line, p);
}
// Forward to start of word.
while (*p != NUL && !spell_iswordp_nmw(p, curwin)) {
MB_PTR_ADV(p);
}
if (!spell_iswordp_nmw(p, curwin)) { // No word found.
beep_flush();
return;
}
curwin->w_cursor.col = (colnr_T)(p - line);
}
// Get the word and its length.
// Figure out if the word should be capitalised.
need_cap = check_need_cap(curwin->w_cursor.lnum, curwin->w_cursor.col);
// Make a copy of current line since autocommands may free the line.
line = vim_strsave(get_cursor_line_ptr());
// Get the list of suggestions. Limit to 'lines' - 2 or the number in
// 'spellsuggest', whatever is smaller.
if (sps_limit > (int)Rows - 2)
limit = (int)Rows - 2;
else
limit = sps_limit;
spell_find_suggest(line + curwin->w_cursor.col, badlen, &sug, limit,
true, need_cap, true);
if (GA_EMPTY(&sug.su_ga))
MSG(_("Sorry, no suggestions"));
else if (count > 0) {
if (count > sug.su_ga.ga_len)
smsg(_("Sorry, only %" PRId64 " suggestions"),
(int64_t)sug.su_ga.ga_len);
} else {
// When 'rightleft' is set the list is drawn right-left.
cmdmsg_rl = curwin->w_p_rl;
if (cmdmsg_rl)
msg_col = Columns - 1;
// List the suggestions.
msg_start();
msg_row = Rows - 1; // for when 'cmdheight' > 1
lines_left = Rows; // avoid more prompt
vim_snprintf((char *)IObuff, IOSIZE, _("Change \"%.*s\" to:"),
sug.su_badlen, sug.su_badptr);
if (cmdmsg_rl && STRNCMP(IObuff, "Change", 6) == 0) {
// And now the rabbit from the high hat: Avoid showing the
// untranslated message rightleft.
vim_snprintf((char *)IObuff, IOSIZE, ":ot \"%.*s\" egnahC",
sug.su_badlen, sug.su_badptr);
}
msg_puts((const char *)IObuff);
msg_clr_eos();
msg_putchar('\n');
msg_scroll = TRUE;
for (int i = 0; i < sug.su_ga.ga_len; ++i) {
stp = &SUG(sug.su_ga, i);
// The suggested word may replace only part of the bad word, add
// the not replaced part.
STRLCPY(wcopy, stp->st_word, MAXWLEN + 1);
if (sug.su_badlen > stp->st_orglen)
STRLCPY(wcopy + stp->st_wordlen,
sug.su_badptr + stp->st_orglen,
sug.su_badlen - stp->st_orglen + 1);
vim_snprintf((char *)IObuff, IOSIZE, "%2d", i + 1);
if (cmdmsg_rl) {
rl_mirror(IObuff);
}
msg_puts((const char *)IObuff);
vim_snprintf((char *)IObuff, IOSIZE, " \"%s\"", wcopy);
msg_puts((const char *)IObuff);
// The word may replace more than "su_badlen".
if (sug.su_badlen < stp->st_orglen) {
vim_snprintf((char *)IObuff, IOSIZE, _(" < \"%.*s\""),
stp->st_orglen, sug.su_badptr);
msg_puts((const char *)IObuff);
}
if (p_verbose > 0) {
// Add the score.
if (sps_flags & (SPS_DOUBLE | SPS_BEST))
vim_snprintf((char *)IObuff, IOSIZE, " (%s%d - %d)",
stp->st_salscore ? "s " : "",
stp->st_score, stp->st_altscore);
else
vim_snprintf((char *)IObuff, IOSIZE, " (%d)",
stp->st_score);
if (cmdmsg_rl)
// Mirror the numbers, but keep the leading space.
rl_mirror(IObuff + 1);
msg_advance(30);
msg_puts((const char *)IObuff);
}
msg_putchar('\n');
}
cmdmsg_rl = FALSE;
msg_col = 0;
// Ask for choice.
selected = prompt_for_number(&mouse_used);
if (mouse_used)
selected -= lines_left;
lines_left = Rows; // avoid more prompt
// don't delay for 'smd' in normal_cmd()
msg_scroll = msg_scroll_save;
}
if (selected > 0 && selected <= sug.su_ga.ga_len && u_save_cursor() == OK) {
// Save the from and to text for :spellrepall.
XFREE_CLEAR(repl_from);
XFREE_CLEAR(repl_to);
stp = &SUG(sug.su_ga, selected - 1);
if (sug.su_badlen > stp->st_orglen) {
// Replacing less than "su_badlen", append the remainder to
// repl_to.
repl_from = vim_strnsave(sug.su_badptr, sug.su_badlen);
vim_snprintf((char *)IObuff, IOSIZE, "%s%.*s", stp->st_word,
sug.su_badlen - stp->st_orglen,
sug.su_badptr + stp->st_orglen);
repl_to = vim_strsave(IObuff);
} else {
// Replacing su_badlen or more, use the whole word.
repl_from = vim_strnsave(sug.su_badptr, stp->st_orglen);
repl_to = vim_strsave(stp->st_word);
}
// Replace the word.
p = xmalloc(STRLEN(line) - stp->st_orglen + stp->st_wordlen + 1);
c = (int)(sug.su_badptr - line);
memmove(p, line, c);
STRCPY(p + c, stp->st_word);
STRCAT(p, sug.su_badptr + stp->st_orglen);
ml_replace(curwin->w_cursor.lnum, p, false);
curwin->w_cursor.col = c;
// For redo we use a change-word command.
ResetRedobuff();
AppendToRedobuff("ciw");
AppendToRedobuffLit(p + c,
stp->st_wordlen + sug.su_badlen - stp->st_orglen);
AppendCharToRedobuff(ESC);
// After this "p" may be invalid.
changed_bytes(curwin->w_cursor.lnum, c);
} else
curwin->w_cursor = prev_cursor;
spell_find_cleanup(&sug);
xfree(line);
}
// Check if the word at line "lnum" column "col" is required to start with a
// capital. This uses 'spellcapcheck' of the current buffer.
static bool check_need_cap(linenr_T lnum, colnr_T col)
{
bool need_cap = false;
char_u *line;
char_u *line_copy = NULL;
char_u *p;
colnr_T endcol;
regmatch_T regmatch;
if (curwin->w_s->b_cap_prog == NULL)
return false;
line = get_cursor_line_ptr();
endcol = 0;
if (getwhitecols(line) >= (int)col) {
// At start of line, check if previous line is empty or sentence
// ends there.
if (lnum == 1)
need_cap = true;
else {
line = ml_get(lnum - 1);
if (*skipwhite(line) == NUL)
need_cap = true;
else {
// Append a space in place of the line break.
line_copy = concat_str(line, (char_u *)" ");
line = line_copy;
endcol = (colnr_T)STRLEN(line);
}
}
} else {
endcol = col;
}
if (endcol > 0) {
// Check if sentence ends before the bad word.
regmatch.regprog = curwin->w_s->b_cap_prog;
regmatch.rm_ic = FALSE;
p = line + endcol;
for (;; ) {
MB_PTR_BACK(line, p);
if (p == line || spell_iswordp_nmw(p, curwin)) {
break;
}
if (vim_regexec(&regmatch, p, 0)
&& regmatch.endp[0] == line + endcol) {
need_cap = true;
break;
}
}
curwin->w_s->b_cap_prog = regmatch.regprog;
}
xfree(line_copy);
return need_cap;
}
// ":spellrepall"
void ex_spellrepall(exarg_T *eap)
{
pos_T pos = curwin->w_cursor;
char_u *frompat;
int addlen;
char_u *line;
char_u *p;
bool save_ws = p_ws;
linenr_T prev_lnum = 0;
if (repl_from == NULL || repl_to == NULL) {
EMSG(_("E752: No previous spell replacement"));
return;
}
addlen = (int)(STRLEN(repl_to) - STRLEN(repl_from));
frompat = xmalloc(STRLEN(repl_from) + 7);
sprintf((char *)frompat, "\\V\\<%s\\>", repl_from);
p_ws = false;
sub_nsubs = 0;
sub_nlines = 0;
curwin->w_cursor.lnum = 0;
while (!got_int) {
if (do_search(NULL, '/', frompat, 1L, SEARCH_KEEP, NULL) == 0
|| u_save_cursor() == FAIL) {
break;
}
// Only replace when the right word isn't there yet. This happens
// when changing "etc" to "etc.".
line = get_cursor_line_ptr();
if (addlen <= 0 || STRNCMP(line + curwin->w_cursor.col,
repl_to, STRLEN(repl_to)) != 0) {
p = xmalloc(STRLEN(line) + addlen + 1);
memmove(p, line, curwin->w_cursor.col);
STRCPY(p + curwin->w_cursor.col, repl_to);
STRCAT(p, line + curwin->w_cursor.col + STRLEN(repl_from));
ml_replace(curwin->w_cursor.lnum, p, false);
changed_bytes(curwin->w_cursor.lnum, curwin->w_cursor.col);
if (curwin->w_cursor.lnum != prev_lnum) {
++sub_nlines;
prev_lnum = curwin->w_cursor.lnum;
}
++sub_nsubs;
}
curwin->w_cursor.col += (colnr_T)STRLEN(repl_to);
}
p_ws = save_ws;
curwin->w_cursor = pos;
xfree(frompat);
if (sub_nsubs == 0)
EMSG2(_("E753: Not found: %s"), repl_from);
else
do_sub_msg(false);
}
// Find spell suggestions for "word". Return them in the growarray "*gap" as
// a list of allocated strings.
void
spell_suggest_list (
garray_T *gap,
char_u *word,
int maxcount, // maximum nr of suggestions
bool need_cap, // 'spellcapcheck' matched
bool interactive
)
{
suginfo_T sug;
suggest_T *stp;
char_u *wcopy;
spell_find_suggest(word, 0, &sug, maxcount, false, need_cap, interactive);
// Make room in "gap".
ga_init(gap, sizeof(char_u *), sug.su_ga.ga_len + 1);
ga_grow(gap, sug.su_ga.ga_len);
for (int i = 0; i < sug.su_ga.ga_len; ++i) {
stp = &SUG(sug.su_ga, i);
// The suggested word may replace only part of "word", add the not
// replaced part.
wcopy = xmalloc(stp->st_wordlen
+ STRLEN(sug.su_badptr + stp->st_orglen) + 1);
STRCPY(wcopy, stp->st_word);
STRCPY(wcopy + stp->st_wordlen, sug.su_badptr + stp->st_orglen);
((char_u **)gap->ga_data)[gap->ga_len++] = wcopy;
}
spell_find_cleanup(&sug);
}
// Find spell suggestions for the word at the start of "badptr".
// Return the suggestions in "su->su_ga".
// The maximum number of suggestions is "maxcount".
// Note: does use info for the current window.
// This is based on the mechanisms of Aspell, but completely reimplemented.
static void
spell_find_suggest (
char_u *badptr,
int badlen, // length of bad word or 0 if unknown
suginfo_T *su,
int maxcount,
bool banbadword, // don't include badword in suggestions
bool need_cap, // word should start with capital
bool interactive
)
{
hlf_T attr = HLF_COUNT;
char_u buf[MAXPATHL];
char_u *p;
bool do_combine = false;
char_u *sps_copy;
static bool expr_busy = false;
int c;
langp_T *lp;
// Set the info in "*su".
memset(su, 0, sizeof(suginfo_T));
ga_init(&su->su_ga, (int)sizeof(suggest_T), 10);
ga_init(&su->su_sga, (int)sizeof(suggest_T), 10);
if (*badptr == NUL)
return;
hash_init(&su->su_banned);
su->su_badptr = badptr;
if (badlen != 0)
su->su_badlen = badlen;
else {
size_t tmplen = spell_check(curwin, su->su_badptr, &attr, NULL, false);
assert(tmplen <= INT_MAX);
su->su_badlen = (int)tmplen;
}
su->su_maxcount = maxcount;
su->su_maxscore = SCORE_MAXINIT;
if (su->su_badlen >= MAXWLEN)
su->su_badlen = MAXWLEN - 1; // just in case
STRLCPY(su->su_badword, su->su_badptr, su->su_badlen + 1);
(void)spell_casefold(su->su_badptr, su->su_badlen, su->su_fbadword, MAXWLEN);
// TODO(vim): make this work if the case-folded text is longer than the
// original text. Currently an illegal byte causes wrong pointer
// computations.
su->su_fbadword[su->su_badlen] = NUL;
// get caps flags for bad word
su->su_badflags = badword_captype(su->su_badptr,
su->su_badptr + su->su_badlen);
if (need_cap)
su->su_badflags |= WF_ONECAP;
// Find the default language for sound folding. We simply use the first
// one in 'spelllang' that supports sound folding. That's good for when
// using multiple files for one language, it's not that bad when mixing
// languages (e.g., "pl,en").
for (int i = 0; i < curbuf->b_s.b_langp.ga_len; ++i) {
lp = LANGP_ENTRY(curbuf->b_s.b_langp, i);
if (lp->lp_sallang != NULL) {
su->su_sallang = lp->lp_sallang;
break;
}
}
// Soundfold the bad word with the default sound folding, so that we don't
// have to do this many times.
if (su->su_sallang != NULL)
spell_soundfold(su->su_sallang, su->su_fbadword, true,
su->su_sal_badword);
// If the word is not capitalised and spell_check() doesn't consider the
// word to be bad then it might need to be capitalised. Add a suggestion
// for that.
c = PTR2CHAR(su->su_badptr);
if (!SPELL_ISUPPER(c) && attr == HLF_COUNT) {
make_case_word(su->su_badword, buf, WF_ONECAP);
add_suggestion(su, &su->su_ga, buf, su->su_badlen, SCORE_ICASE,
0, true, su->su_sallang, false);
}
// Ban the bad word itself. It may appear in another region.
if (banbadword)
add_banned(su, su->su_badword);
// Make a copy of 'spellsuggest', because the expression may change it.
sps_copy = vim_strsave(p_sps);
// Loop over the items in 'spellsuggest'.
for (p = sps_copy; *p != NUL; ) {
copy_option_part(&p, buf, MAXPATHL, ",");
if (STRNCMP(buf, "expr:", 5) == 0) {
// Evaluate an expression. Skip this when called recursively,
// when using spellsuggest() in the expression.
if (!expr_busy) {
expr_busy = true;
spell_suggest_expr(su, buf + 5);
expr_busy = false;
}
} else if (STRNCMP(buf, "file:", 5) == 0)
// Use list of suggestions in a file.
spell_suggest_file(su, buf + 5);
else {
// Use internal method.
spell_suggest_intern(su, interactive);
if (sps_flags & SPS_DOUBLE)
do_combine = true;
}
}
xfree(sps_copy);
if (do_combine)
// Combine the two list of suggestions. This must be done last,
// because sorting changes the order again.
score_combine(su);
}
// Find suggestions by evaluating expression "expr".
static void spell_suggest_expr(suginfo_T *su, char_u *expr)
{
int score;
const char *p;
// The work is split up in a few parts to avoid having to export
// suginfo_T.
// First evaluate the expression and get the resulting list.
list_T *const list = eval_spell_expr(su->su_badword, expr);
if (list != NULL) {
// Loop over the items in the list.
TV_LIST_ITER(list, li, {
if (TV_LIST_ITEM_TV(li)->v_type == VAR_LIST) {
// Get the word and the score from the items.
score = get_spellword(TV_LIST_ITEM_TV(li)->vval.v_list, &p);
if (score >= 0 && score <= su->su_maxscore) {
add_suggestion(su, &su->su_ga, (const char_u *)p, su->su_badlen,
score, 0, true, su->su_sallang, false);
}
}
});
tv_list_unref(list);
}
// Remove bogus suggestions, sort and truncate at "maxcount".
check_suggestions(su, &su->su_ga);
(void)cleanup_suggestions(&su->su_ga, su->su_maxscore, su->su_maxcount);
}
// Find suggestions in file "fname". Used for "file:" in 'spellsuggest'.
static void spell_suggest_file(suginfo_T *su, char_u *fname)
{
FILE *fd;
char_u line[MAXWLEN * 2];
char_u *p;
int len;
char_u cword[MAXWLEN];
// Open the file.
fd = os_fopen((char *)fname, "r");
if (fd == NULL) {
EMSG2(_(e_notopen), fname);
return;
}
// Read it line by line.
while (!vim_fgets(line, MAXWLEN * 2, fd) && !got_int) {
line_breakcheck();
p = vim_strchr(line, '/');
if (p == NULL)
continue; // No Tab found, just skip the line.
*p++ = NUL;
if (STRICMP(su->su_badword, line) == 0) {
// Match! Isolate the good word, until CR or NL.
for (len = 0; p[len] >= ' '; ++len)
;
p[len] = NUL;
// If the suggestion doesn't have specific case duplicate the case
// of the bad word.
if (captype(p, NULL) == 0) {
make_case_word(p, cword, su->su_badflags);
p = cword;
}
add_suggestion(su, &su->su_ga, p, su->su_badlen,
SCORE_FILE, 0, true, su->su_sallang, false);
}
}
fclose(fd);
// Remove bogus suggestions, sort and truncate at "maxcount".
check_suggestions(su, &su->su_ga);
(void)cleanup_suggestions(&su->su_ga, su->su_maxscore, su->su_maxcount);
}
// Find suggestions for the internal method indicated by "sps_flags".
static void spell_suggest_intern(suginfo_T *su, bool interactive)
{
// Load the .sug file(s) that are available and not done yet.
suggest_load_files();
// 1. Try special cases, such as repeating a word: "the the" -> "the".
