neovim/src/nvim/regexp_nfa.c

6763 lines
186 KiB
C

// This is an open source non-commercial project. Dear PVS-Studio, please check
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
/*
* NFA regular expression implementation.
*
* This file is included in "regexp.c".
*/
#include <assert.h>
#include <inttypes.h>
#include <stdbool.h>
#include <limits.h>
#include "nvim/ascii.h"
#include "nvim/garray.h"
/*
* Logging of NFA engine.
*
* The NFA engine can write four log files:
* - Error log: Contains NFA engine's fatal errors.
* - Dump log: Contains compiled NFA state machine's information.
* - Run log: Contains information of matching procedure.
* - Debug log: Contains detailed information of matching procedure. Can be
* disabled by undefining NFA_REGEXP_DEBUG_LOG.
* The first one can also be used without debug mode.
* The last three are enabled when compiled as debug mode and individually
* disabled by commenting them out.
* The log files can get quite big!
* Do disable all of this when compiling Vim for debugging, undefine REGEXP_DEBUG in
* regexp.c
*/
#ifdef REGEXP_DEBUG
# define NFA_REGEXP_ERROR_LOG "nfa_regexp_error.log"
# define NFA_REGEXP_DUMP_LOG "nfa_regexp_dump.log"
# define NFA_REGEXP_RUN_LOG "nfa_regexp_run.log"
# define NFA_REGEXP_DEBUG_LOG "nfa_regexp_debug.log"
#endif
/* Added to NFA_ANY - NFA_NUPPER_IC to include a NL. */
#define NFA_ADD_NL 31
enum {
NFA_SPLIT = -1024,
NFA_MATCH,
NFA_EMPTY, /* matches 0-length */
NFA_START_COLL, /* [abc] start */
NFA_END_COLL, /* [abc] end */
NFA_START_NEG_COLL, /* [^abc] start */
NFA_END_NEG_COLL, /* [^abc] end (postfix only) */
NFA_RANGE, /* range of the two previous items
* (postfix only) */
NFA_RANGE_MIN, /* low end of a range */
NFA_RANGE_MAX, /* high end of a range */
NFA_CONCAT, // concatenate two previous items (postfix
// only)
NFA_OR, // \| (postfix only)
NFA_STAR, // greedy * (postfix only)
NFA_STAR_NONGREEDY, // non-greedy * (postfix only)
NFA_QUEST, // greedy \? (postfix only)
NFA_QUEST_NONGREEDY, // non-greedy \? (postfix only)
NFA_BOL, /* ^ Begin line */
NFA_EOL, /* $ End line */
NFA_BOW, /* \< Begin word */
NFA_EOW, /* \> End word */
NFA_BOF, /* \%^ Begin file */
NFA_EOF, /* \%$ End file */
NFA_NEWL,
NFA_ZSTART, /* Used for \zs */
NFA_ZEND, /* Used for \ze */
NFA_NOPEN, /* Start of subexpression marked with \%( */
NFA_NCLOSE, /* End of subexpr. marked with \%( ... \) */
NFA_START_INVISIBLE,
NFA_START_INVISIBLE_FIRST,
NFA_START_INVISIBLE_NEG,
NFA_START_INVISIBLE_NEG_FIRST,
NFA_START_INVISIBLE_BEFORE,
NFA_START_INVISIBLE_BEFORE_FIRST,
NFA_START_INVISIBLE_BEFORE_NEG,
NFA_START_INVISIBLE_BEFORE_NEG_FIRST,
NFA_START_PATTERN,
NFA_END_INVISIBLE,
NFA_END_INVISIBLE_NEG,
NFA_END_PATTERN,
NFA_COMPOSING, /* Next nodes in NFA are part of the
composing multibyte char */
NFA_END_COMPOSING, /* End of a composing char in the NFA */
NFA_ANY_COMPOSING, // \%C: Any composing characters.
NFA_OPT_CHARS, /* \%[abc] */
/* The following are used only in the postfix form, not in the NFA */
NFA_PREV_ATOM_NO_WIDTH, /* Used for \@= */
NFA_PREV_ATOM_NO_WIDTH_NEG, /* Used for \@! */
NFA_PREV_ATOM_JUST_BEFORE, /* Used for \@<= */
NFA_PREV_ATOM_JUST_BEFORE_NEG, /* Used for \@<! */
NFA_PREV_ATOM_LIKE_PATTERN, /* Used for \@> */
NFA_BACKREF1, /* \1 */
NFA_BACKREF2, /* \2 */
NFA_BACKREF3, /* \3 */
NFA_BACKREF4, /* \4 */
NFA_BACKREF5, /* \5 */
NFA_BACKREF6, /* \6 */
NFA_BACKREF7, /* \7 */
NFA_BACKREF8, /* \8 */
NFA_BACKREF9, /* \9 */
NFA_ZREF1, /* \z1 */
NFA_ZREF2, /* \z2 */
NFA_ZREF3, /* \z3 */
NFA_ZREF4, /* \z4 */
NFA_ZREF5, /* \z5 */
NFA_ZREF6, /* \z6 */
NFA_ZREF7, /* \z7 */
NFA_ZREF8, /* \z8 */
NFA_ZREF9, /* \z9 */
NFA_SKIP, /* Skip characters */
NFA_MOPEN,
NFA_MOPEN1,
NFA_MOPEN2,
NFA_MOPEN3,
NFA_MOPEN4,
NFA_MOPEN5,
NFA_MOPEN6,
NFA_MOPEN7,
NFA_MOPEN8,
NFA_MOPEN9,
NFA_MCLOSE,
NFA_MCLOSE1,
NFA_MCLOSE2,
NFA_MCLOSE3,
NFA_MCLOSE4,
NFA_MCLOSE5,
NFA_MCLOSE6,
NFA_MCLOSE7,
NFA_MCLOSE8,
NFA_MCLOSE9,
NFA_ZOPEN,
NFA_ZOPEN1,
NFA_ZOPEN2,
NFA_ZOPEN3,
NFA_ZOPEN4,
NFA_ZOPEN5,
NFA_ZOPEN6,
NFA_ZOPEN7,
NFA_ZOPEN8,
NFA_ZOPEN9,
NFA_ZCLOSE,
NFA_ZCLOSE1,
NFA_ZCLOSE2,
NFA_ZCLOSE3,
NFA_ZCLOSE4,
NFA_ZCLOSE5,
NFA_ZCLOSE6,
NFA_ZCLOSE7,
NFA_ZCLOSE8,
NFA_ZCLOSE9,
/* NFA_FIRST_NL */
NFA_ANY, /* Match any one character. */
NFA_IDENT, /* Match identifier char */
NFA_SIDENT, /* Match identifier char but no digit */
NFA_KWORD, /* Match keyword char */
NFA_SKWORD, /* Match word char but no digit */
NFA_FNAME, /* Match file name char */
NFA_SFNAME, /* Match file name char but no digit */
NFA_PRINT, /* Match printable char */
NFA_SPRINT, /* Match printable char but no digit */
NFA_WHITE, /* Match whitespace char */
NFA_NWHITE, /* Match non-whitespace char */
NFA_DIGIT, /* Match digit char */
NFA_NDIGIT, /* Match non-digit char */
NFA_HEX, /* Match hex char */
NFA_NHEX, /* Match non-hex char */
NFA_OCTAL, /* Match octal char */
NFA_NOCTAL, /* Match non-octal char */
NFA_WORD, /* Match word char */
NFA_NWORD, /* Match non-word char */
NFA_HEAD, /* Match head char */
NFA_NHEAD, /* Match non-head char */
NFA_ALPHA, /* Match alpha char */
NFA_NALPHA, /* Match non-alpha char */
NFA_LOWER, /* Match lowercase char */
NFA_NLOWER, /* Match non-lowercase char */
NFA_UPPER, /* Match uppercase char */
NFA_NUPPER, /* Match non-uppercase char */
NFA_LOWER_IC, /* Match [a-z] */
NFA_NLOWER_IC, /* Match [^a-z] */
NFA_UPPER_IC, /* Match [A-Z] */
NFA_NUPPER_IC, /* Match [^A-Z] */
NFA_FIRST_NL = NFA_ANY + NFA_ADD_NL,
NFA_LAST_NL = NFA_NUPPER_IC + NFA_ADD_NL,
NFA_CURSOR, /* Match cursor pos */
NFA_LNUM, /* Match line number */
NFA_LNUM_GT, /* Match > line number */
NFA_LNUM_LT, /* Match < line number */
NFA_COL, /* Match cursor column */
NFA_COL_GT, /* Match > cursor column */
NFA_COL_LT, /* Match < cursor column */
NFA_VCOL, /* Match cursor virtual column */
NFA_VCOL_GT, /* Match > cursor virtual column */
NFA_VCOL_LT, /* Match < cursor virtual column */
NFA_MARK, /* Match mark */
NFA_MARK_GT, /* Match > mark */
NFA_MARK_LT, /* Match < mark */
NFA_VISUAL, /* Match Visual area */
/* Character classes [:alnum:] etc */
NFA_CLASS_ALNUM,
NFA_CLASS_ALPHA,
NFA_CLASS_BLANK,
NFA_CLASS_CNTRL,
NFA_CLASS_DIGIT,
NFA_CLASS_GRAPH,
NFA_CLASS_LOWER,
NFA_CLASS_PRINT,
NFA_CLASS_PUNCT,
NFA_CLASS_SPACE,
NFA_CLASS_UPPER,
NFA_CLASS_XDIGIT,
NFA_CLASS_TAB,
NFA_CLASS_RETURN,
NFA_CLASS_BACKSPACE,
NFA_CLASS_ESCAPE
};
/* Keep in sync with classchars. */
static int nfa_classcodes[] = {
NFA_ANY, NFA_IDENT, NFA_SIDENT, NFA_KWORD,NFA_SKWORD,
NFA_FNAME, NFA_SFNAME, NFA_PRINT, NFA_SPRINT,
NFA_WHITE, NFA_NWHITE, NFA_DIGIT, NFA_NDIGIT,
NFA_HEX, NFA_NHEX, NFA_OCTAL, NFA_NOCTAL,
NFA_WORD, NFA_NWORD, NFA_HEAD, NFA_NHEAD,
NFA_ALPHA, NFA_NALPHA, NFA_LOWER, NFA_NLOWER,
NFA_UPPER, NFA_NUPPER
};
static char_u e_nul_found[] = N_(
"E865: (NFA) Regexp end encountered prematurely");
static char_u e_misplaced[] = N_("E866: (NFA regexp) Misplaced %c");
static char_u e_ill_char_class[] = N_(
"E877: (NFA regexp) Invalid character class: %" PRId64);
static char_u e_value_too_large[] = N_("E951: \\% value too large");
/* Since the out pointers in the list are always
* uninitialized, we use the pointers themselves
* as storage for the Ptrlists. */
typedef union Ptrlist Ptrlist;
union Ptrlist {
Ptrlist *next;
nfa_state_T *s;
};
struct Frag {
nfa_state_T *start;
Ptrlist *out;
};
typedef struct Frag Frag_T;
typedef struct {
int in_use; /* number of subexpr with useful info */
/* When REG_MULTI is TRUE list.multi is used, otherwise list.line. */
union {
struct multipos {
linenr_T start_lnum;
linenr_T end_lnum;
colnr_T start_col;
colnr_T end_col;
} multi[NSUBEXP];
struct linepos {
char_u *start;
char_u *end;
} line[NSUBEXP];
} list;
} regsub_T;
typedef struct {
regsub_T norm; /* \( .. \) matches */
regsub_T synt; /* \z( .. \) matches */
} regsubs_T;
/* nfa_pim_T stores a Postponed Invisible Match. */
typedef struct nfa_pim_S nfa_pim_T;
struct nfa_pim_S {
int result; /* NFA_PIM_*, see below */
nfa_state_T *state; /* the invisible match start state */
regsubs_T subs; /* submatch info, only party used */
union {
lpos_T pos;
char_u *ptr;
} end; /* where the match must end */
};
/* nfa_thread_T contains execution information of a NFA state */
typedef struct {
nfa_state_T *state;
int count;
nfa_pim_T pim; /* if pim.result != NFA_PIM_UNUSED: postponed
* invisible match */
regsubs_T subs; /* submatch info, only party used */
} nfa_thread_T;
/* nfa_list_T contains the alternative NFA execution states. */
typedef struct {
nfa_thread_T *t; /* allocated array of states */
int n; /* nr of states currently in "t" */
int len; /* max nr of states in "t" */
int id; /* ID of the list */
int has_pim; /* TRUE when any state has a PIM */
} nfa_list_T;
/// re_flags passed to nfa_regcomp().
static int nfa_re_flags;
/* NFA regexp \ze operator encountered. */
static int nfa_has_zend;
/* NFA regexp \1 .. \9 encountered. */
static int nfa_has_backref;
/* NFA regexp has \z( ), set zsubexpr. */
static int nfa_has_zsubexpr;
/* Number of sub expressions actually being used during execution. 1 if only
* the whole match (subexpr 0) is used. */
static int nfa_nsubexpr;
static int *post_start; /* holds the postfix form of r.e. */
static int *post_end;
static int *post_ptr;
static int nstate; /* Number of states in the NFA. Also used when
* executing. */
static int istate; /* Index in the state vector, used in alloc_state() */
/* If not NULL match must end at this position */
static save_se_T *nfa_endp = NULL;
/* listid is global, so that it increases on recursive calls to
* nfa_regmatch(), which means we don't have to clear the lastlist field of
* all the states. */
static int nfa_listid;
static int nfa_alt_listid;
/* 0 for first call to nfa_regmatch(), 1 for recursive call. */
static int nfa_ll_index = 0;
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "regexp_nfa.c.generated.h"
#endif
// Helper functions used when doing re2post() ... regatom() parsing
#define EMIT(c) \
do { \
if (post_ptr >= post_end) { \
realloc_post_list(); \
} \
*post_ptr++ = c; \
} while (0)
/*
* Initialize internal variables before NFA compilation.
*/
static void
nfa_regcomp_start (
char_u *expr,
int re_flags /* see vim_regcomp() */
)
{
size_t postfix_size;
size_t nstate_max;
nstate = 0;
istate = 0;
/* A reasonable estimation for maximum size */
nstate_max = (STRLEN(expr) + 1) * 25;
/* Some items blow up in size, such as [A-z]. Add more space for that.
* When it is still not enough realloc_post_list() will be used. */
nstate_max += 1000;
/* Size for postfix representation of expr. */
postfix_size = sizeof(int) * nstate_max;
post_start = (int *)xmalloc(postfix_size);
post_ptr = post_start;
post_end = post_start + nstate_max;
nfa_has_zend = FALSE;
nfa_has_backref = FALSE;
/* shared with BT engine */
regcomp_start(expr, re_flags);
}
/*
* Figure out if the NFA state list starts with an anchor, must match at start
* of the line.
*/
static int nfa_get_reganch(nfa_state_T *start, int depth)
{
nfa_state_T *p = start;
if (depth > 4)
return 0;
while (p != NULL) {
switch (p->c) {
case NFA_BOL:
case NFA_BOF:
return 1; /* yes! */
case NFA_ZSTART:
case NFA_ZEND:
case NFA_CURSOR:
case NFA_VISUAL:
case NFA_MOPEN:
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
case NFA_NOPEN:
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
p = p->out;
break;
case NFA_SPLIT:
return nfa_get_reganch(p->out, depth + 1)
&& nfa_get_reganch(p->out1, depth + 1);
default:
return 0; /* noooo */
}
}
return 0;
}
/*
* Figure out if the NFA state list starts with a character which must match
* at start of the match.
*/
static int nfa_get_regstart(nfa_state_T *start, int depth)
{
nfa_state_T *p = start;
if (depth > 4)
return 0;
while (p != NULL) {
switch (p->c) {
/* all kinds of zero-width matches */
case NFA_BOL:
case NFA_BOF:
case NFA_BOW:
case NFA_EOW:
case NFA_ZSTART:
case NFA_ZEND:
case NFA_CURSOR:
case NFA_VISUAL:
case NFA_LNUM:
case NFA_LNUM_GT:
case NFA_LNUM_LT:
case NFA_COL:
case NFA_COL_GT:
case NFA_COL_LT:
case NFA_VCOL:
case NFA_VCOL_GT:
case NFA_VCOL_LT:
case NFA_MARK:
case NFA_MARK_GT:
case NFA_MARK_LT:
case NFA_MOPEN:
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
case NFA_NOPEN:
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
p = p->out;
break;
case NFA_SPLIT:
{
int c1 = nfa_get_regstart(p->out, depth + 1);
int c2 = nfa_get_regstart(p->out1, depth + 1);
if (c1 == c2)
return c1; /* yes! */
return 0;
}
default:
if (p->c > 0)
return p->c; /* yes! */
return 0;
}
}
return 0;
}
/*
* Figure out if the NFA state list contains just literal text and nothing
* else. If so return a string in allocated memory with what must match after
* regstart. Otherwise return NULL.
*/
static char_u *nfa_get_match_text(nfa_state_T *start)
{
nfa_state_T *p = start;
int len = 0;
char_u *ret;
char_u *s;
if (p->c != NFA_MOPEN)
return NULL; /* just in case */
p = p->out;
while (p->c > 0) {
len += MB_CHAR2LEN(p->c);
p = p->out;
}
if (p->c != NFA_MCLOSE || p->out->c != NFA_MATCH)
return NULL;
ret = xmalloc(len);
p = start->out->out; /* skip first char, it goes into regstart */
s = ret;
while (p->c > 0) {
s += utf_char2bytes(p->c, s);
p = p->out;
}
*s = NUL;
return ret;
}
/*
* Allocate more space for post_start. Called when
* running above the estimated number of states.
*/
static void realloc_post_list(void)
{
size_t new_max = (post_end - post_start) + 1000;
int *new_start = xrealloc(post_start, new_max * sizeof(int));
post_ptr = new_start + (post_ptr - post_start);
post_end = new_start + new_max;
post_start = new_start;
}
/*
* Search between "start" and "end" and try to recognize a
* character class in expanded form. For example [0-9].
* On success, return the id the character class to be emitted.
* On failure, return 0 (=FAIL)
* Start points to the first char of the range, while end should point
* to the closing brace.
* Keep in mind that 'ignorecase' applies at execution time, thus [a-z] may
* need to be interpreted as [a-zA-Z].
*/
static int nfa_recognize_char_class(char_u *start, char_u *end, int extra_newl)
{
# define CLASS_not 0x80
# define CLASS_af 0x40
# define CLASS_AF 0x20
# define CLASS_az 0x10
# define CLASS_AZ 0x08
# define CLASS_o7 0x04
# define CLASS_o9 0x02
# define CLASS_underscore 0x01
int newl = FALSE;
char_u *p;
int config = 0;
if (extra_newl == TRUE)
newl = TRUE;
if (*end != ']')
return FAIL;
p = start;
if (*p == '^') {
config |= CLASS_not;
p++;
}
while (p < end) {
if (p + 2 < end && *(p + 1) == '-') {
switch (*p) {
case '0':
if (*(p + 2) == '9') {
config |= CLASS_o9;
break;
} else if (*(p + 2) == '7') {
config |= CLASS_o7;
break;
}
return FAIL;
case 'a':
if (*(p + 2) == 'z') {
config |= CLASS_az;
break;
} else if (*(p + 2) == 'f') {
config |= CLASS_af;
break;
}
return FAIL;
case 'A':
if (*(p + 2) == 'Z') {
config |= CLASS_AZ;
break;
} else if (*(p + 2) == 'F') {
config |= CLASS_AF;
break;
}
return FAIL;
default:
return FAIL;
}
p += 3;
} else if (p + 1 < end && *p == '\\' && *(p + 1) == 'n') {
newl = TRUE;
p += 2;
} else if (*p == '_') {
config |= CLASS_underscore;
p++;
} else if (*p == '\n') {
newl = TRUE;
p++;
} else
return FAIL;
} /* while (p < end) */
if (p != end)
return FAIL;
if (newl == TRUE)
extra_newl = NFA_ADD_NL;
switch (config) {
case CLASS_o9:
return extra_newl + NFA_DIGIT;
case CLASS_not | CLASS_o9:
return extra_newl + NFA_NDIGIT;
case CLASS_af | CLASS_AF | CLASS_o9:
return extra_newl + NFA_HEX;
case CLASS_not | CLASS_af | CLASS_AF | CLASS_o9:
return extra_newl + NFA_NHEX;
case CLASS_o7:
return extra_newl + NFA_OCTAL;
case CLASS_not | CLASS_o7:
return extra_newl + NFA_NOCTAL;
case CLASS_az | CLASS_AZ | CLASS_o9 | CLASS_underscore:
return extra_newl + NFA_WORD;
case CLASS_not | CLASS_az | CLASS_AZ | CLASS_o9 | CLASS_underscore:
return extra_newl + NFA_NWORD;
case CLASS_az | CLASS_AZ | CLASS_underscore:
return extra_newl + NFA_HEAD;
case CLASS_not | CLASS_az | CLASS_AZ | CLASS_underscore:
return extra_newl + NFA_NHEAD;
case CLASS_az | CLASS_AZ:
return extra_newl + NFA_ALPHA;
case CLASS_not | CLASS_az | CLASS_AZ:
return extra_newl + NFA_NALPHA;
case CLASS_az:
return extra_newl + NFA_LOWER_IC;
case CLASS_not | CLASS_az:
return extra_newl + NFA_NLOWER_IC;
case CLASS_AZ:
return extra_newl + NFA_UPPER_IC;
case CLASS_not | CLASS_AZ:
return extra_newl + NFA_NUPPER_IC;
}
return FAIL;
}
/*
* Produce the bytes for equivalence class "c".
* Currently only handles latin1, latin9 and utf-8.