//
// Set a maximum score to limit the combination of operations that is
// tried.
suggest_try_special(su);
// 2. Try inserting/deleting/swapping/changing a letter, use REP entries
// from the .aff file and inserting a space (split the word).
suggest_try_change(su);
// For the resulting top-scorers compute the sound-a-like score.
if (sps_flags & SPS_DOUBLE)
score_comp_sal(su);
// 3. Try finding sound-a-like words.
if ((sps_flags & SPS_FAST) == 0) {
if (sps_flags & SPS_BEST)
// Adjust the word score for the suggestions found so far for how
// they sounds like.
rescore_suggestions(su);
// While going through the soundfold tree "su_maxscore" is the score
// for the soundfold word, limits the changes that are being tried,
// and "su_sfmaxscore" the rescored score, which is set by
// cleanup_suggestions().
// First find words with a small edit distance, because this is much
// faster and often already finds the top-N suggestions. If we didn't
// find many suggestions try again with a higher edit distance.
// "sl_sounddone" is used to avoid doing the same word twice.
suggest_try_soundalike_prep();
su->su_maxscore = SCORE_SFMAX1;
su->su_sfmaxscore = SCORE_MAXINIT * 3;
suggest_try_soundalike(su);
if (su->su_ga.ga_len < SUG_CLEAN_COUNT(su)) {
// We didn't find enough matches, try again, allowing more
// changes to the soundfold word.
su->su_maxscore = SCORE_SFMAX2;
suggest_try_soundalike(su);
if (su->su_ga.ga_len < SUG_CLEAN_COUNT(su)) {
// Still didn't find enough matches, try again, allowing even
// more changes to the soundfold word.
su->su_maxscore = SCORE_SFMAX3;
suggest_try_soundalike(su);
}
}
su->su_maxscore = su->su_sfmaxscore;
suggest_try_soundalike_finish();
}
// When CTRL-C was hit while searching do show the results. Only clear
// got_int when using a command, not for spellsuggest().
os_breakcheck();
if (interactive && got_int) {
(void)vgetc();
got_int = FALSE;
}
if ((sps_flags & SPS_DOUBLE) == 0 && su->su_ga.ga_len != 0) {
if (sps_flags & SPS_BEST)
// Adjust the word score for how it sounds like.
rescore_suggestions(su);
// Remove bogus suggestions, sort and truncate at "maxcount".
check_suggestions(su, &su->su_ga);
(void)cleanup_suggestions(&su->su_ga, su->su_maxscore, su->su_maxcount);
}
}
// Free the info put in "*su" by spell_find_suggest().
static void spell_find_cleanup(suginfo_T *su)
{
# define FREE_SUG_WORD(sug) xfree(sug->st_word)
// Free the suggestions.
GA_DEEP_CLEAR(&su->su_ga, suggest_T, FREE_SUG_WORD);
GA_DEEP_CLEAR(&su->su_sga, suggest_T, FREE_SUG_WORD);
// Free the banned words.
hash_clear_all(&su->su_banned, 0);
}
/// Make a copy of "word", with the first letter upper or lower cased, to
/// "wcopy[MAXWLEN]". "word" must not be empty.
/// The result is NUL terminated.
///
/// @param[in] word source string to copy
/// @param[in,out] wcopy copied string, with case of first letter changed
/// @param[in] upper True to upper case, otherwise lower case
void onecap_copy(char_u *word, char_u *wcopy, bool upper)
{
char_u *p;
int c;
int l;
p = word;
if (has_mbyte) {
c = mb_cptr2char_adv((const char_u **)&p);
} else {
c = *p++;
}
if (upper) {
c = SPELL_TOUPPER(c);
} else {
c = SPELL_TOFOLD(c);
}
l = utf_char2bytes(c, wcopy);
STRLCPY(wcopy + l, p, MAXWLEN - l);
}
// Make a copy of "word" with all the letters upper cased into
// "wcopy[MAXWLEN]". The result is NUL terminated.
static void allcap_copy(char_u *word, char_u *wcopy)
{
char_u *s;
char_u *d;
int c;
d = wcopy;
for (s = word; *s != NUL; ) {
if (has_mbyte) {
c = mb_cptr2char_adv((const char_u **)&s);
} else {
c = *s++;
}
if (c == 0xdf) {
c = 'S';
if (d - wcopy >= MAXWLEN - 1)
break;
*d++ = c;
} else
c = SPELL_TOUPPER(c);
if (d - wcopy >= MAXWLEN - MB_MAXBYTES) {
break;
}
d += utf_char2bytes(c, d);
}
*d = NUL;
}
// Try finding suggestions by recognizing specific situations.
static void suggest_try_special(suginfo_T *su)
{
char_u *p;
size_t len;
int c;
char_u word[MAXWLEN];
// Recognize a word that is repeated: "the the".
p = skiptowhite(su->su_fbadword);
len = p - su->su_fbadword;
p = skipwhite(p);
if (STRLEN(p) == len && STRNCMP(su->su_fbadword, p, len) == 0) {
// Include badflags: if the badword is onecap or allcap
// use that for the goodword too: "The the" -> "The".
c = su->su_fbadword[len];
su->su_fbadword[len] = NUL;
make_case_word(su->su_fbadword, word, su->su_badflags);
su->su_fbadword[len] = c;
// Give a soundalike score of 0, compute the score as if deleting one
// character.
add_suggestion(su, &su->su_ga, word, su->su_badlen,
RESCORE(SCORE_REP, 0), 0, true, su->su_sallang, false);
}
}
// Measure how much time is spent in each state.
// Output is dumped in "suggestprof".
#ifdef SUGGEST_PROFILE
proftime_T current;
proftime_T total;
proftime_T times[STATE_FINAL + 1];
long counts[STATE_FINAL + 1];
static void
prof_init(void)
{
for (int i = 0; i <= STATE_FINAL; i++) {
profile_zero(&times[i]);
counts[i] = 0;
}
profile_start(&current);
profile_start(&total);
}
// call before changing state
static void
prof_store(state_T state)
{
profile_end(&current);
profile_add(&times[state], &current);
counts[state]++;
profile_start(&current);
}
# define PROF_STORE(state) prof_store(state);
static void
prof_report(char *name)
{
FILE *fd = fopen("suggestprof", "a");
profile_end(&total);
fprintf(fd, "-----------------------\n");
fprintf(fd, "%s: %s\n", name, profile_msg(&total));
for (int i = 0; i <= STATE_FINAL; i++) {
fprintf(fd, "%d: %s ("%" PRId64)\n", i, profile_msg(&times[i]), counts[i]);
}
fclose(fd);
}
#else
# define PROF_STORE(state)
#endif
// Try finding suggestions by adding/removing/swapping letters.
static void suggest_try_change(suginfo_T *su)
{
char_u fword[MAXWLEN]; // copy of the bad word, case-folded
int n;
char_u *p;
langp_T *lp;
// We make a copy of the case-folded bad word, so that we can modify it
// to find matches (esp. REP items). Append some more text, changing
// chars after the bad word may help.
STRCPY(fword, su->su_fbadword);
n = (int)STRLEN(fword);
p = su->su_badptr + su->su_badlen;
(void)spell_casefold(p, (int)STRLEN(p), fword + n, MAXWLEN - n);
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
// If reloading a spell file fails it's still in the list but
// everything has been cleared.
if (lp->lp_slang->sl_fbyts == NULL)
continue;
// Try it for this language. Will add possible suggestions.
//
#ifdef SUGGEST_PROFILE
prof_init();
#endif
suggest_trie_walk(su, lp, fword, false);
#ifdef SUGGEST_PROFILE
prof_report("try_change");
#endif
}
}
// Check the maximum score, if we go over it we won't try this change.
#define TRY_DEEPER(su, stack, depth, add) \
(stack[depth].ts_score + (add) < su->su_maxscore)
// Try finding suggestions by adding/removing/swapping letters.
//
// This uses a state machine. At each node in the tree we try various
// operations. When trying if an operation works "depth" is increased and the
// stack[] is used to store info. This allows combinations, thus insert one
// character, replace one and delete another. The number of changes is
// limited by su->su_maxscore.
//
// After implementing this I noticed an article by Kemal Oflazer that
// describes something similar: "Error-tolerant Finite State Recognition with
// Applications to Morphological Analysis and Spelling Correction" (1996).
// The implementation in the article is simplified and requires a stack of
// unknown depth. The implementation here only needs a stack depth equal to
// the length of the word.
//
// This is also used for the sound-folded word, "soundfold" is true then.
// The mechanism is the same, but we find a match with a sound-folded word
// that comes from one or more original words. Each of these words may be
// added, this is done by add_sound_suggest().
// Don't use:
// the prefix tree or the keep-case tree
// "su->su_badlen"
// anything to do with upper and lower case
// anything to do with word or non-word characters ("spell_iswordp()")
// banned words
// word flags (rare, region, compounding)
// word splitting for now
// "similar_chars()"
// use "slang->sl_repsal" instead of "lp->lp_replang->sl_rep"
static void suggest_trie_walk(suginfo_T *su, langp_T *lp, char_u *fword, bool soundfold)
{
char_u tword[MAXWLEN]; // good word collected so far
trystate_T stack[MAXWLEN];
char_u preword[MAXWLEN * 3] = { 0 }; // word found with proper case;
// concatenation of prefix compound
// words and split word. NUL terminated
// when going deeper but not when coming
// back.
char_u compflags[MAXWLEN]; // compound flags, one for each word
trystate_T *sp;
int newscore;
int score;
char_u *byts, *fbyts, *pbyts;
idx_T *idxs, *fidxs, *pidxs;
int depth;
int c, c2, c3;
int n = 0;
int flags;
garray_T *gap;
idx_T arridx;
int len;
char_u *p;
fromto_T *ftp;
int fl = 0, tl;
int repextra = 0; // extra bytes in fword[] from REP item
slang_T *slang = lp->lp_slang;
int fword_ends;
bool goodword_ends;
#ifdef DEBUG_TRIEWALK
// Stores the name of the change made at each level.
char_u changename[MAXWLEN][80];
#endif
int breakcheckcount = 1000;
bool compound_ok;
// Go through the whole case-fold tree, try changes at each node.
// "tword[]" contains the word collected from nodes in the tree.
// "fword[]" the word we are trying to match with (initially the bad
// word).
depth = 0;
sp = &stack[0];
memset(sp, 0, sizeof(trystate_T)); // -V512
sp->ts_curi = 1;
if (soundfold) {
// Going through the soundfold tree.
byts = fbyts = slang->sl_sbyts;
idxs = fidxs = slang->sl_sidxs;
pbyts = NULL;
pidxs = NULL;
sp->ts_prefixdepth = PFD_NOPREFIX;
sp->ts_state = STATE_START;
} else {
// When there are postponed prefixes we need to use these first. At
// the end of the prefix we continue in the case-fold tree.
fbyts = slang->sl_fbyts;
fidxs = slang->sl_fidxs;
pbyts = slang->sl_pbyts;
pidxs = slang->sl_pidxs;
if (pbyts != NULL) {
byts = pbyts;
idxs = pidxs;
sp->ts_prefixdepth = PFD_PREFIXTREE;
sp->ts_state = STATE_NOPREFIX; // try without prefix first
} else {
byts = fbyts;
idxs = fidxs;
sp->ts_prefixdepth = PFD_NOPREFIX;
sp->ts_state = STATE_START;
}
}
// Loop to find all suggestions. At each round we either:
// - For the current state try one operation, advance "ts_curi",
// increase "depth".
// - When a state is done go to the next, set "ts_state".
// - When all states are tried decrease "depth".
while (depth >= 0 && !got_int) {
sp = &stack[depth];
switch (sp->ts_state) {
case STATE_START:
case STATE_NOPREFIX:
// Start of node: Deal with NUL bytes, which means
// tword[] may end here.
arridx = sp->ts_arridx; // current node in the tree
len = byts[arridx]; // bytes in this node
arridx += sp->ts_curi; // index of current byte
if (sp->ts_prefixdepth == PFD_PREFIXTREE) {
// Skip over the NUL bytes, we use them later.
for (n = 0; n < len && byts[arridx + n] == 0; ++n)
;
sp->ts_curi += n;
// Always past NUL bytes now.
n = (int)sp->ts_state;
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_ENDNUL;
sp->ts_save_badflags = su->su_badflags;
// At end of a prefix or at start of prefixtree: check for
// following word.
if (byts[arridx] == 0 || n == (int)STATE_NOPREFIX) {
// Set su->su_badflags to the caps type at this position.
// Use the caps type until here for the prefix itself.
if (has_mbyte)
n = nofold_len(fword, sp->ts_fidx, su->su_badptr);
else
n = sp->ts_fidx;
flags = badword_captype(su->su_badptr, su->su_badptr + n);
su->su_badflags = badword_captype(su->su_badptr + n,
su->su_badptr + su->su_badlen);
#ifdef DEBUG_TRIEWALK
sprintf(changename[depth], "prefix");
#endif
go_deeper(stack, depth, 0);
++depth;
sp = &stack[depth];
sp->ts_prefixdepth = depth - 1;
byts = fbyts;
idxs = fidxs;
sp->ts_arridx = 0;
// Move the prefix to preword[] with the right case
// and make find_keepcap_word() works.
tword[sp->ts_twordlen] = NUL;
make_case_word(tword + sp->ts_splitoff,
preword + sp->ts_prewordlen, flags);
sp->ts_prewordlen = (char_u)STRLEN(preword);
sp->ts_splitoff = sp->ts_twordlen;
}
break;
}
if (sp->ts_curi > len || byts[arridx] != 0) {
// Past bytes in node and/or past NUL bytes.
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_ENDNUL;
sp->ts_save_badflags = su->su_badflags;
break;
}
// End of word in tree.
++sp->ts_curi; // eat one NUL byte
flags = (int)idxs[arridx];
// Skip words with the NOSUGGEST flag.
if (flags & WF_NOSUGGEST)
break;
fword_ends = (fword[sp->ts_fidx] == NUL
|| (soundfold
? ascii_iswhite(fword[sp->ts_fidx])
: !spell_iswordp(fword + sp->ts_fidx, curwin)));
tword[sp->ts_twordlen] = NUL;
if (sp->ts_prefixdepth <= PFD_NOTSPECIAL
&& (sp->ts_flags & TSF_PREFIXOK) == 0) {
// There was a prefix before the word. Check that the prefix
// can be used with this word.
// Count the length of the NULs in the prefix. If there are
// none this must be the first try without a prefix.
n = stack[sp->ts_prefixdepth].ts_arridx;
len = pbyts[n++];
for (c = 0; c < len && pbyts[n + c] == 0; ++c)
;
if (c > 0) {
c = valid_word_prefix(c, n, flags,
tword + sp->ts_splitoff, slang, false);
if (c == 0)
break;
// Use the WF_RARE flag for a rare prefix.
if (c & WF_RAREPFX)
flags |= WF_RARE;
// Tricky: when checking for both prefix and compounding
// we run into the prefix flag first.
// Remember that it's OK, so that we accept the prefix
// when arriving at a compound flag.
sp->ts_flags |= TSF_PREFIXOK;
}
}
// Check NEEDCOMPOUND: can't use word without compounding. Do try
// appending another compound word below.
if (sp->ts_complen == sp->ts_compsplit && fword_ends
&& (flags & WF_NEEDCOMP))
goodword_ends = false;
else
goodword_ends = true;
p = NULL;
compound_ok = true;
if (sp->ts_complen > sp->ts_compsplit) {
if (slang->sl_nobreak) {
// There was a word before this word. When there was no
// change in this word (it was correct) add the first word
// as a suggestion. If this word was corrected too, we
// need to check if a correct word follows.
if (sp->ts_fidx - sp->ts_splitfidx
== sp->ts_twordlen - sp->ts_splitoff
&& STRNCMP(fword + sp->ts_splitfidx,
tword + sp->ts_splitoff,
sp->ts_fidx - sp->ts_splitfidx) == 0) {
preword[sp->ts_prewordlen] = NUL;
newscore = score_wordcount_adj(slang, sp->ts_score,
preword + sp->ts_prewordlen,
sp->ts_prewordlen > 0);
// Add the suggestion if the score isn't too bad.
if (newscore <= su->su_maxscore)
add_suggestion(su, &su->su_ga, preword,
sp->ts_splitfidx - repextra,
newscore, 0, false,
lp->lp_sallang, false);
break;
}
} else {
// There was a compound word before this word. If this
// word does not support compounding then give up
// (splitting is tried for the word without compound
// flag).
if (((unsigned)flags >> 24) == 0
|| sp->ts_twordlen - sp->ts_splitoff
< slang->sl_compminlen)
break;
// For multi-byte chars check character length against
// COMPOUNDMIN.
if (has_mbyte
&& slang->sl_compminlen > 0
&& mb_charlen(tword + sp->ts_splitoff)
< slang->sl_compminlen)
break;
compflags[sp->ts_complen] = ((unsigned)flags >> 24);
compflags[sp->ts_complen + 1] = NUL;
STRLCPY(preword + sp->ts_prewordlen,
tword + sp->ts_splitoff,
sp->ts_twordlen - sp->ts_splitoff + 1);
// Verify CHECKCOMPOUNDPATTERN rules.
if (match_checkcompoundpattern(preword, sp->ts_prewordlen,
&slang->sl_comppat))
compound_ok = false;
if (compound_ok) {
p = preword;
while (*skiptowhite(p) != NUL)
p = skipwhite(skiptowhite(p));
if (fword_ends && !can_compound(slang, p,
compflags + sp->ts_compsplit))
// Compound is not allowed. But it may still be
// possible if we add another (short) word.
compound_ok = false;
}
// Get pointer to last char of previous word.
p = preword + sp->ts_prewordlen;
MB_PTR_BACK(preword, p);
}
}
// Form the word with proper case in preword.