* Emits bytes in postfix notation: 'a,b,NFA_OR,c,NFA_OR' is
* equivalent to 'a OR b OR c'
*
* NOTE! When changing this function, also update reg_equi_class()
*/
static void nfa_emit_equi_class(int c)
{
#define EMIT2(c) EMIT(c); EMIT(NFA_CONCAT);
#define EMITMBC(c) EMIT(c); EMIT(NFA_CONCAT);
if (enc_utf8 || STRCMP(p_enc, "latin1") == 0
|| STRCMP(p_enc, "iso-8859-15") == 0) {
#define A_grave 0xc0
#define A_acute 0xc1
#define A_circumflex 0xc2
#define A_virguilla 0xc3
#define A_diaeresis 0xc4
#define A_ring 0xc5
#define C_cedilla 0xc7
#define E_grave 0xc8
#define E_acute 0xc9
#define E_circumflex 0xca
#define E_diaeresis 0xcb
#define I_grave 0xcc
#define I_acute 0xcd
#define I_circumflex 0xce
#define I_diaeresis 0xcf
#define N_virguilla 0xd1
#define O_grave 0xd2
#define O_acute 0xd3
#define O_circumflex 0xd4
#define O_virguilla 0xd5
#define O_diaeresis 0xd6
#define O_slash 0xd8
#define U_grave 0xd9
#define U_acute 0xda
#define U_circumflex 0xdb
#define U_diaeresis 0xdc
#define Y_acute 0xdd
#define a_grave 0xe0
#define a_acute 0xe1
#define a_circumflex 0xe2
#define a_virguilla 0xe3
#define a_diaeresis 0xe4
#define a_ring 0xe5
#define c_cedilla 0xe7
#define e_grave 0xe8
#define e_acute 0xe9
#define e_circumflex 0xea
#define e_diaeresis 0xeb
#define i_grave 0xec
#define i_acute 0xed
#define i_circumflex 0xee
#define i_diaeresis 0xef
#define n_virguilla 0xf1
#define o_grave 0xf2
#define o_acute 0xf3
#define o_circumflex 0xf4
#define o_virguilla 0xf5
#define o_diaeresis 0xf6
#define o_slash 0xf8
#define u_grave 0xf9
#define u_acute 0xfa
#define u_circumflex 0xfb
#define u_diaeresis 0xfc
#define y_acute 0xfd
#define y_diaeresis 0xff
switch (c) {
case 'A': case A_grave: case A_acute: case A_circumflex:
case A_virguilla: case A_diaeresis: case A_ring:
CASEMBC(0x100) CASEMBC(0x102) CASEMBC(0x104)
CASEMBC(0x1cd) CASEMBC(0x1de) CASEMBC(0x1e0)
CASEMBC(0x1ea2)
EMIT2('A'); EMIT2(A_grave); EMIT2(A_acute);
EMIT2(A_circumflex); EMIT2(A_virguilla);
EMIT2(A_diaeresis); EMIT2(A_ring);
EMITMBC(0x100) EMITMBC(0x102) EMITMBC(0x104)
EMITMBC(0x1cd) EMITMBC(0x1de) EMITMBC(0x1e0)
EMITMBC(0x1ea2)
return;
case 'B': CASEMBC(0x1e02) CASEMBC(0x1e06)
EMIT2('B'); EMITMBC(0x1e02) EMITMBC(0x1e06)
return;
case 'C': case C_cedilla: CASEMBC(0x106) CASEMBC(0x108) CASEMBC(0x10a)
CASEMBC(0x10c)
EMIT2('C'); EMIT2(C_cedilla); EMITMBC(0x106) EMITMBC(0x108)
EMITMBC(0x10a) EMITMBC(0x10c)
return;
case 'D': CASEMBC(0x10e) CASEMBC(0x110) CASEMBC(0x1e0a)
CASEMBC(0x1e0e) CASEMBC(0x1e10)
EMIT2('D'); EMITMBC(0x10e) EMITMBC(0x110) EMITMBC(0x1e0a)
EMITMBC(0x1e0e) EMITMBC(0x1e10)
return;
case 'E': case E_grave: case E_acute: case E_circumflex:
case E_diaeresis: CASEMBC(0x112) CASEMBC(0x114)
CASEMBC(0x116) CASEMBC(0x118) CASEMBC(0x11a)
CASEMBC(0x1eba) CASEMBC(0x1ebc)
EMIT2('E'); EMIT2(E_grave); EMIT2(E_acute);
EMIT2(E_circumflex); EMIT2(E_diaeresis);
EMITMBC(0x112) EMITMBC(0x114) EMITMBC(0x116)
EMITMBC(0x118) EMITMBC(0x11a) EMITMBC(0x1eba)
EMITMBC(0x1ebc)
return;
case 'F': CASEMBC(0x1e1e)
EMIT2('F'); EMITMBC(0x1e1e)
return;
case 'G': CASEMBC(0x11c) CASEMBC(0x11e) CASEMBC(0x120)
CASEMBC(0x122) CASEMBC(0x1e4) CASEMBC(0x1e6)
CASEMBC(0x1f4) CASEMBC(0x1e20)
EMIT2('G'); EMITMBC(0x11c) EMITMBC(0x11e) EMITMBC(0x120)
EMITMBC(0x122) EMITMBC(0x1e4) EMITMBC(0x1e6)
EMITMBC(0x1f4) EMITMBC(0x1e20)
return;
case 'H': CASEMBC(0x124) CASEMBC(0x126) CASEMBC(0x1e22)
CASEMBC(0x1e26) CASEMBC(0x1e28)
EMIT2('H'); EMITMBC(0x124) EMITMBC(0x126) EMITMBC(0x1e22)
EMITMBC(0x1e26) EMITMBC(0x1e28)
return;
case 'I': case I_grave: case I_acute: case I_circumflex:
case I_diaeresis: CASEMBC(0x128) CASEMBC(0x12a)
CASEMBC(0x12c) CASEMBC(0x12e) CASEMBC(0x130)
CASEMBC(0x1cf) CASEMBC(0x1ec8)
EMIT2('I'); EMIT2(I_grave); EMIT2(I_acute);
EMIT2(I_circumflex); EMIT2(I_diaeresis);
EMITMBC(0x128) EMITMBC(0x12a)
EMITMBC(0x12c) EMITMBC(0x12e) EMITMBC(0x130)
EMITMBC(0x1cf) EMITMBC(0x1ec8)
return;
case 'J': CASEMBC(0x134)
EMIT2('J'); EMITMBC(0x134)
return;
case 'K': CASEMBC(0x136) CASEMBC(0x1e8) CASEMBC(0x1e30)
CASEMBC(0x1e34)
EMIT2('K'); EMITMBC(0x136) EMITMBC(0x1e8) EMITMBC(0x1e30)
EMITMBC(0x1e34)
return;
case 'L': CASEMBC(0x139) CASEMBC(0x13b) CASEMBC(0x13d)
CASEMBC(0x13f) CASEMBC(0x141) CASEMBC(0x1e3a)
EMIT2('L'); EMITMBC(0x139) EMITMBC(0x13b) EMITMBC(0x13d)
EMITMBC(0x13f) EMITMBC(0x141) EMITMBC(0x1e3a)
return;
case 'M': CASEMBC(0x1e3e) CASEMBC(0x1e40)
EMIT2('M'); EMITMBC(0x1e3e) EMITMBC(0x1e40)
return;
case 'N': case N_virguilla: CASEMBC(0x143) CASEMBC(0x145)
CASEMBC(0x147) CASEMBC(0x1e44) CASEMBC(0x1e48)
EMIT2('N'); EMIT2(N_virguilla);
EMITMBC(0x143) EMITMBC(0x145)
EMITMBC(0x147) EMITMBC(0x1e44) EMITMBC(0x1e48)
return;
case 'O': case O_grave: case O_acute: case O_circumflex:
case O_virguilla: case O_diaeresis: case O_slash:
CASEMBC(0x14c) CASEMBC(0x14e) CASEMBC(0x150)
CASEMBC(0x1a0) CASEMBC(0x1d1) CASEMBC(0x1ea)
CASEMBC(0x1ec) CASEMBC(0x1ece)
EMIT2('O'); EMIT2(O_grave); EMIT2(O_acute);
EMIT2(O_circumflex); EMIT2(O_virguilla);
EMIT2(O_diaeresis); EMIT2(O_slash);
EMITMBC(0x14c) EMITMBC(0x14e) EMITMBC(0x150)
EMITMBC(0x1a0) EMITMBC(0x1d1) EMITMBC(0x1ea)
EMITMBC(0x1ec) EMITMBC(0x1ece)
return;
case 'P': case 0x1e54: case 0x1e56:
EMIT2('P'); EMITMBC(0x1e54) EMITMBC(0x1e56)
return;
case 'R': CASEMBC(0x154) CASEMBC(0x156) CASEMBC(0x158)
CASEMBC(0x1e58) CASEMBC(0x1e5e)
EMIT2('R'); EMITMBC(0x154) EMITMBC(0x156) EMITMBC(0x158)
EMITMBC(0x1e58) EMITMBC(0x1e5e)
return;
case 'S': CASEMBC(0x15a) CASEMBC(0x15c) CASEMBC(0x15e)
CASEMBC(0x160) CASEMBC(0x1e60)
EMIT2('S'); EMITMBC(0x15a) EMITMBC(0x15c) EMITMBC(0x15e)
EMITMBC(0x160) EMITMBC(0x1e60)
return;
case 'T': CASEMBC(0x162) CASEMBC(0x164) CASEMBC(0x166)
CASEMBC(0x1e6a) CASEMBC(0x1e6e)
EMIT2('T'); EMITMBC(0x162) EMITMBC(0x164) EMITMBC(0x166)
EMITMBC(0x1e6a) EMITMBC(0x1e6e)
return;
case 'U': case U_grave: case U_acute: case U_diaeresis:
case U_circumflex: CASEMBC(0x168) CASEMBC(0x16a)
CASEMBC(0x16c) CASEMBC(0x16e) CASEMBC(0x170)
CASEMBC(0x172) CASEMBC(0x1af) CASEMBC(0x1d3)
CASEMBC(0x1ee6)
EMIT2('U'); EMIT2(U_grave); EMIT2(U_acute);
EMIT2(U_diaeresis); EMIT2(U_circumflex);
EMITMBC(0x168) EMITMBC(0x16a)
EMITMBC(0x16c) EMITMBC(0x16e) EMITMBC(0x170)
EMITMBC(0x172) EMITMBC(0x1af) EMITMBC(0x1d3)
EMITMBC(0x1ee6)
return;
case 'V': CASEMBC(0x1e7c)
EMIT2('V'); EMITMBC(0x1e7c)
return;
case 'W': CASEMBC(0x174) CASEMBC(0x1e80) CASEMBC(0x1e82)