// If there is a word from a previous split, append.
// For the soundfold tree don't change the case, simply append.
if (soundfold)
STRCPY(preword + sp->ts_prewordlen, tword + sp->ts_splitoff);
else if (flags & WF_KEEPCAP)
// Must find the word in the keep-case tree.
find_keepcap_word(slang, tword + sp->ts_splitoff,
preword + sp->ts_prewordlen);
else {
// Include badflags: If the badword is onecap or allcap
// use that for the goodword too. But if the badword is
// allcap and it's only one char long use onecap.
c = su->su_badflags;
if ((c & WF_ALLCAP)
&& su->su_badlen == (*mb_ptr2len)(su->su_badptr)
)
c = WF_ONECAP;
c |= flags;
// When appending a compound word after a word character don't
// use Onecap.
if (p != NULL && spell_iswordp_nmw(p, curwin))
c &= ~WF_ONECAP;
make_case_word(tword + sp->ts_splitoff,
preword + sp->ts_prewordlen, c);
}
if (!soundfold) {
// Don't use a banned word. It may appear again as a good
// word, thus remember it.
if (flags & WF_BANNED) {
add_banned(su, preword + sp->ts_prewordlen);
break;
}
if ((sp->ts_complen == sp->ts_compsplit
&& WAS_BANNED(su, preword + sp->ts_prewordlen))
|| WAS_BANNED(su, preword)) {
if (slang->sl_compprog == NULL)
break;
// the word so far was banned but we may try compounding
goodword_ends = false;
}
}
newscore = 0;
if (!soundfold) { // soundfold words don't have flags
if ((flags & WF_REGION)
&& (((unsigned)flags >> 16) & lp->lp_region) == 0)
newscore += SCORE_REGION;
if (flags & WF_RARE)
newscore += SCORE_RARE;
if (!spell_valid_case(su->su_badflags,
captype(preword + sp->ts_prewordlen, NULL)))
newscore += SCORE_ICASE;
}
// TODO: how about splitting in the soundfold tree?
if (fword_ends
&& goodword_ends
&& sp->ts_fidx >= sp->ts_fidxtry
&& compound_ok) {
// The badword also ends: add suggestions.
#ifdef DEBUG_TRIEWALK
if (soundfold && STRCMP(preword, "smwrd") == 0) {
int j;
// print the stack of changes that brought us here
smsg("------ %s -------", fword);
for (j = 0; j < depth; ++j)
smsg("%s", changename[j]);
}
#endif
if (soundfold) {
// For soundfolded words we need to find the original
// words, the edit distance and then add them.
add_sound_suggest(su, preword, sp->ts_score, lp);
} else if (sp->ts_fidx > 0) {
// Give a penalty when changing non-word char to word
// char, e.g., "thes," -> "these".
p = fword + sp->ts_fidx;
MB_PTR_BACK(fword, p);
if (!spell_iswordp(p, curwin)) {
p = preword + STRLEN(preword);
MB_PTR_BACK(preword, p);
if (spell_iswordp(p, curwin)) {
newscore += SCORE_NONWORD;
}
}
// Give a bonus to words seen before.
score = score_wordcount_adj(slang,
sp->ts_score + newscore,
preword + sp->ts_prewordlen,
sp->ts_prewordlen > 0);
// Add the suggestion if the score isn't too bad.
if (score <= su->su_maxscore) {
add_suggestion(su, &su->su_ga, preword,
sp->ts_fidx - repextra,
score, 0, false, lp->lp_sallang, false);
if (su->su_badflags & WF_MIXCAP) {
// We really don't know if the word should be
// upper or lower case, add both.
c = captype(preword, NULL);
if (c == 0 || c == WF_ALLCAP) {
make_case_word(tword + sp->ts_splitoff,
preword + sp->ts_prewordlen,
c == 0 ? WF_ALLCAP : 0);
add_suggestion(su, &su->su_ga, preword,
sp->ts_fidx - repextra,
score + SCORE_ICASE, 0, false,
lp->lp_sallang, false);
}
}
}
}
}
// Try word split and/or compounding.
if ((sp->ts_fidx >= sp->ts_fidxtry || fword_ends)
// Don't split in the middle of a character
&& (!has_mbyte || sp->ts_tcharlen == 0)
) {
bool try_compound;
int try_split;
// If past the end of the bad word don't try a split.
// Otherwise try changing the next word. E.g., find
// suggestions for "the the" where the second "the" is
// different. It's done like a split.
// TODO: word split for soundfold words
try_split = (sp->ts_fidx - repextra < su->su_badlen)
&& !soundfold;
// Get here in several situations:
// 1. The word in the tree ends:
// If the word allows compounding try that. Otherwise try
// a split by inserting a space. For both check that a
// valid words starts at fword[sp->ts_fidx].
// For NOBREAK do like compounding to be able to check if
// the next word is valid.
// 2. The badword does end, but it was due to a change (e.g.,
// a swap). No need to split, but do check that the
// following word is valid.
// 3. The badword and the word in the tree end. It may still
// be possible to compound another (short) word.
try_compound = false;
if (!soundfold
&& !slang->sl_nocompoundsugs
&& slang->sl_compprog != NULL
&& ((unsigned)flags >> 24) != 0
&& sp->ts_twordlen - sp->ts_splitoff
>= slang->sl_compminlen
&& (!has_mbyte
|| slang->sl_compminlen == 0
|| mb_charlen(tword + sp->ts_splitoff)
>= slang->sl_compminlen)
&& (slang->sl_compsylmax < MAXWLEN
|| sp->ts_complen + 1 - sp->ts_compsplit
< slang->sl_compmax)
&& (can_be_compound(sp, slang,
compflags, ((unsigned)flags >> 24)))) {
try_compound = true;
compflags[sp->ts_complen] = ((unsigned)flags >> 24);
compflags[sp->ts_complen + 1] = NUL;
}
// For NOBREAK we never try splitting, it won't make any word
// valid.
if (slang->sl_nobreak && !slang->sl_nocompoundsugs) {
try_compound = true;
} else if (!fword_ends
&& try_compound
&& (sp->ts_flags & TSF_DIDSPLIT) == 0) {
// If we could add a compound word, and it's also possible to
// split at this point, do the split first and set
// TSF_DIDSPLIT to avoid doing it again.
try_compound = false;
sp->ts_flags |= TSF_DIDSPLIT;
--sp->ts_curi; // do the same NUL again
compflags[sp->ts_complen] = NUL;
} else {
sp->ts_flags &= ~TSF_DIDSPLIT;
}
if (try_split || try_compound) {
if (!try_compound && (!fword_ends || !goodword_ends)) {
// If we're going to split need to check that the
// words so far are valid for compounding. If there
// is only one word it must not have the NEEDCOMPOUND
// flag.
if (sp->ts_complen == sp->ts_compsplit
&& (flags & WF_NEEDCOMP))
break;
p = preword;
while (*skiptowhite(p) != NUL)
p = skipwhite(skiptowhite(p));
if (sp->ts_complen > sp->ts_compsplit
&& !can_compound(slang, p,
compflags + sp->ts_compsplit))
break;
if (slang->sl_nosplitsugs)
newscore += SCORE_SPLIT_NO;
else
newscore += SCORE_SPLIT;
// Give a bonus to words seen before.
newscore = score_wordcount_adj(slang, newscore,
preword + sp->ts_prewordlen, true);
}
if (TRY_DEEPER(su, stack, depth, newscore)) {
go_deeper(stack, depth, newscore);
#ifdef DEBUG_TRIEWALK
if (!try_compound && !fword_ends)
sprintf(changename[depth], "%.*s-%s: split",
sp->ts_twordlen, tword, fword + sp->ts_fidx);
else
sprintf(changename[depth], "%.*s-%s: compound",
sp->ts_twordlen, tword, fword + sp->ts_fidx);
#endif
// Save things to be restored at STATE_SPLITUNDO.
sp->ts_save_badflags = su->su_badflags;
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_SPLITUNDO;
++depth;
sp = &stack[depth];
// Append a space to preword when splitting.
if (!try_compound && !fword_ends)
STRCAT(preword, " ");
sp->ts_prewordlen = (char_u)STRLEN(preword);
sp->ts_splitoff = sp->ts_twordlen;
sp->ts_splitfidx = sp->ts_fidx;
// If the badword has a non-word character at this
// position skip it. That means replacing the
// non-word character with a space. Always skip a
// character when the word ends. But only when the
// good word can end.
if (((!try_compound && !spell_iswordp_nmw(fword
+ sp->ts_fidx,
curwin))
|| fword_ends)
&& fword[sp->ts_fidx] != NUL
&& goodword_ends) {
int l;
l = utfc_ptr2len(fword + sp->ts_fidx);
if (fword_ends) {
// Copy the skipped character to preword.
memmove(preword + sp->ts_prewordlen,
fword + sp->ts_fidx, l);
sp->ts_prewordlen += l;
preword[sp->ts_prewordlen] = NUL;
} else
sp->ts_score -= SCORE_SPLIT - SCORE_SUBST;
sp->ts_fidx += l;
}
// When compounding include compound flag in
// compflags[] (already set above). When splitting we
// may start compounding over again.
if (try_compound)
++sp->ts_complen;
else
sp->ts_compsplit = sp->ts_complen;
sp->ts_prefixdepth = PFD_NOPREFIX;
// set su->su_badflags to the caps type at this
// position
if (has_mbyte)
n = nofold_len(fword, sp->ts_fidx, su->su_badptr);
else
n = sp->ts_fidx;
su->su_badflags = badword_captype(su->su_badptr + n,
su->su_badptr + su->su_badlen);
// Restart at top of the tree.
sp->ts_arridx = 0;
// If there are postponed prefixes, try these too.
if (pbyts != NULL) {
byts = pbyts;
idxs = pidxs;
sp->ts_prefixdepth = PFD_PREFIXTREE;
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_NOPREFIX;
}
}
}
}
break;
case STATE_SPLITUNDO:
// Undo the changes done for word split or compound word.
su->su_badflags = sp->ts_save_badflags;
// Continue looking for NUL bytes.
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_START;
// In case we went into the prefix tree.
byts = fbyts;
idxs = fidxs;
break;
case STATE_ENDNUL:
// Past the NUL bytes in the node.
su->su_badflags = sp->ts_save_badflags;
if (fword[sp->ts_fidx] == NUL
&& sp->ts_tcharlen == 0
) {
// The badword ends, can't use STATE_PLAIN.
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_DEL;
break;
}
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_PLAIN;
FALLTHROUGH;
case STATE_PLAIN:
// Go over all possible bytes at this node, add each to tword[]
// and use child node. "ts_curi" is the index.
arridx = sp->ts_arridx;
if (sp->ts_curi > byts[arridx]) {
// Done all bytes at this node, do next state. When still at
// already changed bytes skip the other tricks.
PROF_STORE(sp->ts_state)
if (sp->ts_fidx >= sp->ts_fidxtry) {
sp->ts_state = STATE_DEL;
} else {
sp->ts_state = STATE_FINAL;
}
} else {
arridx += sp->ts_curi++;
c = byts[arridx];
// Normal byte, go one level deeper. If it's not equal to the
// byte in the bad word adjust the score. But don't even try
// when the byte was already changed. And don't try when we
// just deleted this byte, accepting it is always cheaper than
// delete + substitute.
if (c == fword[sp->ts_fidx]
|| (sp->ts_tcharlen > 0 && sp->ts_isdiff != DIFF_NONE)
)
newscore = 0;
else
newscore = SCORE_SUBST;
if ((newscore == 0
|| (sp->ts_fidx >= sp->ts_fidxtry
&& ((sp->ts_flags & TSF_DIDDEL) == 0
|| c != fword[sp->ts_delidx])))
&& TRY_DEEPER(su, stack, depth, newscore)) {
go_deeper(stack, depth, newscore);
#ifdef DEBUG_TRIEWALK
if (newscore > 0)
sprintf(changename[depth], "%.*s-%s: subst %c to %c",
sp->ts_twordlen, tword, fword + sp->ts_fidx,
fword[sp->ts_fidx], c);
else
sprintf(changename[depth], "%.*s-%s: accept %c",
sp->ts_twordlen, tword, fword + sp->ts_fidx,
fword[sp->ts_fidx]);
#endif
++depth;
sp = &stack[depth];
++sp->ts_fidx;
tword[sp->ts_twordlen++] = c;
sp->ts_arridx = idxs[arridx];
if (newscore == SCORE_SUBST)
sp->ts_isdiff = DIFF_YES;
if (has_mbyte) {
// Multi-byte characters are a bit complicated to
// handle: They differ when any of the bytes differ
// and then their length may also differ.
if (sp->ts_tcharlen == 0) {
// First byte.
sp->ts_tcharidx = 0;
sp->ts_tcharlen = MB_BYTE2LEN(c);
sp->ts_fcharstart = sp->ts_fidx - 1;
sp->ts_isdiff = (newscore != 0)
? DIFF_YES : DIFF_NONE;
} else if (sp->ts_isdiff == DIFF_INSERT)
// When inserting trail bytes don't advance in the
// bad word.
--sp->ts_fidx;
if (++sp->ts_tcharidx == sp->ts_tcharlen) {
// Last byte of character.
if (sp->ts_isdiff == DIFF_YES) {
// Correct ts_fidx for the byte length of the
// character (we didn't check that before).
sp->ts_fidx = sp->ts_fcharstart
+ utfc_ptr2len(fword + sp->ts_fcharstart);
// For changing a composing character adjust
// the score from SCORE_SUBST to
// SCORE_SUBCOMP.
if (utf_iscomposing(utf_ptr2char(tword + sp->ts_twordlen
- sp->ts_tcharlen))
&& utf_iscomposing(utf_ptr2char(fword
+ sp->ts_fcharstart))) {
sp->ts_score -= SCORE_SUBST - SCORE_SUBCOMP;
} else if (
!soundfold
&& slang->sl_has_map
&& similar_chars(
slang,
utf_ptr2char(tword + sp->ts_twordlen - sp->ts_tcharlen),
utf_ptr2char(fword + sp->ts_fcharstart))) {
// For a similar character adjust score from
// SCORE_SUBST to SCORE_SIMILAR.
sp->ts_score -= SCORE_SUBST - SCORE_SIMILAR;
}
} else if (sp->ts_isdiff == DIFF_INSERT
&& sp->ts_twordlen > sp->ts_tcharlen) {
p = tword + sp->ts_twordlen - sp->ts_tcharlen;
c = utf_ptr2char(p);
if (utf_iscomposing(c)) {
// Inserting a composing char doesn't
// count that much.
sp->ts_score -= SCORE_INS - SCORE_INSCOMP;
} else {
// If the previous character was the same,
// thus doubling a character, give a bonus
// to the score. Also for the soundfold
// tree (might seem illogical but does
// give better scores).
MB_PTR_BACK(tword, p);
if (c == utf_ptr2char(p)) {
sp->ts_score -= SCORE_INS - SCORE_INSDUP;
}
}
}
// Starting a new char, reset the length.
sp->ts_tcharlen = 0;
}
} else {
// If we found a similar char adjust the score.
// We do this after calling go_deeper() because
// it's slow.
if (newscore != 0
&& !soundfold
&& slang->sl_has_map
&& similar_chars(slang,
c, fword[sp->ts_fidx - 1]))
sp->ts_score -= SCORE_SUBST - SCORE_SIMILAR;
}
}
}
break;
case STATE_DEL:
// When past the first byte of a multi-byte char don't try
// delete/insert/swap a character.
if (has_mbyte && sp->ts_tcharlen > 0) {
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_FINAL;
break;
}
// Try skipping one character in the bad word (delete it).
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_INS_PREP;
sp->ts_curi = 1;
if (soundfold && sp->ts_fidx == 0 && fword[sp->ts_fidx] == '*')
// Deleting a vowel at the start of a word counts less, see
// soundalike_score().
newscore = 2 * SCORE_DEL / 3;
else
newscore = SCORE_DEL;
if (fword[sp->ts_fidx] != NUL
&& TRY_DEEPER(su, stack, depth, newscore)) {
go_deeper(stack, depth, newscore);
#ifdef DEBUG_TRIEWALK
sprintf(changename[depth], "%.*s-%s: delete %c",
sp->ts_twordlen, tword, fword + sp->ts_fidx,
fword[sp->ts_fidx]);
#endif
++depth;
// Remember what character we deleted, so that we can avoid
// inserting it again.
stack[depth].ts_flags |= TSF_DIDDEL;
stack[depth].ts_delidx = sp->ts_fidx;
// Advance over the character in fword[]. Give a bonus to the
// score if the same character is following "nn" -> "n". It's
// a bit illogical for soundfold tree but it does give better
// results.
c = utf_ptr2char(fword + sp->ts_fidx);
stack[depth].ts_fidx += utfc_ptr2len(fword + sp->ts_fidx);
if (utf_iscomposing(c)) {
stack[depth].ts_score -= SCORE_DEL - SCORE_DELCOMP;
} else if (c == utf_ptr2char(fword + stack[depth].ts_fidx)) {
stack[depth].ts_score -= SCORE_DEL - SCORE_DELDUP;
}
break;
}
FALLTHROUGH;
case STATE_INS_PREP:
if (sp->ts_flags & TSF_DIDDEL) {
// If we just deleted a byte then inserting won't make sense,
// a substitute is always cheaper.
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_SWAP;
break;
}
// skip over NUL bytes
n = sp->ts_arridx;
for (;; ) {
if (sp->ts_curi > byts[n]) {
// Only NUL bytes at this node, go to next state.
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_SWAP;
break;
}
if (byts[n + sp->ts_curi] != NUL) {
// Found a byte to insert.
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_INS;
break;
}
++sp->ts_curi;
}
break;
FALLTHROUGH;
case STATE_INS:
// Insert one byte. Repeat this for each possible byte at this
// node.
n = sp->ts_arridx;
if (sp->ts_curi > byts[n]) {
// Done all bytes at this node, go to next state.
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_SWAP;
break;
}
// Do one more byte at this node, but:
// - Skip NUL bytes.
// - Skip the byte if it's equal to the byte in the word,
// accepting that byte is always better.
n += sp->ts_curi++;
c = byts[n];
if (soundfold && sp->ts_twordlen == 0 && c == '*')
// Inserting a vowel at the start of a word counts less,
// see soundalike_score().
newscore = 2 * SCORE_INS / 3;
else
newscore = SCORE_INS;
if (c != fword[sp->ts_fidx]
&& TRY_DEEPER(su, stack, depth, newscore)) {
go_deeper(stack, depth, newscore);
#ifdef DEBUG_TRIEWALK
sprintf(changename[depth], "%.*s-%s: insert %c",
sp->ts_twordlen, tword, fword + sp->ts_fidx,
c);
#endif
++depth;
sp = &stack[depth];
tword[sp->ts_twordlen++] = c;
sp->ts_arridx = idxs[n];
if (has_mbyte) {
fl = MB_BYTE2LEN(c);
if (fl > 1) {
// There are following bytes for the same character.
// We must find all bytes before trying
// delete/insert/swap/etc.
sp->ts_tcharlen = fl;
sp->ts_tcharidx = 1;
sp->ts_isdiff = DIFF_INSERT;
}
} else
fl = 1;
if (fl == 1) {
// If the previous character was the same, thus doubling a
// character, give a bonus to the score. Also for
// soundfold words (illogical but does give a better
// score).
if (sp->ts_twordlen >= 2
&& tword[sp->ts_twordlen - 2] == c)
sp->ts_score -= SCORE_INS - SCORE_INSDUP;
}
}
break;
case STATE_SWAP:
// Swap two bytes in the bad word: "12" -> "21".
// We change "fword" here, it's changed back afterwards at
// STATE_UNSWAP.
p = fword + sp->ts_fidx;
c = *p;
if (c == NUL) {
// End of word, can't swap or replace.
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_FINAL;
break;
}
// Don't swap if the first character is not a word character.
// SWAP3 etc. also don't make sense then.
if (!soundfold && !spell_iswordp(p, curwin)) {
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_REP_INI;
break;
}
n = MB_CPTR2LEN(p);
c = utf_ptr2char(p);
if (p[n] == NUL) {
c2 = NUL;
} else if (!soundfold && !spell_iswordp(p + n, curwin)) {
c2 = c; // don't swap non-word char
} else {
c2 = utf_ptr2char(p + n);
}
// When the second character is NUL we can't swap.
if (c2 == NUL) {
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_REP_INI;
break;
}
// When characters are identical, swap won't do anything.
// Also get here if the second char is not a word character.
if (c == c2) {
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_SWAP3;
break;
}
if (TRY_DEEPER(su, stack, depth, SCORE_SWAP)) {
go_deeper(stack, depth, SCORE_SWAP);
#ifdef DEBUG_TRIEWALK
snprintf(changename[depth], sizeof(changename[0]),
"%.*s-%s: swap %c and %c",
sp->ts_twordlen, tword, fword + sp->ts_fidx,
c, c2);
#endif
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_UNSWAP;
depth++;
fl = mb_char2len(c2);
memmove(p, p + n, fl);
utf_char2bytes(c, p + fl);
stack[depth].ts_fidxtry = sp->ts_fidx + n + fl;
} else {
// If this swap doesn't work then SWAP3 won't either.
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_REP_INI;
}
break;
case STATE_UNSWAP:
// Undo the STATE_SWAP swap: "21" -> "12".
p = fword + sp->ts_fidx;
n = utfc_ptr2len(p);
c = utf_ptr2char(p + n);
memmove(p + utfc_ptr2len(p + n), p, n);
utf_char2bytes(c, p);
FALLTHROUGH;
case STATE_SWAP3:
// Swap two bytes, skipping one: "123" -> "321". We change
// "fword" here, it's changed back afterwards at STATE_UNSWAP3.
p = fword + sp->ts_fidx;
n = MB_CPTR2LEN(p);
c = utf_ptr2char(p);
fl = MB_CPTR2LEN(p + n);
c2 = utf_ptr2char(p + n);
if (!soundfold && !spell_iswordp(p + n + fl, curwin)) {
c3 = c; // don't swap non-word char
} else {
c3 = utf_ptr2char(p + n + fl);
}
// When characters are identical: "121" then SWAP3 result is
// identical, ROT3L result is same as SWAP: "211", ROT3L result is
// same as SWAP on next char: "112". Thus skip all swapping.
// Also skip when c3 is NUL.
// Also get here when the third character is not a word character.
// Second character may any char: "a.b" -> "b.a"
if (c == c3 || c3 == NUL) {
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_REP_INI;
break;
}
if (TRY_DEEPER(su, stack, depth, SCORE_SWAP3)) {
go_deeper(stack, depth, SCORE_SWAP3);
#ifdef DEBUG_TRIEWALK
sprintf(changename[depth], "%.*s-%s: swap3 %c and %c",
sp->ts_twordlen, tword, fword + sp->ts_fidx,
c, c3);
#endif
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_UNSWAP3;
depth++;
tl = mb_char2len(c3);
memmove(p, p + n + fl, tl);
utf_char2bytes(c2, p + tl);
utf_char2bytes(c, p + fl + tl);
stack[depth].ts_fidxtry = sp->ts_fidx + n + fl + tl;
} else {
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_REP_INI;
}
break;
case STATE_UNSWAP3:
// Undo STATE_SWAP3: "321" -> "123"
p = fword + sp->ts_fidx;
n = utfc_ptr2len(p);
c2 = utf_ptr2char(p + n);
fl = utfc_ptr2len(p + n);
c = utf_ptr2char(p + n + fl);
tl = utfc_ptr2len(p + n + fl);
memmove(p + fl + tl, p, n);
utf_char2bytes(c, p);
utf_char2bytes(c2, p + tl);
p = p + tl;
if (!soundfold && !spell_iswordp(p, curwin)) {
// Middle char is not a word char, skip the rotate. First and
// third char were already checked at swap and swap3.
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_REP_INI;
break;
}
// Rotate three characters left: "123" -> "231". We change
// "fword" here, it's changed back afterwards at STATE_UNROT3L.
if (TRY_DEEPER(su, stack, depth, SCORE_SWAP3)) {
go_deeper(stack, depth, SCORE_SWAP3);
#ifdef DEBUG_TRIEWALK
p = fword + sp->ts_fidx;
sprintf(changename[depth], "%.*s-%s: rotate left %c%c%c",
sp->ts_twordlen, tword, fword + sp->ts_fidx,
p[0], p[1], p[2]);
#endif
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_UNROT3L;
++depth;
p = fword + sp->ts_fidx;
n = MB_CPTR2LEN(p);
c = utf_ptr2char(p);
fl = MB_CPTR2LEN(p + n);
fl += MB_CPTR2LEN(p + n + fl);
memmove(p, p + n, fl);
utf_char2bytes(c, p + fl);
stack[depth].ts_fidxtry = sp->ts_fidx + n + fl;
} else {
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_REP_INI;
}
break;
case STATE_UNROT3L:
// Undo ROT3L: "231" -> "123"
p = fword + sp->ts_fidx;
n = utfc_ptr2len(p);
n += utfc_ptr2len(p + n);
c = utf_ptr2char(p + n);
tl = utfc_ptr2len(p + n);
memmove(p + tl, p, n);
utf_char2bytes(c, p);
// Rotate three bytes right: "123" -> "312". We change "fword"
// here, it's changed back afterwards at STATE_UNROT3R.
if (TRY_DEEPER(su, stack, depth, SCORE_SWAP3)) {
go_deeper(stack, depth, SCORE_SWAP3);
#ifdef DEBUG_TRIEWALK
p = fword + sp->ts_fidx;
sprintf(changename[depth], "%.*s-%s: rotate right %c%c%c",
sp->ts_twordlen, tword, fword + sp->ts_fidx,
p[0], p[1], p[2]);
#endif
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_UNROT3R;
++depth;
p = fword + sp->ts_fidx;
n = MB_CPTR2LEN(p);
n += MB_CPTR2LEN(p + n);
c = utf_ptr2char(p + n);
tl = MB_CPTR2LEN(p + n);
memmove(p + tl, p, n);
utf_char2bytes(c, p);
stack[depth].ts_fidxtry = sp->ts_fidx + n + tl;
} else {
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_REP_INI;
}
break;
case STATE_UNROT3R:
// Undo ROT3R: "312" -> "123"
p = fword + sp->ts_fidx;
c = utf_ptr2char(p);
tl = utfc_ptr2len(p);
n = utfc_ptr2len(p + tl);
n += utfc_ptr2len(p + tl + n);
memmove(p, p + tl, n);
utf_char2bytes(c, p + n);
FALLTHROUGH;
case STATE_REP_INI:
// Check if matching with REP items from the .aff file would work.
// Quickly skip if:
// - there are no REP items and we are not in the soundfold trie
// - the score is going to be too high anyway
// - already applied a REP item or swapped here
if ((lp->lp_replang == NULL && !soundfold)
|| sp->ts_score + SCORE_REP >= su->su_maxscore
|| sp->ts_fidx < sp->ts_fidxtry) {
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_FINAL;
break;
}
// Use the first byte to quickly find the first entry that may
// match. If the index is -1 there is none.
if (soundfold)
sp->ts_curi = slang->sl_repsal_first[fword[sp->ts_fidx]];
else
sp->ts_curi = lp->lp_replang->sl_rep_first[fword[sp->ts_fidx]];
if (sp->ts_curi < 0) {
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_FINAL;
break;
}
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_REP;
FALLTHROUGH;
case STATE_REP:
// Try matching with REP items from the .aff file. For each match
// replace the characters and check if the resulting word is
// valid.
p = fword + sp->ts_fidx;
if (soundfold)
gap = &slang->sl_repsal;
else
gap = &lp->lp_replang->sl_rep;
while (sp->ts_curi < gap->ga_len) {
ftp = (fromto_T *)gap->ga_data + sp->ts_curi++;
if (*ftp->ft_from != *p) {
// past possible matching entries
sp->ts_curi = gap->ga_len;
break;
}
if (STRNCMP(ftp->ft_from, p, STRLEN(ftp->ft_from)) == 0
&& TRY_DEEPER(su, stack, depth, SCORE_REP)) {
go_deeper(stack, depth, SCORE_REP);
#ifdef DEBUG_TRIEWALK
sprintf(changename[depth], "%.*s-%s: replace %s with %s",
sp->ts_twordlen, tword, fword + sp->ts_fidx,
ftp->ft_from, ftp->ft_to);
#endif
// Need to undo this afterwards.
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_REP_UNDO;
// Change the "from" to the "to" string.
++depth;
fl = (int)STRLEN(ftp->ft_from);
tl = (int)STRLEN(ftp->ft_to);
if (fl != tl) {
STRMOVE(p + tl, p + fl);
repextra += tl - fl;
}
memmove(p, ftp->ft_to, tl);
stack[depth].ts_fidxtry = sp->ts_fidx + tl;
stack[depth].ts_tcharlen = 0;
break;
}
}
if (sp->ts_curi >= gap->ga_len && sp->ts_state == STATE_REP)
// No (more) matches.
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_FINAL;
break;
case STATE_REP_UNDO:
// Undo a REP replacement and continue with the next one.
if (soundfold)
gap = &slang->sl_repsal;
else
gap = &lp->lp_replang->sl_rep;
ftp = (fromto_T *)gap->ga_data + sp->ts_curi - 1;
fl = (int)STRLEN(ftp->ft_from);
tl = (int)STRLEN(ftp->ft_to);
p = fword + sp->ts_fidx;
if (fl != tl) {
STRMOVE(p + fl, p + tl);
repextra -= tl - fl;
}
memmove(p, ftp->ft_from, fl);
PROF_STORE(sp->ts_state)
sp->ts_state = STATE_REP;
break;
default:
// Did all possible states at this level, go up one level.
--depth;
if (depth >= 0 && stack[depth].ts_prefixdepth == PFD_PREFIXTREE) {
// Continue in or go back to the prefix tree.
byts = pbyts;
idxs = pidxs;
}
// Don't check for CTRL-C too often, it takes time.
if (--breakcheckcount == 0) {
os_breakcheck();
breakcheckcount = 1000;
}
}
}
}
// Go one level deeper in the tree.
static void go_deeper(trystate_T *stack, int depth, int score_add)
{
stack[depth + 1] = stack[depth];
stack[depth + 1].ts_state = STATE_START;
stack[depth + 1].ts_score = stack[depth].ts_score + score_add;
stack[depth + 1].ts_curi = 1; // start just after length byte
stack[depth + 1].ts_flags = 0;
}
// Case-folding may change the number of bytes: Count nr of chars in
// fword[flen] and return the byte length of that many chars in "word".
static int nofold_len(char_u *fword, int flen, char_u *word)
{
char_u *p;
int i = 0;
for (p = fword; p < fword + flen; MB_PTR_ADV(p)) {
i++;
}
for (p = word; i > 0; MB_PTR_ADV(p)) {
i--;
}
return (int)(p - word);
}
// "fword" is a good word with case folded. Find the matching keep-case
// words and put it in "kword".
// Theoretically there could be several keep-case words that result in the
// same case-folded word, but we only find one...
static void find_keepcap_word(slang_T *slang, char_u *fword, char_u *kword)
{
char_u uword[MAXWLEN]; // "fword" in upper-case
int depth;
idx_T tryidx;
// The following arrays are used at each depth in the tree.
idx_T arridx[MAXWLEN];
int round[MAXWLEN];
int fwordidx[MAXWLEN];
int uwordidx[MAXWLEN];
int kwordlen[MAXWLEN];
int flen, ulen;
int l;
int len;
int c;
idx_T lo, hi, m;
char_u *p;
char_u *byts = slang->sl_kbyts; // array with bytes of the words
idx_T *idxs = slang->sl_kidxs; // array with indexes
if (byts == NULL) {
// array is empty: "cannot happen"
*kword = NUL;
return;
}
// Make an all-cap version of "fword".
allcap_copy(fword, uword);
// Each character needs to be tried both case-folded and upper-case.
// All this gets very complicated if we keep in mind that changing case
// may change the byte length of a multi-byte character...
depth = 0;
arridx[0] = 0;
round[0] = 0;
fwordidx[0] = 0;
uwordidx[0] = 0;
kwordlen[0] = 0;
while (depth >= 0) {
if (fword[fwordidx[depth]] == NUL) {
// We are at the end of "fword". If the tree allows a word to end
// here we have found a match.
if (byts[arridx[depth] + 1] == 0) {
kword[kwordlen[depth]] = NUL;
return;
}
// kword is getting too long, continue one level up
--depth;
} else if (++round[depth] > 2) {
// tried both fold-case and upper-case character, continue one
// level up
--depth;
} else {
// round[depth] == 1: Try using the folded-case character.