CASEMBC(0x1e84) CASEMBC(0x1e86)
EMIT2('W'); EMITMBC(0x174) EMITMBC(0x1e80) EMITMBC(0x1e82)
EMITMBC(0x1e84) EMITMBC(0x1e86)
return;
case 'X': CASEMBC(0x1e8a) CASEMBC(0x1e8c)
EMIT2('X'); EMITMBC(0x1e8a) EMITMBC(0x1e8c)
return;
case 'Y': case Y_acute: CASEMBC(0x176) CASEMBC(0x178)
CASEMBC(0x1e8e) CASEMBC(0x1ef2) CASEMBC(0x1ef6)
CASEMBC(0x1ef8)
EMIT2('Y'); EMIT2(Y_acute);
EMITMBC(0x176) EMITMBC(0x178)
EMITMBC(0x1e8e) EMITMBC(0x1ef2) EMITMBC(0x1ef6)
EMITMBC(0x1ef8)
return;
case 'Z': CASEMBC(0x179) CASEMBC(0x17b) CASEMBC(0x17d)
CASEMBC(0x1b5) CASEMBC(0x1e90) CASEMBC(0x1e94)
EMIT2('Z'); EMITMBC(0x179) EMITMBC(0x17b) EMITMBC(0x17d)
EMITMBC(0x1b5) EMITMBC(0x1e90) EMITMBC(0x1e94)
return;
case 'a': case a_grave: case a_acute: case a_circumflex:
case a_virguilla: case a_diaeresis: case a_ring:
CASEMBC(0x101) CASEMBC(0x103) CASEMBC(0x105)
CASEMBC(0x1ce) CASEMBC(0x1df) CASEMBC(0x1e1)
CASEMBC(0x1ea3)
EMIT2('a'); EMIT2(a_grave); EMIT2(a_acute);
EMIT2(a_circumflex); EMIT2(a_virguilla);
EMIT2(a_diaeresis); EMIT2(a_ring);
EMITMBC(0x101) EMITMBC(0x103) EMITMBC(0x105)
EMITMBC(0x1ce) EMITMBC(0x1df) EMITMBC(0x1e1)
EMITMBC(0x1ea3)
return;
case 'b': CASEMBC(0x1e03) CASEMBC(0x1e07)
EMIT2('b'); EMITMBC(0x1e03) EMITMBC(0x1e07)
return;
case 'c': case c_cedilla: CASEMBC(0x107) CASEMBC(0x109)
CASEMBC(0x10b) CASEMBC(0x10d)
EMIT2('c'); EMIT2(c_cedilla);
EMITMBC(0x107) EMITMBC(0x109)
EMITMBC(0x10b) EMITMBC(0x10d)
return;
case 'd': CASEMBC(0x10f) CASEMBC(0x111) CASEMBC(0x1e0b)
CASEMBC(0x1e0f) CASEMBC(0x1e11)
EMIT2('d'); EMITMBC(0x10f) EMITMBC(0x111) EMITMBC(0x1e0b)
EMITMBC(0x1e0f) EMITMBC(0x1e11)
return;
case 'e': case e_grave: case e_acute: case e_circumflex:
case e_diaeresis: CASEMBC(0x113) CASEMBC(0x115)
CASEMBC(0x117) CASEMBC(0x119) CASEMBC(0x11b)
CASEMBC(0x1ebb) CASEMBC(0x1ebd)
EMIT2('e'); EMIT2(e_grave); EMIT2(e_acute);
EMIT2(e_circumflex); EMIT2(e_diaeresis);
EMITMBC(0x113) EMITMBC(0x115)
EMITMBC(0x117) EMITMBC(0x119) EMITMBC(0x11b)
EMITMBC(0x1ebb) EMITMBC(0x1ebd)
return;
case 'f': CASEMBC(0x1e1f)
EMIT2('f'); EMITMBC(0x1e1f)
return;
case 'g': CASEMBC(0x11d) CASEMBC(0x11f) CASEMBC(0x121)
CASEMBC(0x123) CASEMBC(0x1e5) CASEMBC(0x1e7)
CASEMBC(0x1f5) CASEMBC(0x1e21)
EMIT2('g'); EMITMBC(0x11d) EMITMBC(0x11f) EMITMBC(0x121)
EMITMBC(0x123) EMITMBC(0x1e5) EMITMBC(0x1e7)
EMITMBC(0x1f5) EMITMBC(0x1e21)
return;
case 'h': CASEMBC(0x125) CASEMBC(0x127) CASEMBC(0x1e23)
CASEMBC(0x1e27) CASEMBC(0x1e29) CASEMBC(0x1e96)
EMIT2('h'); EMITMBC(0x125) EMITMBC(0x127) EMITMBC(0x1e23)
EMITMBC(0x1e27) EMITMBC(0x1e29) EMITMBC(0x1e96)
return;
case 'i': case i_grave: case i_acute: case i_circumflex:
case i_diaeresis: CASEMBC(0x129) CASEMBC(0x12b)
CASEMBC(0x12d) CASEMBC(0x12f) CASEMBC(0x1d0)
CASEMBC(0x1ec9)
EMIT2('i'); EMIT2(i_grave); EMIT2(i_acute);
EMIT2(i_circumflex); EMIT2(i_diaeresis);
EMITMBC(0x129) EMITMBC(0x12b)
EMITMBC(0x12d) EMITMBC(0x12f) EMITMBC(0x1d0)
EMITMBC(0x1ec9)
return;
case 'j': CASEMBC(0x135) CASEMBC(0x1f0)
EMIT2('j'); EMITMBC(0x135) EMITMBC(0x1f0)
return;
case 'k': CASEMBC(0x137) CASEMBC(0x1e9) CASEMBC(0x1e31)
CASEMBC(0x1e35)
EMIT2('k'); EMITMBC(0x137) EMITMBC(0x1e9) EMITMBC(0x1e31)
EMITMBC(0x1e35)
return;
case 'l': CASEMBC(0x13a) CASEMBC(0x13c) CASEMBC(0x13e)
CASEMBC(0x140) CASEMBC(0x142) CASEMBC(0x1e3b)
EMIT2('l'); EMITMBC(0x13a) EMITMBC(0x13c) EMITMBC(0x13e)
EMITMBC(0x140) EMITMBC(0x142) EMITMBC(0x1e3b)
return;
case 'm': CASEMBC(0x1e3f) CASEMBC(0x1e41)
EMIT2('m'); EMITMBC(0x1e3f) EMITMBC(0x1e41)
return;
case 'n': case n_virguilla: CASEMBC(0x144) CASEMBC(0x146)
CASEMBC(0x148) CASEMBC(0x149) CASEMBC(0x1e45)
CASEMBC(0x1e49)
EMIT2('n'); EMIT2(n_virguilla);
EMITMBC(0x144) EMITMBC(0x146)
EMITMBC(0x148) EMITMBC(0x149) EMITMBC(0x1e45)
EMITMBC(0x1e49)
return;
case 'o': case o_grave: case o_acute: case o_circumflex:
case o_virguilla: case o_diaeresis: case o_slash:
CASEMBC(0x14d) CASEMBC(0x14f) CASEMBC(0x151)
CASEMBC(0x1a1) CASEMBC(0x1d2) CASEMBC(0x1eb)
CASEMBC(0x1ed) CASEMBC(0x1ecf)
EMIT2('o'); EMIT2(o_grave); EMIT2(o_acute);
EMIT2(o_circumflex); EMIT2(o_virguilla);
EMIT2(o_diaeresis); EMIT2(o_slash);
EMITMBC(0x14d) EMITMBC(0x14f) EMITMBC(0x151)
EMITMBC(0x1a1) EMITMBC(0x1d2) EMITMBC(0x1eb)
EMITMBC(0x1ed) EMITMBC(0x1ecf)
return;
case 'p': CASEMBC(0x1e55) CASEMBC(0x1e57)
EMIT2('p'); EMITMBC(0x1e55) EMITMBC(0x1e57)
return;
case 'r': CASEMBC(0x155) CASEMBC(0x157) CASEMBC(0x159)
CASEMBC(0x1e59) CASEMBC(0x1e5f)
EMIT2('r'); EMITMBC(0x155) EMITMBC(0x157) EMITMBC(0x159)
EMITMBC(0x1e59) EMITMBC(0x1e5f)
return;
case 's': CASEMBC(0x15b) CASEMBC(0x15d) CASEMBC(0x15f)
CASEMBC(0x161) CASEMBC(0x1e61)
EMIT2('s'); EMITMBC(0x15b) EMITMBC(0x15d) EMITMBC(0x15f)
EMITMBC(0x161) EMITMBC(0x1e61)
return;
case 't': CASEMBC(0x163) CASEMBC(0x165) CASEMBC(0x167)
CASEMBC(0x1e6b) CASEMBC(0x1e6f) CASEMBC(0x1e97)
EMIT2('t'); EMITMBC(0x163) EMITMBC(0x165) EMITMBC(0x167)
EMITMBC(0x1e6b) EMITMBC(0x1e6f) EMITMBC(0x1e97)
return;
case 'u': case u_grave: case u_acute: case u_circumflex:
case u_diaeresis: CASEMBC(0x169) CASEMBC(0x16b)
CASEMBC(0x16d) CASEMBC(0x16f) CASEMBC(0x171)
CASEMBC(0x173) CASEMBC(0x1b0) CASEMBC(0x1d4)
CASEMBC(0x1ee7)
EMIT2('u'); EMIT2(u_grave); EMIT2(u_acute);
EMIT2(u_circumflex); EMIT2(u_diaeresis);
EMITMBC(0x169) EMITMBC(0x16b)
EMITMBC(0x16d) EMITMBC(0x16f) EMITMBC(0x171)
EMITMBC(0x173) EMITMBC(0x1b0) EMITMBC(0x1d4)
EMITMBC(0x1ee7)
return;
case 'v': CASEMBC(0x1e7d)
EMIT2('v'); EMITMBC(0x1e7d)
return;
case 'w': CASEMBC(0x175) CASEMBC(0x1e81) CASEMBC(0x1e83)
CASEMBC(0x1e85) CASEMBC(0x1e87) CASEMBC(0x1e98)
EMIT2('w'); EMITMBC(0x175) EMITMBC(0x1e81) EMITMBC(0x1e83)
EMITMBC(0x1e85) EMITMBC(0x1e87) EMITMBC(0x1e98)
return;
case 'x': CASEMBC(0x1e8b) CASEMBC(0x1e8d)
EMIT2('x'); EMITMBC(0x1e8b) EMITMBC(0x1e8d)
return;
case 'y': case y_acute: case y_diaeresis: CASEMBC(0x177)
CASEMBC(0x1e8f) CASEMBC(0x1e99) CASEMBC(0x1ef3)
CASEMBC(0x1ef7) CASEMBC(0x1ef9)
EMIT2('y'); EMIT2(y_acute); EMIT2(y_diaeresis);
EMITMBC(0x177)
EMITMBC(0x1e8f) EMITMBC(0x1e99) EMITMBC(0x1ef3)
EMITMBC(0x1ef7) EMITMBC(0x1ef9)
return;
case 'z': CASEMBC(0x17a) CASEMBC(0x17c) CASEMBC(0x17e)
CASEMBC(0x1b6) CASEMBC(0x1e91) CASEMBC(0x1e95)
EMIT2('z'); EMITMBC(0x17a) EMITMBC(0x17c) EMITMBC(0x17e)
EMITMBC(0x1b6) EMITMBC(0x1e91) EMITMBC(0x1e95)
return;
/* default: character itself */
}
}
EMIT2(c);
#undef EMIT2
#undef EMITMBC
}
/*
* Code to parse regular expression.
*
* We try to reuse parsing functions in regexp.c to
* minimize surprise and keep the syntax consistent.
*/
/*
* Parse the lowest level.
*
* An atom can be one of a long list of items. Many atoms match one character
* in the text. It is often an ordinary character or a character class.
* Braces can be used to make a pattern into an atom. The "\z(\)" construct
* is only for syntax highlighting.
*
* atom ::= ordinary-atom
* or \( pattern \)
* or \%( pattern \)
* or \z( pattern \)
*/
static int nfa_regatom(void)
{
int c;
int charclass;
int equiclass;
int collclass;
int got_coll_char;
char_u *p;
char_u *endp;
char_u *old_regparse = regparse;
int extra = 0;
int emit_range;
int negated;
int startc = -1;
int endc = -1;
int oldstartc = -1;
int save_prev_at_start = prev_at_start;
c = getchr();
switch (c) {
case NUL:
EMSG_RET_FAIL(_(e_nul_found));
case Magic('^'):
EMIT(NFA_BOL);
break;
case Magic('$'):
EMIT(NFA_EOL);
had_eol = TRUE;
break;
case Magic('<'):
EMIT(NFA_BOW);
break;
case Magic('>'):
EMIT(NFA_EOW);
break;
case Magic('_'):
c = no_Magic(getchr());
if (c == NUL)
EMSG_RET_FAIL(_(e_nul_found));
if (c == '^') { /* "\_^" is start-of-line */
EMIT(NFA_BOL);
break;
}
if (c == '$') { /* "\_$" is end-of-line */
EMIT(NFA_EOL);
had_eol = TRUE;
break;
}
extra = NFA_ADD_NL;
/* "\_[" is collection plus newline */
if (c == '[')
goto collection;
// "\_x" is character class plus newline
FALLTHROUGH;
/*
* Character classes.
*/
case Magic('.'):
case Magic('i'):
case Magic('I'):
case Magic('k'):
case Magic('K'):
case Magic('f'):
case Magic('F'):
case Magic('p'):
case Magic('P'):
case Magic('s'):
case Magic('S'):
case Magic('d'):
case Magic('D'):
case Magic('x'):
case Magic('X'):
case Magic('o'):
case Magic('O'):
case Magic('w'):
case Magic('W'):
case Magic('h'):
case Magic('H'):
case Magic('a'):
case Magic('A'):
case Magic('l'):
case Magic('L'):
case Magic('u'):
case Magic('U'):
p = vim_strchr(classchars, no_Magic(c));
if (p == NULL) {
if (extra == NFA_ADD_NL) {
EMSGN(_(e_ill_char_class), c);
rc_did_emsg = TRUE;
return FAIL;
}
IEMSGN("INTERNAL: Unknown character class char: %" PRId64, c);
return FAIL;
}
// When '.' is followed by a composing char ignore the dot, so that
// the composing char is matched here.
if (enc_utf8 && c == Magic('.') && utf_iscomposing(peekchr())) {
old_regparse = regparse;
c = getchr();
goto nfa_do_multibyte;
}
EMIT(nfa_classcodes[p - classchars]);
if (extra == NFA_ADD_NL) {
EMIT(NFA_NEWL);
EMIT(NFA_OR);
regflags |= RF_HASNL;
}
break;
case Magic('n'):
if (reg_string) {
// In a string "\n" matches a newline character.
EMIT(NL);
} else {
// In buffer text "\n" matches the end of a line.
EMIT(NFA_NEWL);
regflags |= RF_HASNL;
}
break;
case Magic('('):
if (nfa_reg(REG_PAREN) == FAIL) {
return FAIL; // cascaded error
}
break;
case Magic('|'):
case Magic('&'):
case Magic(')'):
EMSGN(_(e_misplaced), no_Magic(c)); // -V1037
return FAIL;
case Magic('='):
case Magic('?'):
case Magic('+'):
case Magic('@'):
case Magic('*'):
case Magic('{'):
// these should follow an atom, not form an atom
EMSGN(_(e_misplaced), no_Magic(c));
return FAIL;
case Magic('~'):
{
char_u *lp;
// Previous substitute pattern.
// Generated as "\%(pattern\)".
if (reg_prev_sub == NULL) {
EMSG(_(e_nopresub));
return FAIL;
}
for (lp = reg_prev_sub; *lp != NUL; MB_CPTR_ADV(lp)) {
EMIT(PTR2CHAR(lp));
if (lp != reg_prev_sub)
EMIT(NFA_CONCAT);
}
EMIT(NFA_NOPEN);
break;
}
case Magic('1'):
case Magic('2'):
case Magic('3'):
case Magic('4'):
case Magic('5'):
case Magic('6'):
case Magic('7'):
case Magic('8'):
case Magic('9'):
{
int refnum = no_Magic(c) - '1';
if (!seen_endbrace(refnum + 1)) {
return FAIL;
}
EMIT(NFA_BACKREF1 + refnum);
nfa_has_backref = true;
}
break;
case Magic('z'):
c = no_Magic(getchr());
switch (c) {
case 's':
EMIT(NFA_ZSTART);
if (!re_mult_next("\\zs")) {
return false;
}
break;
case 'e':
EMIT(NFA_ZEND);
nfa_has_zend = true;
if (!re_mult_next("\\zs")) {
return false;
}
break;
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
// \z1...\z9
if ((reg_do_extmatch & REX_USE) == 0) {
EMSG_RET_FAIL(_(e_z1_not_allowed));
}
EMIT(NFA_ZREF1 + (no_Magic(c) - '1'));
/* No need to set nfa_has_backref, the sub-matches don't
* change when \z1 .. \z9 matches or not. */
re_has_z = REX_USE;
break;
case '(':
// \z(
if (reg_do_extmatch != REX_SET) {
EMSG_RET_FAIL(_(e_z_not_allowed));
}
if (nfa_reg(REG_ZPAREN) == FAIL) {
return FAIL; // cascaded error
}
re_has_z = REX_SET;
break;
default:
emsgf(_("E867: (NFA) Unknown operator '\\z%c'"),
no_Magic(c));
return FAIL;
}
break;
case Magic('%'):
c = no_Magic(getchr());
switch (c) {
/* () without a back reference */
case '(':
if (nfa_reg(REG_NPAREN) == FAIL)
return FAIL;
EMIT(NFA_NOPEN);
break;
case 'd': /* %d123 decimal */
case 'o': /* %o123 octal */
case 'x': /* %xab hex 2 */
case 'u': /* %uabcd hex 4 */
case 'U': /* %U1234abcd hex 8 */
{
int64_t nr;
switch (c) {
case 'd': nr = getdecchrs(); break;
case 'o': nr = getoctchrs(); break;
case 'x': nr = gethexchrs(2); break;
case 'u': nr = gethexchrs(4); break;
case 'U': nr = gethexchrs(8); break;
default: nr = -1; break;
}
if (nr < 0 || nr > INT_MAX) {
EMSG2_RET_FAIL(_("E678: Invalid character after %s%%[dxouU]"),
reg_magic == MAGIC_ALL);
}
// A NUL is stored in the text as NL
// TODO(vim): what if a composing character follows?
EMIT(nr == 0 ? 0x0a : nr);
}
break;
/* Catch \%^ and \%$ regardless of where they appear in the
* pattern -- regardless of whether or not it makes sense. */
case '^':
EMIT(NFA_BOF);
break;
case '$':
EMIT(NFA_EOF);
break;
case '#':
EMIT(NFA_CURSOR);
break;
case 'V':
EMIT(NFA_VISUAL);
break;
case 'C':
EMIT(NFA_ANY_COMPOSING);
break;
case '[':
{
int n;
/* \%[abc] */
for (n = 0; (c = peekchr()) != ']'; ++n) {
if (c == NUL)
EMSG2_RET_FAIL(_(e_missing_sb),
reg_magic == MAGIC_ALL);
/* recursive call! */
if (nfa_regatom() == FAIL)
return FAIL;
}
getchr(); /* get the ] */
if (n == 0)
EMSG2_RET_FAIL(_(e_empty_sb),
reg_magic == MAGIC_ALL);
EMIT(NFA_OPT_CHARS);
EMIT(n);
/* Emit as "\%(\%[abc]\)" to be able to handle
* "\%[abc]*" which would cause the empty string to be
* matched an unlimited number of times. NFA_NOPEN is
* added only once at a position, while NFA_SPLIT is
* added multiple times. This is more efficient than
* not allowing NFA_SPLIT multiple times, it is used
* a lot. */
EMIT(NFA_NOPEN);
break;
}
default:
{
int64_t n = 0;
const int cmp = c;
if (c == '<' || c == '>')
c = getchr();
while (ascii_isdigit(c)) {
if (n > (INT32_MAX - (c - '0')) / 10) {
// overflow.
EMSG(_(e_value_too_large));
return FAIL;
}
n = n * 10 + (c - '0');
c = getchr();
}
if (c == 'l' || c == 'c' || c == 'v') {
int32_t limit = INT32_MAX;
if (c == 'l') {
// \%{n}l \%{n}<l \%{n}>l
EMIT(cmp == '<' ? NFA_LNUM_LT :
cmp == '>' ? NFA_LNUM_GT : NFA_LNUM);
if (save_prev_at_start) {
at_start = true;
}
} else if (c == 'c') {
// \%{n}c \%{n}<c \%{n}>c
EMIT(cmp == '<' ? NFA_COL_LT :
cmp == '>' ? NFA_COL_GT : NFA_COL);
} else {
// \%{n}v \%{n}<v \%{n}>v
EMIT(cmp == '<' ? NFA_VCOL_LT :
cmp == '>' ? NFA_VCOL_GT : NFA_VCOL);
limit = INT32_MAX / MB_MAXBYTES;
}
if (n >= limit) {
EMSG(_(e_value_too_large));
return FAIL;
}
EMIT((int)n);
break;
} else if (c == '\'' && n == 0) {
/* \%'m \%<'m \%>'m */
EMIT(cmp == '<' ? NFA_MARK_LT :
cmp == '>' ? NFA_MARK_GT : NFA_MARK);
EMIT(getchr());
break;
}
}
emsgf(_("E867: (NFA) Unknown operator '\\%%%c'"),
no_Magic(c));
return FAIL;
}
break;
case Magic('['):
collection:
/*
* [abc] uses NFA_START_COLL - NFA_END_COLL
* [^abc] uses NFA_START_NEG_COLL - NFA_END_NEG_COLL
* Each character is produced as a regular state, using
* NFA_CONCAT to bind them together.
* Besides normal characters there can be:
* - character classes NFA_CLASS_*
* - ranges, two characters followed by NFA_RANGE.