// round[depth] == 2: Try using the upper-case character.
if (has_mbyte) {
flen = MB_CPTR2LEN(fword + fwordidx[depth]);
ulen = MB_CPTR2LEN(uword + uwordidx[depth]);
} else {
ulen = flen = 1;
}
if (round[depth] == 1) {
p = fword + fwordidx[depth];
l = flen;
} else {
p = uword + uwordidx[depth];
l = ulen;
}
for (tryidx = arridx[depth]; l > 0; --l) {
// Perform a binary search in the list of accepted bytes.
len = byts[tryidx++];
c = *p++;
lo = tryidx;
hi = tryidx + len - 1;
while (lo < hi) {
m = (lo + hi) / 2;
if (byts[m] > c)
hi = m - 1;
else if (byts[m] < c)
lo = m + 1;
else {
lo = hi = m;
break;
}
}
// Stop if there is no matching byte.
if (hi < lo || byts[lo] != c)
break;
// Continue at the child (if there is one).
tryidx = idxs[lo];
}
if (l == 0) {
// Found the matching char. Copy it to "kword" and go a
// level deeper.
if (round[depth] == 1) {
STRNCPY(kword + kwordlen[depth], fword + fwordidx[depth],
flen);
kwordlen[depth + 1] = kwordlen[depth] + flen;
} else {
STRNCPY(kword + kwordlen[depth], uword + uwordidx[depth],
ulen);
kwordlen[depth + 1] = kwordlen[depth] + ulen;
}
fwordidx[depth + 1] = fwordidx[depth] + flen;
uwordidx[depth + 1] = uwordidx[depth] + ulen;
++depth;
arridx[depth] = tryidx;
round[depth] = 0;
}
}
}
// Didn't find it: "cannot happen".
*kword = NUL;
}
// Compute the sound-a-like score for suggestions in su->su_ga and add them to
// su->su_sga.
static void score_comp_sal(suginfo_T *su)
{
langp_T *lp;
char_u badsound[MAXWLEN];
int i;
suggest_T *stp;
suggest_T *sstp;
int score;
ga_grow(&su->su_sga, su->su_ga.ga_len);
// Use the sound-folding of the first language that supports it.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
if (!GA_EMPTY(&lp->lp_slang->sl_sal)) {
// soundfold the bad word
spell_soundfold(lp->lp_slang, su->su_fbadword, true, badsound);
for (i = 0; i < su->su_ga.ga_len; ++i) {
stp = &SUG(su->su_ga, i);
// Case-fold the suggested word, sound-fold it and compute the
// sound-a-like score.
score = stp_sal_score(stp, su, lp->lp_slang, badsound);
if (score < SCORE_MAXMAX) {
// Add the suggestion.
sstp = &SUG(su->su_sga, su->su_sga.ga_len);
sstp->st_word = vim_strsave(stp->st_word);
sstp->st_wordlen = stp->st_wordlen;
sstp->st_score = score;
sstp->st_altscore = 0;
sstp->st_orglen = stp->st_orglen;
++su->su_sga.ga_len;
}
}
break;
}
}
}
// Combine the list of suggestions in su->su_ga and su->su_sga.
// They are entwined.
static void score_combine(suginfo_T *su)
{
garray_T ga;
garray_T *gap;
langp_T *lp;
suggest_T *stp;
char_u *p;
char_u badsound[MAXWLEN];
int round;
slang_T *slang = NULL;
// Add the alternate score to su_ga.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
if (!GA_EMPTY(&lp->lp_slang->sl_sal)) {
// soundfold the bad word
slang = lp->lp_slang;
spell_soundfold(slang, su->su_fbadword, true, badsound);
for (int i = 0; i < su->su_ga.ga_len; ++i) {
stp = &SUG(su->su_ga, i);
stp->st_altscore = stp_sal_score(stp, su, slang, badsound);
if (stp->st_altscore == SCORE_MAXMAX)
stp->st_score = (stp->st_score * 3 + SCORE_BIG) / 4;
else
stp->st_score = (stp->st_score * 3
+ stp->st_altscore) / 4;
stp->st_salscore = false;
}
break;
}
}
if (slang == NULL) { // Using "double" without sound folding.
(void)cleanup_suggestions(&su->su_ga, su->su_maxscore,
su->su_maxcount);
return;
}
// Add the alternate score to su_sga.
for (int i = 0; i < su->su_sga.ga_len; ++i) {
stp = &SUG(su->su_sga, i);
stp->st_altscore = spell_edit_score(slang,
su->su_badword, stp->st_word);
if (stp->st_score == SCORE_MAXMAX)
stp->st_score = (SCORE_BIG * 7 + stp->st_altscore) / 8;
else
stp->st_score = (stp->st_score * 7 + stp->st_altscore) / 8;
stp->st_salscore = true;
}
// Remove bad suggestions, sort the suggestions and truncate at "maxcount"
// for both lists.
check_suggestions(su, &su->su_ga);
(void)cleanup_suggestions(&su->su_ga, su->su_maxscore, su->su_maxcount);
check_suggestions(su, &su->su_sga);
(void)cleanup_suggestions(&su->su_sga, su->su_maxscore, su->su_maxcount);
ga_init(&ga, (int)sizeof(suginfo_T), 1);
ga_grow(&ga, su->su_ga.ga_len + su->su_sga.ga_len);
stp = &SUG(ga, 0);
for (int i = 0; i < su->su_ga.ga_len || i < su->su_sga.ga_len; ++i) {
// round 1: get a suggestion from su_ga
// round 2: get a suggestion from su_sga
for (round = 1; round <= 2; ++round) {
gap = round == 1 ? &su->su_ga : &su->su_sga;
if (i < gap->ga_len) {
// Don't add a word if it's already there.
p = SUG(*gap, i).st_word;
int j;
for (j = 0; j < ga.ga_len; ++j)
if (STRCMP(stp[j].st_word, p) == 0)
break;
if (j == ga.ga_len)
stp[ga.ga_len++] = SUG(*gap, i);
else
xfree(p);
}
}
}
ga_clear(&su->su_ga);
ga_clear(&su->su_sga);
// Truncate the list to the number of suggestions that will be displayed.
if (ga.ga_len > su->su_maxcount) {
for (int i = su->su_maxcount; i < ga.ga_len; ++i) {
xfree(stp[i].st_word);
}
ga.ga_len = su->su_maxcount;
}
su->su_ga = ga;
}
// For the goodword in "stp" compute the soundalike score compared to the
// badword.
static int
stp_sal_score (
suggest_T *stp,
suginfo_T *su,
slang_T *slang,
char_u *badsound // sound-folded badword
)
{
char_u *p;
char_u *pbad;
char_u *pgood;
char_u badsound2[MAXWLEN];
char_u fword[MAXWLEN];
char_u goodsound[MAXWLEN];
char_u goodword[MAXWLEN];
int lendiff;
lendiff = su->su_badlen - stp->st_orglen;
if (lendiff >= 0)
pbad = badsound;
else {
// soundfold the bad word with more characters following
(void)spell_casefold(su->su_badptr, stp->st_orglen, fword, MAXWLEN);
// When joining two words the sound often changes a lot. E.g., "t he"
// sounds like "t h" while "the" sounds like "@". Avoid that by
// removing the space. Don't do it when the good word also contains a
// space.
if (ascii_iswhite(su->su_badptr[su->su_badlen])
&& *skiptowhite(stp->st_word) == NUL)
for (p = fword; *(p = skiptowhite(p)) != NUL; )
STRMOVE(p, p + 1);
spell_soundfold(slang, fword, true, badsound2);
pbad = badsound2;
}
if (lendiff > 0 && stp->st_wordlen + lendiff < MAXWLEN) {
// Add part of the bad word to the good word, so that we soundfold
// what replaces the bad word.
STRCPY(goodword, stp->st_word);
STRLCPY(goodword + stp->st_wordlen,
su->su_badptr + su->su_badlen - lendiff, lendiff + 1);
pgood = goodword;
} else
pgood = stp->st_word;
// Sound-fold the word and compute the score for the difference.
spell_soundfold(slang, pgood, false, goodsound);
return soundalike_score(goodsound, pbad);
}
static sftword_T dumsft;
#define HIKEY2SFT(p) ((sftword_T *)(p - (dumsft.sft_word - (char_u *)&dumsft)))
#define HI2SFT(hi) HIKEY2SFT((hi)->hi_key)
// Prepare for calling suggest_try_soundalike().
static void suggest_try_soundalike_prep(void)
{
langp_T *lp;
slang_T *slang;
// Do this for all languages that support sound folding and for which a
// .sug file has been loaded.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
slang = lp->lp_slang;
if (!GA_EMPTY(&slang->sl_sal) && slang->sl_sbyts != NULL)
// prepare the hashtable used by add_sound_suggest()
hash_init(&slang->sl_sounddone);
}
}
// Find suggestions by comparing the word in a sound-a-like form.
// Note: This doesn't support postponed prefixes.
static void suggest_try_soundalike(suginfo_T *su)
{
char_u salword[MAXWLEN];
langp_T *lp;
slang_T *slang;
// Do this for all languages that support sound folding and for which a
// .sug file has been loaded.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
slang = lp->lp_slang;
if (!GA_EMPTY(&slang->sl_sal) && slang->sl_sbyts != NULL) {
// soundfold the bad word
spell_soundfold(slang, su->su_fbadword, true, salword);
// try all kinds of inserts/deletes/swaps/etc.
// TODO: also soundfold the next words, so that we can try joining
// and splitting
#ifdef SUGGEST_PROFILE
prof_init();
#endif
suggest_trie_walk(su, lp, salword, true);
#ifdef SUGGEST_PROFILE
prof_report("soundalike");
#endif
}
}
}
// Finish up after calling suggest_try_soundalike().
static void suggest_try_soundalike_finish(void)
{
langp_T *lp;
slang_T *slang;
int todo;
hashitem_T *hi;
// Do this for all languages that support sound folding and for which a
// .sug file has been loaded.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
slang = lp->lp_slang;
if (!GA_EMPTY(&slang->sl_sal) && slang->sl_sbyts != NULL) {
// Free the info about handled words.
todo = (int)slang->sl_sounddone.ht_used;
for (hi = slang->sl_sounddone.ht_array; todo > 0; ++hi)
if (!HASHITEM_EMPTY(hi)) {
xfree(HI2SFT(hi));
--todo;
}
// Clear the hashtable, it may also be used by another region.
hash_clear(&slang->sl_sounddone);
hash_init(&slang->sl_sounddone);
}
}
}
// A match with a soundfolded word is found. Add the good word(s) that
// produce this soundfolded word.
static void
add_sound_suggest (
suginfo_T *su,
char_u *goodword,
int score, // soundfold score
langp_T *lp
)
{
slang_T *slang = lp->lp_slang; // language for sound folding
int sfwordnr;
char_u *nrline;
int orgnr;
char_u theword[MAXWLEN];
int i;
int wlen;
char_u *byts;
idx_T *idxs;
int n;
int wordcount;
int wc;
int goodscore;
hash_T hash;
hashitem_T *hi;
sftword_T *sft;
int bc, gc;
int limit;
// It's very well possible that the same soundfold word is found several
// times with different scores. Since the following is quite slow only do
// the words that have a better score than before. Use a hashtable to
// remember the words that have been done.
hash = hash_hash(goodword);
const size_t goodword_len = STRLEN(goodword);
hi = hash_lookup(&slang->sl_sounddone, (const char *)goodword, goodword_len,
hash);
if (HASHITEM_EMPTY(hi)) {
sft = xmalloc(sizeof(sftword_T) + goodword_len);
sft->sft_score = score;
memcpy(sft->sft_word, goodword, goodword_len + 1);
hash_add_item(&slang->sl_sounddone, hi, sft->sft_word, hash);
} else {
sft = HI2SFT(hi);
if (score >= sft->sft_score)
return;
sft->sft_score = score;
}
// Find the word nr in the soundfold tree.
sfwordnr = soundfold_find(slang, goodword);
if (sfwordnr < 0) {
internal_error("add_sound_suggest()");
return;
}
// Go over the list of good words that produce this soundfold word
nrline = ml_get_buf(slang->sl_sugbuf, (linenr_T)sfwordnr + 1, false);
orgnr = 0;
while (*nrline != NUL) {
// The wordnr was stored in a minimal nr of bytes as an offset to the
// previous wordnr.
orgnr += bytes2offset(&nrline);
byts = slang->sl_fbyts;
idxs = slang->sl_fidxs;
// Lookup the word "orgnr" one of the two tries.
n = 0;
wordcount = 0;
for (wlen = 0; wlen < MAXWLEN - 3; ++wlen) {
i = 1;
if (wordcount == orgnr && byts[n + 1] == NUL)
break; // found end of word
if (byts[n + 1] == NUL)
++wordcount;
// skip over the NUL bytes
for (; byts[n + i] == NUL; ++i)
if (i > byts[n]) { // safety check
STRCPY(theword + wlen, "BAD");
wlen += 3;
goto badword;
}
// One of the siblings must have the word.
for (; i < byts[n]; ++i) {
wc = idxs[idxs[n + i]]; // nr of words under this byte
if (wordcount + wc > orgnr)
break;
wordcount += wc;
}
theword[wlen] = byts[n + i];
n = idxs[n + i];
}
badword:
theword[wlen] = NUL;
// Go over the possible flags and regions.
for (; i <= byts[n] && byts[n + i] == NUL; ++i) {
char_u cword[MAXWLEN];
char_u *p;
int flags = (int)idxs[n + i];
// Skip words with the NOSUGGEST flag
if (flags & WF_NOSUGGEST)
continue;
if (flags & WF_KEEPCAP) {
// Must find the word in the keep-case tree.
find_keepcap_word(slang, theword, cword);
p = cword;
} else {
flags |= su->su_badflags;
if ((flags & WF_CAPMASK) != 0) {
// Need to fix case according to "flags".
make_case_word(theword, cword, flags);
p = cword;
} else
p = theword;
}
// Add the suggestion.
if (sps_flags & SPS_DOUBLE) {
// Add the suggestion if the score isn't too bad.
if (score <= su->su_maxscore)
add_suggestion(su, &su->su_sga, p, su->su_badlen,
score, 0, false, slang, false);
} else {
// Add a penalty for words in another region.
if ((flags & WF_REGION)
&& (((unsigned)flags >> 16) & lp->lp_region) == 0)
goodscore = SCORE_REGION;
else
goodscore = 0;
// Add a small penalty for changing the first letter from
// lower to upper case. Helps for "tath" -> "Kath", which is
// less common than "tath" -> "path". Don't do it when the
// letter is the same, that has already been counted.
gc = PTR2CHAR(p);
if (SPELL_ISUPPER(gc)) {
bc = PTR2CHAR(su->su_badword);
if (!SPELL_ISUPPER(bc)
&& SPELL_TOFOLD(bc) != SPELL_TOFOLD(gc))
goodscore += SCORE_ICASE / 2;
}
// Compute the score for the good word. This only does letter
// insert/delete/swap/replace. REP items are not considered,
// which may make the score a bit higher.
// Use a limit for the score to make it work faster. Use
// MAXSCORE(), because RESCORE() will change the score.
// If the limit is very high then the iterative method is
// inefficient, using an array is quicker.
limit = MAXSCORE(su->su_sfmaxscore - goodscore, score);
if (limit > SCORE_LIMITMAX)
goodscore += spell_edit_score(slang, su->su_badword, p);
else
goodscore += spell_edit_score_limit(slang, su->su_badword,
p, limit);
// When going over the limit don't bother to do the rest.
if (goodscore < SCORE_MAXMAX) {
// Give a bonus to words seen before.
goodscore = score_wordcount_adj(slang, goodscore, p, false);
// Add the suggestion if the score isn't too bad.
goodscore = RESCORE(goodscore, score);
if (goodscore <= su->su_sfmaxscore)
add_suggestion(su, &su->su_ga, p, su->su_badlen,
goodscore, score, true, slang, true);
}
}
}
}
}
// Find word "word" in fold-case tree for "slang" and return the word number.
static int soundfold_find(slang_T *slang, char_u *word)
{
idx_T arridx = 0;
int len;
int wlen = 0;
int c;
char_u *ptr = word;
char_u *byts;
idx_T *idxs;
int wordnr = 0;
byts = slang->sl_sbyts;
idxs = slang->sl_sidxs;
for (;; ) {
// First byte is the number of possible bytes.
len = byts[arridx++];
// If the first possible byte is a zero the word could end here.
// If the word ends we found the word. If not skip the NUL bytes.
c = ptr[wlen];
if (byts[arridx] == NUL) {
if (c == NUL)
break;
// Skip over the zeros, there can be several.
while (len > 0 && byts[arridx] == NUL) {
++arridx;
--len;
}
if (len == 0)
return -1; // no children, word should have ended here
++wordnr;
}
// If the word ends we didn't find it.
if (c == NUL)
return -1;
// Perform a binary search in the list of accepted bytes.
if (c == TAB) // <Tab> is handled like <Space>
c = ' ';
while (byts[arridx] < c) {
// The word count is in the first idxs[] entry of the child.
wordnr += idxs[idxs[arridx]];
++arridx;
if (--len == 0) // end of the bytes, didn't find it
return -1;
}
if (byts[arridx] != c) // didn't find the byte
return -1;
// Continue at the child (if there is one).
arridx = idxs[arridx];
++wlen;
// One space in the good word may stand for several spaces in the
// checked word.
if (c == ' ')
while (ptr[wlen] == ' ' || ptr[wlen] == TAB)
++wlen;
}
return wordnr;
}
// Copy "fword" to "cword", fixing case according to "flags".
static void make_case_word(char_u *fword, char_u *cword, int flags)
{
if (flags & WF_ALLCAP)
// Make it all upper-case
allcap_copy(fword, cword);
else if (flags & WF_ONECAP)
// Make the first letter upper-case
onecap_copy(fword, cword, true);
else
// Use goodword as-is.
STRCPY(cword, fword);
}
// Returns true if "c1" and "c2" are similar characters according to the MAP
// lines in the .aff file.
static bool similar_chars(slang_T *slang, int c1, int c2)
{
int m1, m2;
char_u buf[MB_MAXBYTES + 1];
hashitem_T *hi;
if (c1 >= 256) {
buf[utf_char2bytes(c1, buf)] = 0;
hi = hash_find(&slang->sl_map_hash, buf);
if (HASHITEM_EMPTY(hi)) {
m1 = 0;
} else {
m1 = utf_ptr2char(hi->hi_key + STRLEN(hi->hi_key) + 1);
}
} else {
m1 = slang->sl_map_array[c1];
}
if (m1 == 0) {
return false;
}
if (c2 >= 256) {
buf[utf_char2bytes(c2, buf)] = 0;
hi = hash_find(&slang->sl_map_hash, buf);
if (HASHITEM_EMPTY(hi)) {
m2 = 0;
} else {
m2 = utf_ptr2char(hi->hi_key + STRLEN(hi->hi_key) + 1);
}
} else {
m2 = slang->sl_map_array[c2];
}
return m1 == m2;
}
// Adds a suggestion to the list of suggestions.
// For a suggestion that is already in the list the lowest score is remembered.
static void
add_suggestion (
suginfo_T *su,
garray_T *gap, // either su_ga or su_sga
const char_u *goodword,
int badlenarg, // len of bad word replaced with "goodword"
int score,
int altscore,
bool had_bonus, // value for st_had_bonus
slang_T *slang, // language for sound folding
bool maxsf // su_maxscore applies to soundfold score,
// su_sfmaxscore to the total score.
)
{
int goodlen; // len of goodword changed
int badlen; // len of bad word changed
suggest_T *stp;
suggest_T new_sug;
// Minimize "badlen" for consistency. Avoids that changing "the the" to
// "thee the" is added next to changing the first "the" the "thee".
const char_u *pgood = goodword + STRLEN(goodword);
char_u *pbad = su->su_badptr + badlenarg;
for (;; ) {
goodlen = (int)(pgood - goodword);
badlen = (int)(pbad - su->su_badptr);
if (goodlen <= 0 || badlen <= 0)
break;
MB_PTR_BACK(goodword, pgood);
MB_PTR_BACK(su->su_badptr, pbad);
if (utf_ptr2char(pgood) != utf_ptr2char(pbad)) {
break;
}
}
if (badlen == 0 && goodlen == 0)
// goodword doesn't change anything; may happen for "the the" changing
// the first "the" to itself.
return;
int i;
if (GA_EMPTY(gap)) {
i = -1;
} else {
// Check if the word is already there. Also check the length that is
// being replaced "thes," -> "these" is a different suggestion from
// "thes" -> "these".
stp = &SUG(*gap, 0);
for (i = gap->ga_len; --i >= 0; ++stp) {
if (stp->st_wordlen == goodlen
&& stp->st_orglen == badlen
&& STRNCMP(stp->st_word, goodword, goodlen) == 0) {
// Found it. Remember the word with the lowest score.
if (stp->st_slang == NULL)
stp->st_slang = slang;
new_sug.st_score = score;
new_sug.st_altscore = altscore;
new_sug.st_had_bonus = had_bonus;
if (stp->st_had_bonus != had_bonus) {
// Only one of the two had the soundalike score computed.
// Need to do that for the other one now, otherwise the
// scores can't be compared. This happens because
// suggest_try_change() doesn't compute the soundalike
// word to keep it fast, while some special methods set
// the soundalike score to zero.
if (had_bonus)
rescore_one(su, stp);
else {
new_sug.st_word = stp->st_word;
new_sug.st_wordlen = stp->st_wordlen;
new_sug.st_slang = stp->st_slang;
new_sug.st_orglen = badlen;
rescore_one(su, &new_sug);
}
}
if (stp->st_score > new_sug.st_score) {
stp->st_score = new_sug.st_score;
stp->st_altscore = new_sug.st_altscore;
stp->st_had_bonus = new_sug.st_had_bonus;
}
break;
}
}
}
if (i < 0) {
// Add a suggestion.
stp = GA_APPEND_VIA_PTR(suggest_T, gap);
stp->st_word = vim_strnsave(goodword, goodlen);
stp->st_wordlen = goodlen;
stp->st_score = score;
stp->st_altscore = altscore;
stp->st_had_bonus = had_bonus;
stp->st_orglen = badlen;
stp->st_slang = slang;
// If we have too many suggestions now, sort the list and keep
// the best suggestions.
if (gap->ga_len > SUG_MAX_COUNT(su)) {
if (maxsf)
su->su_sfmaxscore = cleanup_suggestions(gap,
su->su_sfmaxscore, SUG_CLEAN_COUNT(su));
else
su->su_maxscore = cleanup_suggestions(gap,
su->su_maxscore, SUG_CLEAN_COUNT(su));
}
}
}
// Suggestions may in fact be flagged as errors. Esp. for banned words and
// for split words, such as "the the". Remove these from the list here.
static void
check_suggestions (
suginfo_T *su,
garray_T *gap // either su_ga or su_sga
)
{
suggest_T *stp;
char_u longword[MAXWLEN + 1];
int len;
hlf_T attr;
stp = &SUG(*gap, 0);
for (int i = gap->ga_len - 1; i >= 0; --i) {
// Need to append what follows to check for "the the".
STRLCPY(longword, stp[i].st_word, MAXWLEN + 1);
len = stp[i].st_wordlen;
STRLCPY(longword + len, su->su_badptr + stp[i].st_orglen,
MAXWLEN - len + 1);
attr = HLF_COUNT;
(void)spell_check(curwin, longword, &attr, NULL, false);
if (attr != HLF_COUNT) {
// Remove this entry.
xfree(stp[i].st_word);
--gap->ga_len;
if (i < gap->ga_len)
memmove(stp + i, stp + i + 1,
sizeof(suggest_T) * (gap->ga_len - i));
}
}
}
// Add a word to be banned.
static void add_banned(suginfo_T *su, char_u *word)
{
char_u *s;
hash_T hash;
hashitem_T *hi;
hash = hash_hash(word);
const size_t word_len = STRLEN(word);
hi = hash_lookup(&su->su_banned, (const char *)word, word_len, hash);
if (HASHITEM_EMPTY(hi)) {
s = xmemdupz(word, word_len);
hash_add_item(&su->su_banned, hi, s, hash);
}
}
// Recompute the score for all suggestions if sound-folding is possible. This
// is slow, thus only done for the final results.
static void rescore_suggestions(suginfo_T *su)
{
if (su->su_sallang != NULL) {
for (int i = 0; i < su->su_ga.ga_len; ++i) {
rescore_one(su, &SUG(su->su_ga, i));
}
}
}
// Recompute the score for one suggestion if sound-folding is possible.
static void rescore_one(suginfo_T *su, suggest_T *stp)
{
slang_T *slang = stp->st_slang;
char_u sal_badword[MAXWLEN];
char_u *p;
// Only rescore suggestions that have no sal score yet and do have a
// language.
if (slang != NULL && !GA_EMPTY(&slang->sl_sal) && !stp->st_had_bonus) {
if (slang == su->su_sallang)
p = su->su_sal_badword;
else {
spell_soundfold(slang, su->su_fbadword, true, sal_badword);
p = sal_badword;
}
stp->st_altscore = stp_sal_score(stp, su, slang, p);
if (stp->st_altscore == SCORE_MAXMAX)
stp->st_altscore = SCORE_BIG;
stp->st_score = RESCORE(stp->st_score, stp->st_altscore);
stp->st_had_bonus = true;
}
}
// Function given to qsort() to sort the suggestions on st_score.
// First on "st_score", then "st_altscore" then alphabetically.
static int sug_compare(const void *s1, const void *s2)
{
suggest_T *p1 = (suggest_T *)s1;
suggest_T *p2 = (suggest_T *)s2;
int n = p1->st_score - p2->st_score;
if (n == 0) {
n = p1->st_altscore - p2->st_altscore;
if (n == 0)
n = STRICMP(p1->st_word, p2->st_word);
}
return n;
}
// Cleanup the suggestions:
// - Sort on score.
// - Remove words that won't be displayed.
// Returns the maximum score in the list or "maxscore" unmodified.
static int
cleanup_suggestions (
garray_T *gap,
int maxscore,
int keep // nr of suggestions to keep
)
FUNC_ATTR_NONNULL_ALL
{
suggest_T *stp = &SUG(*gap, 0);
if (gap->ga_len > 0) {
// Sort the list.
qsort(gap->ga_data, (size_t)gap->ga_len, sizeof(suggest_T), sug_compare);
// Truncate the list to the number of suggestions that will be displayed.
if (gap->ga_len > keep) {
for (int i = keep; i < gap->ga_len; i++) {
xfree(stp[i].st_word);
}
gap->ga_len = keep;
return stp[keep - 1].st_score;
}
}
return maxscore;
}
/// Soundfold a string, for soundfold()
///
/// @param[in] word Word to soundfold.
///
/// @return [allocated] soundfolded string or NULL in case of error. May return
/// copy of the input string if soundfolding is not
/// supported by any of the languages in &spellang.
char *eval_soundfold(const char *const word)
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_MALLOC FUNC_ATTR_NONNULL_ALL
{
if (curwin->w_p_spell && *curwin->w_s->b_p_spl != NUL) {
// Use the sound-folding of the first language that supports it.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; lpi++) {
langp_T *const lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
if (!GA_EMPTY(&lp->lp_slang->sl_sal)) {
// soundfold the word
char_u sound[MAXWLEN];
spell_soundfold(lp->lp_slang, (char_u *)word, false, sound);
return xstrdup((const char *)sound);
}
}
}
// No language with sound folding, return word as-is.
return xstrdup(word);
}
/// Turn "inword" into its sound-a-like equivalent in "res[MAXWLEN]".
///
/// There are many ways to turn a word into a sound-a-like representation. The
/// oldest is Soundex (1918!). A nice overview can be found in "Approximate
/// swedish name matching - survey and test of different algorithms" by Klas
/// Erikson.
///
/// We support two methods:
/// 1. SOFOFROM/SOFOTO do a simple character mapping.
/// 2. SAL items define a more advanced sound-folding (and much slower).
///
/// @param[in] slang
/// @param[in] inword word to soundfold
/// @param[in] folded whether inword is already case-folded
/// @param[in,out] res destination for soundfolded word
void spell_soundfold(slang_T *slang, char_u *inword, bool folded, char_u *res)
{
char_u fword[MAXWLEN];
char_u *word;
if (slang->sl_sofo)
// SOFOFROM and SOFOTO used
spell_soundfold_sofo(slang, inword, res);
else {
// SAL items used. Requires the word to be case-folded.
if (folded)
word = inword;
else {
(void)spell_casefold(inword, (int)STRLEN(inword), fword, MAXWLEN);
word = fword;
}
spell_soundfold_wsal(slang, word, res);
}
}
// Perform sound folding of "inword" into "res" according to SOFOFROM and
// SOFOTO lines.
static void spell_soundfold_sofo(slang_T *slang, char_u *inword, char_u *res)
{
char_u *s;
int ri = 0;
int c;
if (has_mbyte) {
int prevc = 0;
int *ip;
// The sl_sal_first[] table contains the translation for chars up to
// 255, sl_sal the rest.
for (s = inword; *s != NUL; ) {
c = mb_cptr2char_adv((const char_u **)&s);
if (utf_class(c) == 0) {
c = ' ';
} else if (c < 256) {
c = slang->sl_sal_first[c];
} else {
ip = ((int **)slang->sl_sal.ga_data)[c & 0xff];
if (ip == NULL) // empty list, can't match
c = NUL;
else
for (;; ) { // find "c" in the list
if (*ip == 0) { // not found
c = NUL;
break;
}
if (*ip == c) { // match!
c = ip[1];
break;
}
ip += 2;
}
}
if (c != NUL && c != prevc) {
ri += utf_char2bytes(c, res + ri);
if (ri + MB_MAXBYTES > MAXWLEN) {
break;
}
prevc = c;
}
}
} else {
// The sl_sal_first[] table contains the translation.
for (s = inword; (c = *s) != NUL; ++s) {
if (ascii_iswhite(c))
c = ' ';
else
c = slang->sl_sal_first[c];
if (c != NUL && (ri == 0 || res[ri - 1] != c))
res[ri++] = c;
}
}
res[ri] = NUL;
}
// Turn "inword" into its sound-a-like equivalent in "res[MAXWLEN]".
// Multi-byte version of spell_soundfold().
static void spell_soundfold_wsal(slang_T *slang, char_u *inword, char_u *res)
{
salitem_T *smp = (salitem_T *)slang->sl_sal.ga_data;
int word[MAXWLEN] = { 0 };
int wres[MAXWLEN] = { 0 };
int l;
int *ws;
int *pf;
int i, j, z;
int reslen;
int n, k = 0;
int z0;
int k0;
int n0;
int c;
int pri;
int p0 = -333;
int c0;
bool did_white = false;
int wordlen;
// Convert the multi-byte string to a wide-character string.
// Remove accents, if wanted. We actually remove all non-word characters.
// But keep white space.
wordlen = 0;
for (const char_u *s = inword; *s != NUL; ) {
const char_u *t = s;
c = mb_cptr2char_adv((const char_u **)&s);
if (slang->sl_rem_accents) {
if (utf_class(c) == 0) {
if (did_white) {
continue;
}
c = ' ';
did_white = true;
} else {
did_white = false;
if (!spell_iswordp_nmw(t, curwin)) {
continue;
}
}
}
word[wordlen++] = c;
}
word[wordlen] = NUL;
// This algorithm comes from Aspell phonet.cpp.
// Converted from C++ to C. Added support for multi-byte chars.
// Changed to keep spaces.
i = reslen = z = 0;
while ((c = word[i]) != NUL) {
// Start with the first rule that has the character in the word.
n = slang->sl_sal_first[c & 0xff];
z0 = 0;
if (n >= 0) {
// Check all rules for the same index byte.
// If c is 0x300 need extra check for the end of the array, as
// (c & 0xff) is NUL.
for (; ((ws = smp[n].sm_lead_w)[0] & 0xff) == (c & 0xff)
&& ws[0] != NUL; ++n) {
// Quickly skip entries that don't match the word. Most
// entries are less then three chars, optimize for that.
if (c != ws[0])
continue;
k = smp[n].sm_leadlen;
if (k > 1) {
if (word[i + 1] != ws[1])
continue;
if (k > 2) {
for (j = 2; j < k; ++j)
if (word[i + j] != ws[j])
break;
if (j < k)
continue;
}
}
if ((pf = smp[n].sm_oneof_w) != NULL) {
// Check for match with one of the chars in "sm_oneof".
while (*pf != NUL && *pf != word[i + k])
++pf;
if (*pf == NUL)
continue;
++k;
}
char_u *s = smp[n].sm_rules;
pri = 5; // default priority
p0 = *s;
k0 = k;
while (*s == '-' && k > 1) {
k--;
s++;
}
if (*s == '<')
s++;
if (ascii_isdigit(*s)) {
// determine priority
pri = *s - '0';
s++;
}
if (*s == '^' && *(s + 1) == '^')
s++;
if (*s == NUL
|| (*s == '^'
&& (i == 0 || !(word[i - 1] == ' '
|| spell_iswordp_w(word + i - 1, curwin)))
&& (*(s + 1) != '$'
|| (!spell_iswordp_w(word + i + k0, curwin))))
|| (*s == '$' && i > 0
&& spell_iswordp_w(word + i - 1, curwin)
&& (!spell_iswordp_w(word + i + k0, curwin)))) {
// search for followup rules, if:
// followup and k > 1 and NO '-' in searchstring
c0 = word[i + k - 1];
n0 = slang->sl_sal_first[c0 & 0xff];
if (slang->sl_followup && k > 1 && n0 >= 0
&& p0 != '-' && word[i + k] != NUL) {
// Test follow-up rule for "word[i + k]"; loop over
// all entries with the same index byte.
for (; ((ws = smp[n0].sm_lead_w)[0] & 0xff)
== (c0 & 0xff); ++n0) {
// Quickly skip entries that don't match the word.
if (c0 != ws[0])
continue;
k0 = smp[n0].sm_leadlen;
if (k0 > 1) {
if (word[i + k] != ws[1])
continue;
if (k0 > 2) {
pf = word + i + k + 1;
for (j = 2; j < k0; ++j)
if (*pf++ != ws[j])
break;
if (j < k0)
continue;
}
}
k0 += k - 1;
if ((pf = smp[n0].sm_oneof_w) != NULL) {
// Check for match with one of the chars in
// "sm_oneof".