*/
p = regparse;
endp = skip_anyof(p);
if (*endp == ']') {
/*
* Try to reverse engineer character classes. For example,
* recognize that [0-9] stands for \d and [A-Za-z_] for \h,
* and perform the necessary substitutions in the NFA.
*/
int result = nfa_recognize_char_class(regparse, endp,
extra == NFA_ADD_NL);
if (result != FAIL) {
if (result >= NFA_FIRST_NL && result <= NFA_LAST_NL) {
EMIT(result - NFA_ADD_NL);
EMIT(NFA_NEWL);
EMIT(NFA_OR);
} else
EMIT(result);
regparse = endp;
MB_PTR_ADV(regparse);
return OK;
}
/*
* Failed to recognize a character class. Use the simple
* version that turns [abc] into 'a' OR 'b' OR 'c'
*/
startc = endc = oldstartc = -1;
negated = false;
if (*regparse == '^') { // negated range
negated = true;
MB_PTR_ADV(regparse);
EMIT(NFA_START_NEG_COLL);
} else
EMIT(NFA_START_COLL);
if (*regparse == '-') {
startc = '-';
EMIT(startc);
EMIT(NFA_CONCAT);
MB_PTR_ADV(regparse);
}
/* Emit the OR branches for each character in the [] */
emit_range = FALSE;
while (regparse < endp) {
oldstartc = startc;
startc = -1;
got_coll_char = FALSE;
if (*regparse == '[') {
/* Check for [: :], [= =], [. .] */
equiclass = collclass = 0;
charclass = get_char_class(&regparse);
if (charclass == CLASS_NONE) {
equiclass = get_equi_class(&regparse);
if (equiclass == 0)
collclass = get_coll_element(&regparse);
}
/* Character class like [:alpha:] */
if (charclass != CLASS_NONE) {
switch (charclass) {
case CLASS_ALNUM:
EMIT(NFA_CLASS_ALNUM);
break;
case CLASS_ALPHA:
EMIT(NFA_CLASS_ALPHA);
break;
case CLASS_BLANK:
EMIT(NFA_CLASS_BLANK);
break;
case CLASS_CNTRL:
EMIT(NFA_CLASS_CNTRL);
break;
case CLASS_DIGIT:
EMIT(NFA_CLASS_DIGIT);
break;
case CLASS_GRAPH:
EMIT(NFA_CLASS_GRAPH);
break;
case CLASS_LOWER:
EMIT(NFA_CLASS_LOWER);
break;
case CLASS_PRINT:
EMIT(NFA_CLASS_PRINT);
break;
case CLASS_PUNCT:
EMIT(NFA_CLASS_PUNCT);
break;
case CLASS_SPACE:
EMIT(NFA_CLASS_SPACE);
break;
case CLASS_UPPER:
EMIT(NFA_CLASS_UPPER);
break;
case CLASS_XDIGIT:
EMIT(NFA_CLASS_XDIGIT);
break;
case CLASS_TAB:
EMIT(NFA_CLASS_TAB);
break;
case CLASS_RETURN:
EMIT(NFA_CLASS_RETURN);
break;
case CLASS_BACKSPACE:
EMIT(NFA_CLASS_BACKSPACE);
break;
case CLASS_ESCAPE:
EMIT(NFA_CLASS_ESCAPE);
break;
}
EMIT(NFA_CONCAT);
continue;
}
/* Try equivalence class [=a=] and the like */
if (equiclass != 0) {
nfa_emit_equi_class(equiclass);
continue;
}
/* Try collating class like [. .] */
if (collclass != 0) {
startc = collclass; /* allow [.a.]-x as a range */
/* Will emit the proper atom at the end of the
* while loop. */
}
}
/* Try a range like 'a-x' or '\t-z'. Also allows '-' as a
* start character. */
if (*regparse == '-' && oldstartc != -1) {
emit_range = TRUE;
startc = oldstartc;
MB_PTR_ADV(regparse);
continue; // reading the end of the range
}
/* Now handle simple and escaped characters.
* Only "\]", "\^", "\]" and "\\" are special in Vi. Vim
* accepts "\t", "\e", etc., but only when the 'l' flag in
* 'cpoptions' is not included.
*/
if (*regparse == '\\'
&& regparse + 1 <= endp
&& (vim_strchr(REGEXP_INRANGE, regparse[1]) != NULL
|| (!reg_cpo_lit
&& vim_strchr(REGEXP_ABBR, regparse[1])
!= NULL)
)
) {
MB_PTR_ADV(regparse);
if (*regparse == 'n') {
startc = (reg_string || emit_range || regparse[1] == '-')
? NL : NFA_NEWL;
} else if (*regparse == 'd'
|| *regparse == 'o'
|| *regparse == 'x'
|| *regparse == 'u'
|| *regparse == 'U'
) {
// TODO(RE): This needs more testing
startc = coll_get_char();
got_coll_char = true;
MB_PTR_BACK(old_regparse, regparse);
} else {
/* \r,\t,\e,\b */
startc = backslash_trans(*regparse);
}
}
/* Normal printable char */
if (startc == -1)
startc = PTR2CHAR(regparse);
/* Previous char was '-', so this char is end of range. */
if (emit_range) {
endc = startc;
startc = oldstartc;
if (startc > endc) {
EMSG_RET_FAIL(_(e_reverse_range));
}
if (endc > startc + 2) {
/* Emit a range instead of the sequence of
* individual characters. */
if (startc == 0)
/* \x00 is translated to \x0a, start at \x01. */
EMIT(1);
else
--post_ptr; /* remove NFA_CONCAT */
EMIT(endc);
EMIT(NFA_RANGE);
EMIT(NFA_CONCAT);
} else if (has_mbyte && ((*mb_char2len)(startc) > 1
|| (*mb_char2len)(endc) > 1)) {
/* Emit the characters in the range.
* "startc" was already emitted, so skip it.
* */
for (c = startc + 1; c <= endc; c++) {
EMIT(c);
EMIT(NFA_CONCAT);
}
} else {
/* Emit the range. "startc" was already emitted, so
* skip it. */
for (c = startc + 1; c <= endc; c++) {
EMIT(c);
EMIT(NFA_CONCAT);
}
}
emit_range = FALSE;
startc = -1;
} else {
/* This char (startc) is not part of a range. Just
* emit it.
* Normally, simply emit startc. But if we get char
* code=0 from a collating char, then replace it with
* 0x0a.
* This is needed to completely mimic the behaviour of
* the backtracking engine. */
if (startc == NFA_NEWL) {
/* Line break can't be matched as part of the
* collection, add an OR below. But not for negated
* range. */
if (!negated)
extra = NFA_ADD_NL;
} else {
if (got_coll_char == TRUE && startc == 0)
EMIT(0x0a);
else
EMIT(startc);
EMIT(NFA_CONCAT);
}
}
MB_PTR_ADV(regparse);
} // while (p < endp)
MB_PTR_BACK(old_regparse, regparse);
if (*regparse == '-') { // if last, '-' is just a char
EMIT('-');
EMIT(NFA_CONCAT);
}
/* skip the trailing ] */
regparse = endp;
MB_PTR_ADV(regparse);
/* Mark end of the collection. */
if (negated == TRUE)
EMIT(NFA_END_NEG_COLL);
else
EMIT(NFA_END_COLL);
/* \_[] also matches \n but it's not negated */
if (extra == NFA_ADD_NL) {
EMIT(reg_string ? NL : NFA_NEWL);
EMIT(NFA_OR);
}
return OK;
} /* if exists closing ] */
if (reg_strict)
EMSG_RET_FAIL(_(e_missingbracket));
FALLTHROUGH;
default:
{
int plen;
nfa_do_multibyte:
// plen is length of current char with composing chars
if (enc_utf8 && ((*mb_char2len)(c)
!= (plen = utfc_ptr2len(old_regparse))
|| utf_iscomposing(c))) {
int i = 0;
/* A base character plus composing characters, or just one
* or more composing characters.
* This requires creating a separate atom as if enclosing
* the characters in (), where NFA_COMPOSING is the ( and
* NFA_END_COMPOSING is the ). Note that right now we are
* building the postfix form, not the NFA itself;
* a composing char could be: a, b, c, NFA_COMPOSING
* where 'b' and 'c' are chars with codes > 256. */
for (;; ) {
EMIT(c);
if (i > 0)
EMIT(NFA_CONCAT);
if ((i += utf_char2len(c)) >= plen)
break;
c = utf_ptr2char(old_regparse + i);
}
EMIT(NFA_COMPOSING);
regparse = old_regparse + plen;
} else {
c = no_Magic(c);
EMIT(c);
}
return OK;
}
}
return OK;
}
/*
* Parse something followed by possible [*+=].
*
* A piece is an atom, possibly followed by a multi, an indication of how many
* times the atom can be matched. Example: "a*" matches any sequence of "a"
* characters: "", "a", "aa", etc.
*
* piece ::= atom
* or atom multi
*/
static int nfa_regpiece(void)
{
int i;
int op;
int ret;
long minval, maxval;
int greedy = TRUE; /* Braces are prefixed with '-' ? */
parse_state_T old_state;
parse_state_T new_state;
int64_t c2;
int old_post_pos;
int my_post_start;
int quest;
/* Save the current parse state, so that we can use it if <atom>{m,n} is
* next. */
save_parse_state(&old_state);
/* store current pos in the postfix form, for \{m,n} involving 0s */
my_post_start = (int)(post_ptr - post_start);
ret = nfa_regatom();
if (ret == FAIL)
return FAIL; /* cascaded error */
op = peekchr();
if (re_multi_type(op) == NOT_MULTI)
return OK;
skipchr();
switch (op) {
case Magic('*'):
EMIT(NFA_STAR);
break;
case Magic('+'):
/*
* Trick: Normally, (a*)\+ would match the whole input "aaa". The
* first and only submatch would be "aaa". But the backtracking
* engine interprets the plus as "try matching one more time", and
* a* matches a second time at the end of the input, the empty
* string.
* The submatch will be the empty string.
*
* In order to be consistent with the old engine, we replace
* <atom>+ with <atom><atom>*
*/
restore_parse_state(&old_state);
curchr = -1;
if (nfa_regatom() == FAIL)
return FAIL;
EMIT(NFA_STAR);
EMIT(NFA_CONCAT);
skipchr(); /* skip the \+ */
break;
case Magic('@'):
c2 = getdecchrs();
op = no_Magic(getchr());
i = 0;
switch(op) {
case '=':
/* \@= */
i = NFA_PREV_ATOM_NO_WIDTH;
break;
case '!':
/* \@! */
i = NFA_PREV_ATOM_NO_WIDTH_NEG;
break;
case '<':
op = no_Magic(getchr());
if (op == '=')
/* \@<= */
i = NFA_PREV_ATOM_JUST_BEFORE;
else if (op == '!')