while (*pf != NUL && *pf != word[i + k0])
++pf;
if (*pf == NUL)
continue;
++k0;
}
p0 = 5;
s = smp[n0].sm_rules;
while (*s == '-') {
// "k0" gets NOT reduced because
// "if (k0 == k)"
s++;
}
if (*s == '<')
s++;
if (ascii_isdigit(*s)) {
p0 = *s - '0';
s++;
}
if (*s == NUL
// *s == '^' cuts
|| (*s == '$'
&& !spell_iswordp_w(word + i + k0,
curwin))) {
if (k0 == k)
// this is just a piece of the string
continue;
if (p0 < pri)
// priority too low
continue;
// rule fits; stop search
break;
}
}
if (p0 >= pri && (smp[n0].sm_lead_w[0] & 0xff)
== (c0 & 0xff))
continue;
}
// replace string
ws = smp[n].sm_to_w;
s = smp[n].sm_rules;
p0 = (vim_strchr(s, '<') != NULL) ? 1 : 0;
if (p0 == 1 && z == 0) {
// rule with '<' is used
if (reslen > 0 && ws != NULL && *ws != NUL
&& (wres[reslen - 1] == c
|| wres[reslen - 1] == *ws))
reslen--;
z0 = 1;
z = 1;
k0 = 0;
if (ws != NULL)
while (*ws != NUL && word[i + k0] != NUL) {
word[i + k0] = *ws;
k0++;
ws++;
}
if (k > k0)
memmove(word + i + k0, word + i + k,
sizeof(int) * (wordlen - (i + k) + 1));
// new "actual letter"
c = word[i];
} else {
// no '<' rule used
i += k - 1;
z = 0;
if (ws != NULL)
while (*ws != NUL && ws[1] != NUL
&& reslen < MAXWLEN) {
if (reslen == 0 || wres[reslen - 1] != *ws)
wres[reslen++] = *ws;
ws++;
}
// new "actual letter"
if (ws == NULL)
c = NUL;
else
c = *ws;
if (strstr((char *)s, "^^") != NULL) {
if (c != NUL)
wres[reslen++] = c;
memmove(word, word + i + 1,
sizeof(int) * (wordlen - (i + 1) + 1));
i = 0;
z0 = 1;
}
}
break;
}
}
} else if (ascii_iswhite(c)) {
c = ' ';
k = 1;
}
if (z0 == 0) {
if (k && !p0 && reslen < MAXWLEN && c != NUL
&& (!slang->sl_collapse || reslen == 0
|| wres[reslen - 1] != c))
// condense only double letters
wres[reslen++] = c;
i++;
z = 0;
k = 0;
}
}
// Convert wide characters in "wres" to a multi-byte string in "res".
l = 0;
for (n = 0; n < reslen; n++) {
l += utf_char2bytes(wres[n], res + l);
if (l + MB_MAXBYTES > MAXWLEN) {
break;
}
}
res[l] = NUL;
}
// Compute a score for two sound-a-like words.
// This permits up to two inserts/deletes/swaps/etc. to keep things fast.
// Instead of a generic loop we write out the code. That keeps it fast by
// avoiding checks that will not be possible.
static int
soundalike_score (
char_u *goodstart, // sound-folded good word
char_u *badstart // sound-folded bad word
)
{
char_u *goodsound = goodstart;
char_u *badsound = badstart;
int goodlen;
int badlen;
int n;
char_u *pl, *ps;
char_u *pl2, *ps2;
int score = 0;
// Adding/inserting "*" at the start (word starts with vowel) shouldn't be
// counted so much, vowels in the middle of the word aren't counted at all.
if ((*badsound == '*' || *goodsound == '*') && *badsound != *goodsound) {
if ((badsound[0] == NUL && goodsound[1] == NUL)
|| (goodsound[0] == NUL && badsound[1] == NUL))
// changing word with vowel to word without a sound
return SCORE_DEL;
if (badsound[0] == NUL || goodsound[0] == NUL)
// more than two changes
return SCORE_MAXMAX;
if (badsound[1] == goodsound[1]
|| (badsound[1] != NUL
&& goodsound[1] != NUL
&& badsound[2] == goodsound[2])) {
// handle like a substitute
} else {
score = 2 * SCORE_DEL / 3;
if (*badsound == '*')
++badsound;
else
++goodsound;
}
}
goodlen = (int)STRLEN(goodsound);
badlen = (int)STRLEN(badsound);
// Return quickly if the lengths are too different to be fixed by two
// changes.
n = goodlen - badlen;
if (n < -2 || n > 2)
return SCORE_MAXMAX;
if (n > 0) {
pl = goodsound; // goodsound is longest
ps = badsound;
} else {
pl = badsound; // badsound is longest
ps = goodsound;
}
// Skip over the identical part.
while (*pl == *ps && *pl != NUL) {
++pl;
++ps;
}
switch (n) {
case -2:
case 2:
// Must delete two characters from "pl".
++pl; // first delete
while (*pl == *ps) {
++pl;
++ps;
}
// strings must be equal after second delete
if (STRCMP(pl + 1, ps) == 0)
return score + SCORE_DEL * 2;
// Failed to compare.
break;
case -1:
case 1:
// Minimal one delete from "pl" required.
// 1: delete
pl2 = pl + 1;
ps2 = ps;
while (*pl2 == *ps2) {
if (*pl2 == NUL) // reached the end
return score + SCORE_DEL;
++pl2;
++ps2;
}
// 2: delete then swap, then rest must be equal
if (pl2[0] == ps2[1] && pl2[1] == ps2[0]
&& STRCMP(pl2 + 2, ps2 + 2) == 0)
return score + SCORE_DEL + SCORE_SWAP;
// 3: delete then substitute, then the rest must be equal
if (STRCMP(pl2 + 1, ps2 + 1) == 0)
return score + SCORE_DEL + SCORE_SUBST;
// 4: first swap then delete
if (pl[0] == ps[1] && pl[1] == ps[0]) {
pl2 = pl + 2; // swap, skip two chars
ps2 = ps + 2;
while (*pl2 == *ps2) {
++pl2;
++ps2;
}
// delete a char and then strings must be equal
if (STRCMP(pl2 + 1, ps2) == 0)
return score + SCORE_SWAP + SCORE_DEL;
}
// 5: first substitute then delete
pl2 = pl + 1; // substitute, skip one char
ps2 = ps + 1;
while (*pl2 == *ps2) {
++pl2;
++ps2;
}
// delete a char and then strings must be equal
if (STRCMP(pl2 + 1, ps2) == 0)
return score + SCORE_SUBST + SCORE_DEL;
// Failed to compare.
break;
case 0:
// Lengths are equal, thus changes must result in same length: An
// insert is only possible in combination with a delete.
// 1: check if for identical strings
if (*pl == NUL)
return score;
// 2: swap
if (pl[0] == ps[1] && pl[1] == ps[0]) {
pl2 = pl + 2; // swap, skip two chars
ps2 = ps + 2;
while (*pl2 == *ps2) {
if (*pl2 == NUL) // reached the end
return score + SCORE_SWAP;
++pl2;
++ps2;
}
// 3: swap and swap again
if (pl2[0] == ps2[1] && pl2[1] == ps2[0]
&& STRCMP(pl2 + 2, ps2 + 2) == 0)
return score + SCORE_SWAP + SCORE_SWAP;
// 4: swap and substitute
if (STRCMP(pl2 + 1, ps2 + 1) == 0)
return score + SCORE_SWAP + SCORE_SUBST;
}
// 5: substitute
pl2 = pl + 1;
ps2 = ps + 1;
while (*pl2 == *ps2) {
if (*pl2 == NUL) // reached the end
return score + SCORE_SUBST;
++pl2;
++ps2;
}
// 6: substitute and swap
if (pl2[0] == ps2[1] && pl2[1] == ps2[0]
&& STRCMP(pl2 + 2, ps2 + 2) == 0)
return score + SCORE_SUBST + SCORE_SWAP;
// 7: substitute and substitute
if (STRCMP(pl2 + 1, ps2 + 1) == 0)
return score + SCORE_SUBST + SCORE_SUBST;
// 8: insert then delete
pl2 = pl;
ps2 = ps + 1;
while (*pl2 == *ps2) {
++pl2;
++ps2;
}
if (STRCMP(pl2 + 1, ps2) == 0)
return score + SCORE_INS + SCORE_DEL;
// 9: delete then insert
pl2 = pl + 1;
ps2 = ps;
while (*pl2 == *ps2) {
++pl2;
++ps2;
}
if (STRCMP(pl2, ps2 + 1) == 0)
return score + SCORE_INS + SCORE_DEL;
// Failed to compare.
break;
}
return SCORE_MAXMAX;
}
// Compute the "edit distance" to turn "badword" into "goodword". The less
// deletes/inserts/substitutes/swaps are required the lower the score.
//
// The algorithm is described by Du and Chang, 1992.
// The implementation of the algorithm comes from Aspell editdist.cpp,
// edit_distance(). It has been converted from C++ to C and modified to
// support multi-byte characters.
static int spell_edit_score(slang_T *slang, char_u *badword, char_u *goodword)
{
int *cnt;
int j, i;
int t;
int bc, gc;
int pbc, pgc;
int wbadword[MAXWLEN];
int wgoodword[MAXWLEN];
const bool l_has_mbyte = has_mbyte;
// Lengths with NUL.
int badlen;
int goodlen;
if (l_has_mbyte) {
// Get the characters from the multi-byte strings and put them in an
// int array for easy access.
badlen = 0;
for (const char_u *p = badword; *p != NUL; ) {
wbadword[badlen++] = mb_cptr2char_adv(&p);
}
wbadword[badlen++] = 0;
goodlen = 0;
for (const char_u *p = goodword; *p != NUL; ) {
wgoodword[goodlen++] = mb_cptr2char_adv(&p);
}
wgoodword[goodlen++] = 0;
} else {
badlen = (int)STRLEN(badword) + 1;
goodlen = (int)STRLEN(goodword) + 1;
}
// We use "cnt" as an array: CNT(badword_idx, goodword_idx).
#define CNT(a, b) cnt[(a) + (b) * (badlen + 1)]
cnt = xmalloc(sizeof(int) * (badlen + 1) * (goodlen + 1));
CNT(0, 0) = 0;
for (j = 1; j <= goodlen; ++j)
CNT(0, j) = CNT(0, j - 1) + SCORE_INS;
for (i = 1; i <= badlen; ++i) {
CNT(i, 0) = CNT(i - 1, 0) + SCORE_DEL;
for (j = 1; j <= goodlen; ++j) {
if (l_has_mbyte) {
bc = wbadword[i - 1];
gc = wgoodword[j - 1];
} else {
bc = badword[i - 1];
gc = goodword[j - 1];
}
if (bc == gc)
CNT(i, j) = CNT(i - 1, j - 1);
else {
// Use a better score when there is only a case difference.
if (SPELL_TOFOLD(bc) == SPELL_TOFOLD(gc))
CNT(i, j) = SCORE_ICASE + CNT(i - 1, j - 1);
else {
// For a similar character use SCORE_SIMILAR.
if (slang != NULL
&& slang->sl_has_map
&& similar_chars(slang, gc, bc))
CNT(i, j) = SCORE_SIMILAR + CNT(i - 1, j - 1);
else
CNT(i, j) = SCORE_SUBST + CNT(i - 1, j - 1);
}
if (i > 1 && j > 1) {
if (l_has_mbyte) {
pbc = wbadword[i - 2];
pgc = wgoodword[j - 2];
} else {
pbc = badword[i - 2];
pgc = goodword[j - 2];
}
if (bc == pgc && pbc == gc) {
t = SCORE_SWAP + CNT(i - 2, j - 2);
if (t < CNT(i, j))
CNT(i, j) = t;
}
}
t = SCORE_DEL + CNT(i - 1, j);
if (t < CNT(i, j))
CNT(i, j) = t;
t = SCORE_INS + CNT(i, j - 1);
if (t < CNT(i, j))
CNT(i, j) = t;
}
}
}
i = CNT(badlen - 1, goodlen - 1);
xfree(cnt);
return i;
}
// Like spell_edit_score(), but with a limit on the score to make it faster.
// May return SCORE_MAXMAX when the score is higher than "limit".
//
// This uses a stack for the edits still to be tried.
// The idea comes from Aspell leditdist.cpp. Rewritten in C and added support
// for multi-byte characters.
static int spell_edit_score_limit(slang_T *slang, char_u *badword, char_u *goodword, int limit)
{
limitscore_T stack[10]; // allow for over 3 * 2 edits
int stackidx;
int bi, gi;
int bi2, gi2;
int bc, gc;
int score;
int score_off;
int minscore;
int round;
// Multi-byte characters require a bit more work, use a different function
// to avoid testing "has_mbyte" quite often.
if (has_mbyte)
return spell_edit_score_limit_w(slang, badword, goodword, limit);
// The idea is to go from start to end over the words. So long as
// characters are equal just continue, this always gives the lowest score.
// When there is a difference try several alternatives. Each alternative
// increases "score" for the edit distance. Some of the alternatives are
// pushed unto a stack and tried later, some are tried right away. At the
// end of the word the score for one alternative is known. The lowest
// possible score is stored in "minscore".
stackidx = 0;
bi = 0;
gi = 0;
score = 0;
minscore = limit + 1;
for (;; ) {
// Skip over an equal part, score remains the same.
for (;; ) {
bc = badword[bi];
gc = goodword[gi];
if (bc != gc) // stop at a char that's different
break;
if (bc == NUL) { // both words end
if (score < minscore)
minscore = score;
goto pop; // do next alternative
}
++bi;
++gi;
}
if (gc == NUL) { // goodword ends, delete badword chars
do {
if ((score += SCORE_DEL) >= minscore)
goto pop; // do next alternative
} while (badword[++bi] != NUL);
minscore = score;
} else if (bc == NUL) { // badword ends, insert badword chars
do {
if ((score += SCORE_INS) >= minscore)
goto pop; // do next alternative
} while (goodword[++gi] != NUL);
minscore = score;
} else { // both words continue
// If not close to the limit, perform a change. Only try changes
// that may lead to a lower score than "minscore".
// round 0: try deleting a char from badword
// round 1: try inserting a char in badword
for (round = 0; round <= 1; ++round) {
score_off = score + (round == 0 ? SCORE_DEL : SCORE_INS);
if (score_off < minscore) {
if (score_off + SCORE_EDIT_MIN >= minscore) {
// Near the limit, rest of the words must match. We
// can check that right now, no need to push an item
// onto the stack.
bi2 = bi + 1 - round;
gi2 = gi + round;
while (goodword[gi2] == badword[bi2]) {
if (goodword[gi2] == NUL) {
minscore = score_off;
break;
}
++bi2;
++gi2;
}
} else {
// try deleting/inserting a character later
stack[stackidx].badi = bi + 1 - round;
stack[stackidx].goodi = gi + round;
stack[stackidx].score = score_off;
++stackidx;
}
}
}
if (score + SCORE_SWAP < minscore) {
// If swapping two characters makes a match then the
// substitution is more expensive, thus there is no need to
// try both.
if (gc == badword[bi + 1] && bc == goodword[gi + 1]) {
// Swap two characters, that is: skip them.
gi += 2;
bi += 2;
score += SCORE_SWAP;
continue;
}
}
// Substitute one character for another which is the same
// thing as deleting a character from both goodword and badword.
// Use a better score when there is only a case difference.
if (SPELL_TOFOLD(bc) == SPELL_TOFOLD(gc))
score += SCORE_ICASE;
else {
// For a similar character use SCORE_SIMILAR.
if (slang != NULL
&& slang->sl_has_map
&& similar_chars(slang, gc, bc))
score += SCORE_SIMILAR;
else
score += SCORE_SUBST;
}
if (score < minscore) {
// Do the substitution.
++gi;
++bi;
continue;
}
}
pop:
// Get here to try the next alternative, pop it from the stack.
if (stackidx == 0) // stack is empty, finished
break;
// pop an item from the stack
--stackidx;
gi = stack[stackidx].goodi;
bi = stack[stackidx].badi;
score = stack[stackidx].score;
}
// When the score goes over "limit" it may actually be much higher.
// Return a very large number to avoid going below the limit when giving a
// bonus.
if (minscore > limit)
return SCORE_MAXMAX;
return minscore;
}
// Multi-byte version of spell_edit_score_limit().
// Keep it in sync with the above!
static int spell_edit_score_limit_w(slang_T *slang, char_u *badword, char_u *goodword, int limit)
{
limitscore_T stack[10]; // allow for over 3 * 2 edits
int stackidx;
int bi, gi;
int bi2, gi2;
int bc, gc;
int score;
int score_off;
int minscore;
int round;
int wbadword[MAXWLEN];
int wgoodword[MAXWLEN];
// Get the characters from the multi-byte strings and put them in an
// int array for easy access.
bi = 0;
for (const char_u *p = badword; *p != NUL; ) {
wbadword[bi++] = mb_cptr2char_adv(&p);
}
wbadword[bi++] = 0;
gi = 0;
for (const char_u *p = goodword; *p != NUL; ) {
wgoodword[gi++] = mb_cptr2char_adv(&p);
}
wgoodword[gi++] = 0;
// The idea is to go from start to end over the words. So long as
// characters are equal just continue, this always gives the lowest score.