/* \@<! */
i = NFA_PREV_ATOM_JUST_BEFORE_NEG;
break;
case '>':
/* \@> */
i = NFA_PREV_ATOM_LIKE_PATTERN;
break;
}
if (i == 0) {
emsgf(_("E869: (NFA) Unknown operator '\\@%c'"), op);
return FAIL;
}
EMIT(i);
if (i == NFA_PREV_ATOM_JUST_BEFORE
|| i == NFA_PREV_ATOM_JUST_BEFORE_NEG)
EMIT(c2);
break;
case Magic('?'):
case Magic('='):
EMIT(NFA_QUEST);
break;
case Magic('{'):
/* a{2,5} will expand to 'aaa?a?a?'
* a{-1,3} will expand to 'aa??a??', where ?? is the nongreedy
* version of '?'
* \v(ab){2,3} will expand to '(ab)(ab)(ab)?', where all the
* parenthesis have the same id
*/
greedy = TRUE;
c2 = peekchr();
if (c2 == '-' || c2 == Magic('-')) {
skipchr();
greedy = FALSE;
}
if (!read_limits(&minval, &maxval))
EMSG_RET_FAIL(_("E870: (NFA regexp) Error reading repetition limits"));
/* <atom>{0,inf}, <atom>{0,} and <atom>{} are equivalent to
* <atom>* */
if (minval == 0 && maxval == MAX_LIMIT) {
if (greedy)
/* \{}, \{0,} */
EMIT(NFA_STAR);
else
/* \{-}, \{-0,} */
EMIT(NFA_STAR_NONGREEDY);
break;
}
/* Special case: x{0} or x{-0} */
if (maxval == 0) {
/* Ignore result of previous call to nfa_regatom() */
post_ptr = post_start + my_post_start;
/* NFA_EMPTY is 0-length and works everywhere */
EMIT(NFA_EMPTY);
return OK;
}
// The engine is very inefficient (uses too many states) when the maximum
// is much larger than the minimum and when the maximum is large. Bail out
// if we can use the other engine.
if ((nfa_re_flags & RE_AUTO) && (maxval > 500 || maxval > minval + 200)) {
return FAIL;
}
/* Ignore previous call to nfa_regatom() */
post_ptr = post_start + my_post_start;
/* Save parse state after the repeated atom and the \{} */
save_parse_state(&new_state);
quest = (greedy == TRUE ? NFA_QUEST : NFA_QUEST_NONGREEDY);
for (i = 0; i < maxval; i++) {
/* Goto beginning of the repeated atom */
restore_parse_state(&old_state);
old_post_pos = (int)(post_ptr - post_start);
if (nfa_regatom() == FAIL)
return FAIL;
/* after "minval" times, atoms are optional */
if (i + 1 > minval) {
if (maxval == MAX_LIMIT) {
if (greedy)
EMIT(NFA_STAR);
else
EMIT(NFA_STAR_NONGREEDY);
} else
EMIT(quest);
}
if (old_post_pos != my_post_start)
EMIT(NFA_CONCAT);
if (i + 1 > minval && maxval == MAX_LIMIT)
break;
}
/* Go to just after the repeated atom and the \{} */
restore_parse_state(&new_state);
curchr = -1;
break;
default:
break;
} /* end switch */
if (re_multi_type(peekchr()) != NOT_MULTI) {
// Can't have a multi follow a multi.
EMSG_RET_FAIL(_("E871: (NFA regexp) Can't have a multi follow a multi"));
}
return OK;
}
/*
* Parse one or more pieces, concatenated. It matches a match for the
* first piece, followed by a match for the second piece, etc. Example:
* "f[0-9]b", first matches "f", then a digit and then "b".
*
* concat ::= piece
* or piece piece
* or piece piece piece
* etc.
*/
static int nfa_regconcat(void)
{
int cont = TRUE;
int first = TRUE;
while (cont) {
switch (peekchr()) {
case NUL:
case Magic('|'):
case Magic('&'):
case Magic(')'):
cont = FALSE;
break;
case Magic('Z'):
regflags |= RF_ICOMBINE;
skipchr_keepstart();
break;
case Magic('c'):
regflags |= RF_ICASE;
skipchr_keepstart();
break;
case Magic('C'):
regflags |= RF_NOICASE;
skipchr_keepstart();
break;
case Magic('v'):
reg_magic = MAGIC_ALL;
skipchr_keepstart();
curchr = -1;
break;
case Magic('m'):
reg_magic = MAGIC_ON;
skipchr_keepstart();
curchr = -1;
break;
case Magic('M'):
reg_magic = MAGIC_OFF;
skipchr_keepstart();
curchr = -1;
break;
case Magic('V'):
reg_magic = MAGIC_NONE;
skipchr_keepstart();
curchr = -1;
break;
default:
if (nfa_regpiece() == FAIL)
return FAIL;
if (first == FALSE)
EMIT(NFA_CONCAT);
else
first = FALSE;
break;
}
}
return OK;
}
/*
* Parse a branch, one or more concats, separated by "\&". It matches the
* last concat, but only if all the preceding concats also match at the same
* position. Examples:
* "foobeep\&..." matches "foo" in "foobeep".
* ".*Peter\&.*Bob" matches in a line containing both "Peter" and "Bob"
*
* branch ::= concat
* or concat \& concat
* or concat \& concat \& concat
* etc.
*/
static int nfa_regbranch(void)
{
int old_post_pos;
old_post_pos = (int)(post_ptr - post_start);
/* First branch, possibly the only one */
if (nfa_regconcat() == FAIL)
return FAIL;
// Try next concats
while (peekchr() == Magic('&')) {
skipchr();
// if concat is empty do emit a node
if (old_post_pos == (int)(post_ptr - post_start)) {
EMIT(NFA_EMPTY);
}
EMIT(NFA_NOPEN);
EMIT(NFA_PREV_ATOM_NO_WIDTH);
old_post_pos = (int)(post_ptr - post_start);
if (nfa_regconcat() == FAIL)
return FAIL;
/* if concat is empty do emit a node */
if (old_post_pos == (int)(post_ptr - post_start))
EMIT(NFA_EMPTY);
EMIT(NFA_CONCAT);
}
/* if a branch is empty, emit one node for it */
if (old_post_pos == (int)(post_ptr - post_start))
EMIT(NFA_EMPTY);
return OK;
}
/*
* Parse a pattern, one or more branches, separated by "\|". It matches
* anything that matches one of the branches. Example: "foo\|beep" matches
* "foo" and matches "beep". If more than one branch matches, the first one
* is used.
*
* pattern ::= branch
* or branch \| branch
* or branch \| branch \| branch
* etc.
*/
static int
nfa_reg (
int paren /* REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN */
)
{
int parno = 0;
if (paren == REG_PAREN) {
if (regnpar >= NSUBEXP) /* Too many `(' */
EMSG_RET_FAIL(_("E872: (NFA regexp) Too many '('"));
parno = regnpar++;
} else if (paren == REG_ZPAREN) {
/* Make a ZOPEN node. */
if (regnzpar >= NSUBEXP)
EMSG_RET_FAIL(_("E879: (NFA regexp) Too many \\z("));
parno = regnzpar++;
}
if (nfa_regbranch() == FAIL)
return FAIL; /* cascaded error */
while (peekchr() == Magic('|')) {
skipchr();
if (nfa_regbranch() == FAIL)
return FAIL; /* cascaded error */
EMIT(NFA_OR);
}
/* Check for proper termination. */
if (paren != REG_NOPAREN && getchr() != Magic(')')) {
if (paren == REG_NPAREN)
EMSG2_RET_FAIL(_(e_unmatchedpp), reg_magic == MAGIC_ALL);
else
EMSG2_RET_FAIL(_(e_unmatchedp), reg_magic == MAGIC_ALL);
} else if (paren == REG_NOPAREN && peekchr() != NUL) {
if (peekchr() == Magic(')'))
EMSG2_RET_FAIL(_(e_unmatchedpar), reg_magic == MAGIC_ALL);
else
EMSG_RET_FAIL(_("E873: (NFA regexp) proper termination error"));
}
/*
* Here we set the flag allowing back references to this set of
* parentheses.