// When there is a difference try several alternatives. Each alternative
// increases "score" for the edit distance. Some of the alternatives are
// pushed unto a stack and tried later, some are tried right away. At the
// end of the word the score for one alternative is known. The lowest
// possible score is stored in "minscore".
stackidx = 0;
bi = 0;
gi = 0;
score = 0;
minscore = limit + 1;
for (;; ) {
// Skip over an equal part, score remains the same.
for (;; ) {
bc = wbadword[bi];
gc = wgoodword[gi];
if (bc != gc) // stop at a char that's different
break;
if (bc == NUL) { // both words end
if (score < minscore)
minscore = score;
goto pop; // do next alternative
}
++bi;
++gi;
}
if (gc == NUL) { // goodword ends, delete badword chars
do {
if ((score += SCORE_DEL) >= minscore)
goto pop; // do next alternative
} while (wbadword[++bi] != NUL);
minscore = score;
} else if (bc == NUL) { // badword ends, insert badword chars
do {
if ((score += SCORE_INS) >= minscore)
goto pop; // do next alternative
} while (wgoodword[++gi] != NUL);
minscore = score;
} else { // both words continue
// If not close to the limit, perform a change. Only try changes
// that may lead to a lower score than "minscore".
// round 0: try deleting a char from badword
// round 1: try inserting a char in badword
for (round = 0; round <= 1; ++round) {
score_off = score + (round == 0 ? SCORE_DEL : SCORE_INS);
if (score_off < minscore) {
if (score_off + SCORE_EDIT_MIN >= minscore) {
// Near the limit, rest of the words must match. We
// can check that right now, no need to push an item
// onto the stack.
bi2 = bi + 1 - round;
gi2 = gi + round;
while (wgoodword[gi2] == wbadword[bi2]) {
if (wgoodword[gi2] == NUL) {
minscore = score_off;
break;
}
++bi2;
++gi2;
}
} else {
// try deleting a character from badword later
stack[stackidx].badi = bi + 1 - round;
stack[stackidx].goodi = gi + round;
stack[stackidx].score = score_off;
++stackidx;
}
}
}
if (score + SCORE_SWAP < minscore) {
// If swapping two characters makes a match then the
// substitution is more expensive, thus there is no need to
// try both.
if (gc == wbadword[bi + 1] && bc == wgoodword[gi + 1]) {
// Swap two characters, that is: skip them.
gi += 2;
bi += 2;
score += SCORE_SWAP;
continue;
}
}
// Substitute one character for another which is the same
// thing as deleting a character from both goodword and badword.
// Use a better score when there is only a case difference.
if (SPELL_TOFOLD(bc) == SPELL_TOFOLD(gc))
score += SCORE_ICASE;
else {
// For a similar character use SCORE_SIMILAR.
if (slang != NULL
&& slang->sl_has_map
&& similar_chars(slang, gc, bc))
score += SCORE_SIMILAR;
else
score += SCORE_SUBST;
}
if (score < minscore) {
// Do the substitution.
++gi;
++bi;
continue;
}
}
pop:
// Get here to try the next alternative, pop it from the stack.
if (stackidx == 0) // stack is empty, finished
break;
// pop an item from the stack
--stackidx;
gi = stack[stackidx].goodi;
bi = stack[stackidx].badi;
score = stack[stackidx].score;
}
// When the score goes over "limit" it may actually be much higher.
// Return a very large number to avoid going below the limit when giving a
// bonus.
if (minscore > limit)
return SCORE_MAXMAX;
return minscore;
}
// ":spellinfo"
void ex_spellinfo(exarg_T *eap)
{
if (no_spell_checking(curwin)) {
return;
}
msg_start();
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len && !got_int; lpi++) {
langp_T *const lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
msg_puts("file: ");
msg_puts((const char *)lp->lp_slang->sl_fname);
msg_putchar('\n');
const char *const p = (const char *)lp->lp_slang->sl_info;
if (p != NULL) {
msg_puts(p);
msg_putchar('\n');
}
}
msg_end();
}
#define DUMPFLAG_KEEPCASE 1 // round 2: keep-case tree
#define DUMPFLAG_COUNT 2 // include word count
#define DUMPFLAG_ICASE 4 // ignore case when finding matches
#define DUMPFLAG_ONECAP 8 // pattern starts with capital
#define DUMPFLAG_ALLCAP 16 // pattern is all capitals
// ":spelldump"
void ex_spelldump(exarg_T *eap)
{
char_u *spl;
long dummy;
if (no_spell_checking(curwin)) {
return;
}
get_option_value((char_u *)"spl", &dummy, &spl, OPT_LOCAL);
// Create a new empty buffer in a new window.
do_cmdline_cmd("new");
// enable spelling locally in the new window
set_option_value("spell", true, "", OPT_LOCAL);
set_option_value("spl", dummy, (char *)spl, OPT_LOCAL);
xfree(spl);
if (!BUFEMPTY()) {
return;
}
spell_dump_compl(NULL, 0, NULL, eap->forceit ? DUMPFLAG_COUNT : 0);
// Delete the empty line that we started with.
if (curbuf->b_ml.ml_line_count > 1) {
ml_delete(curbuf->b_ml.ml_line_count, false);
}
redraw_later(NOT_VALID);
}
// Go through all possible words and:
// 1. When "pat" is NULL: dump a list of all words in the current buffer.
// "ic" and "dir" are not used.
// 2. When "pat" is not NULL: add matching words to insert mode completion.
void
spell_dump_compl (
char_u *pat, // leading part of the word
int ic, // ignore case
int *dir, // direction for adding matches
int dumpflags_arg // DUMPFLAG_*
)
{
langp_T *lp;
slang_T *slang;
idx_T arridx[MAXWLEN];
int curi[MAXWLEN];
char_u word[MAXWLEN];
int c;
char_u *byts;
idx_T *idxs;
linenr_T lnum = 0;
int round;
int depth;
int n;
int flags;
char_u *region_names = NULL; // region names being used
bool do_region = true; // dump region names and numbers
char_u *p;
int dumpflags = dumpflags_arg;
int patlen;
// When ignoring case or when the pattern starts with capital pass this on
// to dump_word().
if (pat != NULL) {
if (ic)
dumpflags |= DUMPFLAG_ICASE;
else {
n = captype(pat, NULL);
if (n == WF_ONECAP)
dumpflags |= DUMPFLAG_ONECAP;
else if (n == WF_ALLCAP
&& (int)STRLEN(pat) > mb_ptr2len(pat)
)
dumpflags |= DUMPFLAG_ALLCAP;
}
}
// Find out if we can support regions: All languages must support the same
// regions or none at all.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
p = lp->lp_slang->sl_regions;
if (p[0] != 0) {
if (region_names == NULL) // first language with regions
region_names = p;
else if (STRCMP(region_names, p) != 0) {
do_region = false; // region names are different
break;
}
}
}
if (do_region && region_names != NULL) {
if (pat == NULL) {
vim_snprintf((char *)IObuff, IOSIZE, "/regions=%s", region_names);
ml_append(lnum++, IObuff, (colnr_T)0, false);
}
} else
do_region = false;
// Loop over all files loaded for the entries in 'spelllang'.
for (int lpi = 0; lpi < curwin->w_s->b_langp.ga_len; ++lpi) {
lp = LANGP_ENTRY(curwin->w_s->b_langp, lpi);
slang = lp->lp_slang;
if (slang->sl_fbyts == NULL) // reloading failed
continue;
if (pat == NULL) {
vim_snprintf((char *)IObuff, IOSIZE, "# file: %s", slang->sl_fname);
ml_append(lnum++, IObuff, (colnr_T)0, false);
}
// When matching with a pattern and there are no prefixes only use
// parts of the tree that match "pat".
if (pat != NULL && slang->sl_pbyts == NULL)
patlen = (int)STRLEN(pat);
else
patlen = -1;
// round 1: case-folded tree
// round 2: keep-case tree
for (round = 1; round <= 2; ++round) {
if (round == 1) {
dumpflags &= ~DUMPFLAG_KEEPCASE;
byts = slang->sl_fbyts;
idxs = slang->sl_fidxs;
} else {
dumpflags |= DUMPFLAG_KEEPCASE;
byts = slang->sl_kbyts;
idxs = slang->sl_kidxs;
}
if (byts == NULL)
continue; // array is empty
depth = 0;
arridx[0] = 0;
curi[0] = 1;
while (depth >= 0 && !got_int
&& (pat == NULL || !compl_interrupted)) {
if (curi[depth] > byts[arridx[depth]]) {
// Done all bytes at this node, go up one level.
--depth;
line_breakcheck();
ins_compl_check_keys(50, false);
} else {
// Do one more byte at this node.
n = arridx[depth] + curi[depth];
++curi[depth];
c = byts[n];
if (c == 0) {
// End of word, deal with the word.
// Don't use keep-case words in the fold-case tree,
// they will appear in the keep-case tree.
// Only use the word when the region matches.
flags = (int)idxs[n];
if ((round == 2 || (flags & WF_KEEPCAP) == 0)
&& (flags & WF_NEEDCOMP) == 0
&& (do_region
|| (flags & WF_REGION) == 0
|| (((unsigned)flags >> 16)
& lp->lp_region) != 0)) {
word[depth] = NUL;
if (!do_region)
flags &= ~WF_REGION;
// Dump the basic word if there is no prefix or
// when it's the first one.
c = (unsigned)flags >> 24;
if (c == 0 || curi[depth] == 2) {
dump_word(slang, word, pat, dir,
dumpflags, flags, lnum);
if (pat == NULL)
++lnum;
}
// Apply the prefix, if there is one.
if (c != 0)
lnum = dump_prefixes(slang, word, pat, dir,
dumpflags, flags, lnum);
}
} else {
// Normal char, go one level deeper.
word[depth++] = c;
arridx[depth] = idxs[n];
curi[depth] = 1;
// Check if this characters matches with the pattern.
// If not skip the whole tree below it.
// Always ignore case here, dump_word() will check
// proper case later. This isn't exactly right when
// length changes for multi-byte characters with
// ignore case...
assert(depth >= 0);
if (depth <= patlen
&& mb_strnicmp(word, pat, (size_t)depth) != 0)
--depth;
}
}
}
}
}
}
// Dumps one word: apply case modifications and append a line to the buffer.
// When "lnum" is zero add insert mode completion.
static void dump_word(slang_T *slang, char_u *word, char_u *pat, int *dir, int dumpflags, int wordflags, linenr_T lnum)
{
bool keepcap = false;
char_u *p;
char_u *tw;
char_u cword[MAXWLEN];
char_u badword[MAXWLEN + 10];
int i;
int flags = wordflags;
if (dumpflags & DUMPFLAG_ONECAP)
flags |= WF_ONECAP;
if (dumpflags & DUMPFLAG_ALLCAP)
flags |= WF_ALLCAP;
if ((dumpflags & DUMPFLAG_KEEPCASE) == 0 && (flags & WF_CAPMASK) != 0) {
// Need to fix case according to "flags".
make_case_word(word, cword, flags);
p = cword;
} else {
p = word;
if ((dumpflags & DUMPFLAG_KEEPCASE)
&& ((captype(word, NULL) & WF_KEEPCAP) == 0
|| (flags & WF_FIXCAP) != 0))
keepcap = true;
}
tw = p;
if (pat == NULL) {
// Add flags and regions after a slash.
if ((flags & (WF_BANNED | WF_RARE | WF_REGION)) || keepcap) {
STRCPY(badword, p);
STRCAT(badword, "/");
if (keepcap) {
STRCAT(badword, "=");
}
if (flags & WF_BANNED) {
STRCAT(badword, "!");
} else if (flags & WF_RARE) {
STRCAT(badword, "?");
}
if (flags & WF_REGION) {
for (i = 0; i < 7; i++) {
if (flags & (0x10000 << i)) {
const size_t badword_len = STRLEN(badword);
snprintf((char *)badword + badword_len,
sizeof(badword) - badword_len,
"%d", i + 1);
}
}
}
p = badword;
}
if (dumpflags & DUMPFLAG_COUNT) {
hashitem_T *hi;
// Include the word count for ":spelldump!".
hi = hash_find(&slang->sl_wordcount, tw);
if (!HASHITEM_EMPTY(hi)) {
vim_snprintf((char *)IObuff, IOSIZE, "%s\t%d",
tw, HI2WC(hi)->wc_count);
p = IObuff;
}
}
ml_append(lnum, p, (colnr_T)0, false);
} else if (((dumpflags & DUMPFLAG_ICASE)
? mb_strnicmp(p, pat, STRLEN(pat)) == 0
: STRNCMP(p, pat, STRLEN(pat)) == 0)
&& ins_compl_add_infercase(p, (int)STRLEN(p),
p_ic, NULL, *dir, false) == OK) {
// if dir was BACKWARD then honor it just once
*dir = FORWARD;
}
}
// For ":spelldump": Find matching prefixes for "word". Prepend each to
// "word" and append a line to the buffer.
// When "lnum" is zero add insert mode completion.
// Return the updated line number.
static linenr_T
dump_prefixes (
slang_T *slang,
char_u *word, // case-folded word
char_u *pat,
int *dir,
int dumpflags,
int flags, // flags with prefix ID
linenr_T startlnum
)
{
idx_T arridx[MAXWLEN];
int curi[MAXWLEN];
char_u prefix[MAXWLEN];
char_u word_up[MAXWLEN];
bool has_word_up = false;
int c;
char_u *byts;
idx_T *idxs;
linenr_T lnum = startlnum;
int depth;
int n;
int len;
int i;
// If the word starts with a lower-case letter make the word with an
// upper-case letter in word_up[].
c = PTR2CHAR(word);
if (SPELL_TOUPPER(c) != c) {
onecap_copy(word, word_up, true);
has_word_up = true;
}
byts = slang->sl_pbyts;
idxs = slang->sl_pidxs;
if (byts != NULL) { // array not is empty
// Loop over all prefixes, building them byte-by-byte in prefix[].
// When at the end of a prefix check that it supports "flags".
depth = 0;
arridx[0] = 0;
curi[0] = 1;
while (depth >= 0 && !got_int) {
n = arridx[depth];
len = byts[n];
if (curi[depth] > len) {
// Done all bytes at this node, go up one level.
--depth;
line_breakcheck();
} else {
// Do one more byte at this node.
n += curi[depth];
++curi[depth];
c = byts[n];
if (c == 0) {
// End of prefix, find out how many IDs there are.
for (i = 1; i < len; ++i)
if (byts[n + i] != 0)
break;
curi[depth] += i - 1;
c = valid_word_prefix(i, n, flags, word, slang, false);
if (c != 0) {
STRLCPY(prefix + depth, word, MAXWLEN - depth);
dump_word(slang, prefix, pat, dir, dumpflags,
(c & WF_RAREPFX) ? (flags | WF_RARE)
: flags, lnum);
if (lnum != 0)
++lnum;
}
// Check for prefix that matches the word when the
// first letter is upper-case, but only if the prefix has
// a condition.
if (has_word_up) {
c = valid_word_prefix(i, n, flags, word_up, slang,
true);
if (c != 0) {
STRLCPY(prefix + depth, word_up, MAXWLEN - depth);
dump_word(slang, prefix, pat, dir, dumpflags,
(c & WF_RAREPFX) ? (flags | WF_RARE)
: flags, lnum);
if (lnum != 0)
++lnum;
}
}
} else {
// Normal char, go one level deeper.
prefix[depth++] = c;
arridx[depth] = idxs[n];
curi[depth] = 1;
}
}
}
}
return lnum;
}
// Move "p" to the end of word "start".
// Uses the spell-checking word characters.
char_u *spell_to_word_end(char_u *start, win_T *win)
{
char_u *p = start;
while (*p != NUL && spell_iswordp(p, win)) {
MB_PTR_ADV(p);
}
return p;
}
// For Insert mode completion CTRL-X s:
// Find start of the word in front of column "startcol".
// We don't check if it is badly spelled, with completion we can only change
// the word in front of the cursor.
// Returns the column number of the word.
int spell_word_start(int startcol)
{
char_u *line;
char_u *p;
int col = 0;
if (no_spell_checking(curwin)) {
return startcol;
}
// Find a word character before "startcol".
line = get_cursor_line_ptr();
for (p = line + startcol; p > line; ) {
MB_PTR_BACK(line, p);
if (spell_iswordp_nmw(p, curwin)) {
break;
}
}
// Go back to start of the word.
while (p > line) {
col = (int)(p - line);
MB_PTR_BACK(line, p);
if (!spell_iswordp(p, curwin)) {
break;
}
col = 0;
}
return col;
}
// Need to check for 'spellcapcheck' now, the word is removed before
// expand_spelling() is called. Therefore the ugly global variable.
static bool spell_expand_need_cap;
void spell_expand_check_cap(colnr_T col)
{
spell_expand_need_cap = check_need_cap(curwin->w_cursor.lnum, col);
}
// Get list of spelling suggestions.
// Used for Insert mode completion CTRL-X ?.
// Returns the number of matches. The matches are in "matchp[]", array of
// allocated strings.
int expand_spelling(linenr_T lnum, char_u *pat, char_u ***matchp)
{
garray_T ga;
spell_suggest_list(&ga, pat, 100, spell_expand_need_cap, true);
*matchp = ga.ga_data;
return ga.ga_len;
}