*/
if (paren == REG_PAREN) {
had_endbrace[parno] = TRUE; /* have seen the close paren */
EMIT(NFA_MOPEN + parno);
} else if (paren == REG_ZPAREN)
EMIT(NFA_ZOPEN + parno);
return OK;
}
#ifdef REGEXP_DEBUG
static char_u code[50];
static void nfa_set_code(int c)
{
int addnl = FALSE;
if (c >= NFA_FIRST_NL && c <= NFA_LAST_NL) {
addnl = TRUE;
c -= NFA_ADD_NL;
}
STRCPY(code, "");
switch (c) {
case NFA_MATCH: STRCPY(code, "NFA_MATCH "); break;
case NFA_SPLIT: STRCPY(code, "NFA_SPLIT "); break;
case NFA_CONCAT: STRCPY(code, "NFA_CONCAT "); break;
case NFA_NEWL: STRCPY(code, "NFA_NEWL "); break;
case NFA_ZSTART: STRCPY(code, "NFA_ZSTART"); break;
case NFA_ZEND: STRCPY(code, "NFA_ZEND"); break;
case NFA_BACKREF1: STRCPY(code, "NFA_BACKREF1"); break;
case NFA_BACKREF2: STRCPY(code, "NFA_BACKREF2"); break;
case NFA_BACKREF3: STRCPY(code, "NFA_BACKREF3"); break;
case NFA_BACKREF4: STRCPY(code, "NFA_BACKREF4"); break;
case NFA_BACKREF5: STRCPY(code, "NFA_BACKREF5"); break;
case NFA_BACKREF6: STRCPY(code, "NFA_BACKREF6"); break;
case NFA_BACKREF7: STRCPY(code, "NFA_BACKREF7"); break;
case NFA_BACKREF8: STRCPY(code, "NFA_BACKREF8"); break;
case NFA_BACKREF9: STRCPY(code, "NFA_BACKREF9"); break;
case NFA_ZREF1: STRCPY(code, "NFA_ZREF1"); break;
case NFA_ZREF2: STRCPY(code, "NFA_ZREF2"); break;
case NFA_ZREF3: STRCPY(code, "NFA_ZREF3"); break;
case NFA_ZREF4: STRCPY(code, "NFA_ZREF4"); break;
case NFA_ZREF5: STRCPY(code, "NFA_ZREF5"); break;
case NFA_ZREF6: STRCPY(code, "NFA_ZREF6"); break;
case NFA_ZREF7: STRCPY(code, "NFA_ZREF7"); break;
case NFA_ZREF8: STRCPY(code, "NFA_ZREF8"); break;
case NFA_ZREF9: STRCPY(code, "NFA_ZREF9"); break;
case NFA_SKIP: STRCPY(code, "NFA_SKIP"); break;
case NFA_PREV_ATOM_NO_WIDTH:
STRCPY(code, "NFA_PREV_ATOM_NO_WIDTH"); break;
case NFA_PREV_ATOM_NO_WIDTH_NEG:
STRCPY(code, "NFA_PREV_ATOM_NO_WIDTH_NEG"); break;
case NFA_PREV_ATOM_JUST_BEFORE:
STRCPY(code, "NFA_PREV_ATOM_JUST_BEFORE"); break;
case NFA_PREV_ATOM_JUST_BEFORE_NEG:
STRCPY(code, "NFA_PREV_ATOM_JUST_BEFORE_NEG"); break;
case NFA_PREV_ATOM_LIKE_PATTERN:
STRCPY(code, "NFA_PREV_ATOM_LIKE_PATTERN"); break;
case NFA_NOPEN: STRCPY(code, "NFA_NOPEN"); break;
case NFA_NCLOSE: STRCPY(code, "NFA_NCLOSE"); break;
case NFA_START_INVISIBLE: STRCPY(code, "NFA_START_INVISIBLE"); break;
case NFA_START_INVISIBLE_FIRST:
STRCPY(code, "NFA_START_INVISIBLE_FIRST"); break;
case NFA_START_INVISIBLE_NEG:
STRCPY(code, "NFA_START_INVISIBLE_NEG"); break;
case NFA_START_INVISIBLE_NEG_FIRST:
STRCPY(code, "NFA_START_INVISIBLE_NEG_FIRST"); break;
case NFA_START_INVISIBLE_BEFORE:
STRCPY(code, "NFA_START_INVISIBLE_BEFORE"); break;
case NFA_START_INVISIBLE_BEFORE_FIRST:
STRCPY(code, "NFA_START_INVISIBLE_BEFORE_FIRST"); break;
case NFA_START_INVISIBLE_BEFORE_NEG:
STRCPY(code, "NFA_START_INVISIBLE_BEFORE_NEG"); break;
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
STRCPY(code, "NFA_START_INVISIBLE_BEFORE_NEG_FIRST"); break;
case NFA_START_PATTERN: STRCPY(code, "NFA_START_PATTERN"); break;
case NFA_END_INVISIBLE: STRCPY(code, "NFA_END_INVISIBLE"); break;
case NFA_END_INVISIBLE_NEG: STRCPY(code, "NFA_END_INVISIBLE_NEG"); break;
case NFA_END_PATTERN: STRCPY(code, "NFA_END_PATTERN"); break;
case NFA_COMPOSING: STRCPY(code, "NFA_COMPOSING"); break;
case NFA_END_COMPOSING: STRCPY(code, "NFA_END_COMPOSING"); break;
case NFA_OPT_CHARS: STRCPY(code, "NFA_OPT_CHARS"); break;
case NFA_MOPEN:
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
STRCPY(code, "NFA_MOPEN(x)");
code[10] = c - NFA_MOPEN + '0';
break;
case NFA_MCLOSE:
case NFA_MCLOSE1:
case NFA_MCLOSE2:
case NFA_MCLOSE3:
case NFA_MCLOSE4:
case NFA_MCLOSE5:
case NFA_MCLOSE6:
case NFA_MCLOSE7:
case NFA_MCLOSE8:
case NFA_MCLOSE9:
STRCPY(code, "NFA_MCLOSE(x)");
code[11] = c - NFA_MCLOSE + '0';
break;
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
STRCPY(code, "NFA_ZOPEN(x)");
code[10] = c - NFA_ZOPEN + '0';
break;
case NFA_ZCLOSE:
case NFA_ZCLOSE1:
case NFA_ZCLOSE2:
case NFA_ZCLOSE3:
case NFA_ZCLOSE4:
case NFA_ZCLOSE5:
case NFA_ZCLOSE6:
case NFA_ZCLOSE7:
case NFA_ZCLOSE8:
case NFA_ZCLOSE9:
STRCPY(code, "NFA_ZCLOSE(x)");
code[11] = c - NFA_ZCLOSE + '0';
break;
case NFA_EOL: STRCPY(code, "NFA_EOL "); break;
case NFA_BOL: STRCPY(code, "NFA_BOL "); break;
case NFA_EOW: STRCPY(code, "NFA_EOW "); break;
case NFA_BOW: STRCPY(code, "NFA_BOW "); break;
case NFA_EOF: STRCPY(code, "NFA_EOF "); break;
case NFA_BOF: STRCPY(code, "NFA_BOF "); break;
case NFA_LNUM: STRCPY(code, "NFA_LNUM "); break;
case NFA_LNUM_GT: STRCPY(code, "NFA_LNUM_GT "); break;
case NFA_LNUM_LT: STRCPY(code, "NFA_LNUM_LT "); break;
case NFA_COL: STRCPY(code, "NFA_COL "); break;
case NFA_COL_GT: STRCPY(code, "NFA_COL_GT "); break;
case NFA_COL_LT: STRCPY(code, "NFA_COL_LT "); break;
case NFA_VCOL: STRCPY(code, "NFA_VCOL "); break;
case NFA_VCOL_GT: STRCPY(code, "NFA_VCOL_GT "); break;
case NFA_VCOL_LT: STRCPY(code, "NFA_VCOL_LT "); break;
case NFA_MARK: STRCPY(code, "NFA_MARK "); break;
case NFA_MARK_GT: STRCPY(code, "NFA_MARK_GT "); break;
case NFA_MARK_LT: STRCPY(code, "NFA_MARK_LT "); break;
case NFA_CURSOR: STRCPY(code, "NFA_CURSOR "); break;
case NFA_VISUAL: STRCPY(code, "NFA_VISUAL "); break;
case NFA_ANY_COMPOSING: STRCPY(code, "NFA_ANY_COMPOSING "); break;
case NFA_STAR: STRCPY(code, "NFA_STAR "); break;
case NFA_STAR_NONGREEDY: STRCPY(code, "NFA_STAR_NONGREEDY "); break;
case NFA_QUEST: STRCPY(code, "NFA_QUEST"); break;
case NFA_QUEST_NONGREEDY: STRCPY(code, "NFA_QUEST_NON_GREEDY"); break;
case NFA_EMPTY: STRCPY(code, "NFA_EMPTY"); break;
case NFA_OR: STRCPY(code, "NFA_OR"); break;
case NFA_START_COLL: STRCPY(code, "NFA_START_COLL"); break;
case NFA_END_COLL: STRCPY(code, "NFA_END_COLL"); break;
case NFA_START_NEG_COLL: STRCPY(code, "NFA_START_NEG_COLL"); break;
case NFA_END_NEG_COLL: STRCPY(code, "NFA_END_NEG_COLL"); break;
case NFA_RANGE: STRCPY(code, "NFA_RANGE"); break;
case NFA_RANGE_MIN: STRCPY(code, "NFA_RANGE_MIN"); break;
case NFA_RANGE_MAX: STRCPY(code, "NFA_RANGE_MAX"); break;
case NFA_CLASS_ALNUM: STRCPY(code, "NFA_CLASS_ALNUM"); break;
case NFA_CLASS_ALPHA: STRCPY(code, "NFA_CLASS_ALPHA"); break;
case NFA_CLASS_BLANK: STRCPY(code, "NFA_CLASS_BLANK"); break;
case NFA_CLASS_CNTRL: STRCPY(code, "NFA_CLASS_CNTRL"); break;
case NFA_CLASS_DIGIT: STRCPY(code, "NFA_CLASS_DIGIT"); break;
case NFA_CLASS_GRAPH: STRCPY(code, "NFA_CLASS_GRAPH"); break;
case NFA_CLASS_LOWER: STRCPY(code, "NFA_CLASS_LOWER"); break;
case NFA_CLASS_PRINT: STRCPY(code, "NFA_CLASS_PRINT"); break;
case NFA_CLASS_PUNCT: STRCPY(code, "NFA_CLASS_PUNCT"); break;
case NFA_CLASS_SPACE: STRCPY(code, "NFA_CLASS_SPACE"); break;
case NFA_CLASS_UPPER: STRCPY(code, "NFA_CLASS_UPPER"); break;
case NFA_CLASS_XDIGIT: STRCPY(code, "NFA_CLASS_XDIGIT"); break;
case NFA_CLASS_TAB: STRCPY(code, "NFA_CLASS_TAB"); break;
case NFA_CLASS_RETURN: STRCPY(code, "NFA_CLASS_RETURN"); break;
case NFA_CLASS_BACKSPACE: STRCPY(code, "NFA_CLASS_BACKSPACE"); break;
case NFA_CLASS_ESCAPE: STRCPY(code, "NFA_CLASS_ESCAPE"); break;
case NFA_ANY: STRCPY(code, "NFA_ANY"); break;
case NFA_IDENT: STRCPY(code, "NFA_IDENT"); break;
case NFA_SIDENT: STRCPY(code, "NFA_SIDENT"); break;
case NFA_KWORD: STRCPY(code, "NFA_KWORD"); break;
case NFA_SKWORD: STRCPY(code, "NFA_SKWORD"); break;
case NFA_FNAME: STRCPY(code, "NFA_FNAME"); break;
case NFA_SFNAME: STRCPY(code, "NFA_SFNAME"); break;
case NFA_PRINT: STRCPY(code, "NFA_PRINT"); break;
case NFA_SPRINT: STRCPY(code, "NFA_SPRINT"); break;
case NFA_WHITE: STRCPY(code, "NFA_WHITE"); break;
case NFA_NWHITE: STRCPY(code, "NFA_NWHITE"); break;
case NFA_DIGIT: STRCPY(code, "NFA_DIGIT"); break;
case NFA_NDIGIT: STRCPY(code, "NFA_NDIGIT"); break;
case NFA_HEX: STRCPY(code, "NFA_HEX"); break;
case NFA_NHEX: STRCPY(code, "NFA_NHEX"); break;
case NFA_OCTAL: STRCPY(code, "NFA_OCTAL"); break;
case NFA_NOCTAL: STRCPY(code, "NFA_NOCTAL"); break;
case NFA_WORD: STRCPY(code, "NFA_WORD"); break;
case NFA_NWORD: STRCPY(code, "NFA_NWORD"); break;
case NFA_HEAD: STRCPY(code, "NFA_HEAD"); break;
case NFA_NHEAD: STRCPY(code, "NFA_NHEAD"); break;
case NFA_ALPHA: STRCPY(code, "NFA_ALPHA"); break;
case NFA_NALPHA: STRCPY(code, "NFA_NALPHA"); break;
case NFA_LOWER: STRCPY(code, "NFA_LOWER"); break;
case NFA_NLOWER: STRCPY(code, "NFA_NLOWER"); break;
case NFA_UPPER: STRCPY(code, "NFA_UPPER"); break;
case NFA_NUPPER: STRCPY(code, "NFA_NUPPER"); break;
case NFA_LOWER_IC: STRCPY(code, "NFA_LOWER_IC"); break;
case NFA_NLOWER_IC: STRCPY(code, "NFA_NLOWER_IC"); break;
case NFA_UPPER_IC: STRCPY(code, "NFA_UPPER_IC"); break;
case NFA_NUPPER_IC: STRCPY(code, "NFA_NUPPER_IC"); break;
default:
STRCPY(code, "CHAR(x)");
code[5] = c;
}
if (addnl == TRUE)
STRCAT(code, " + NEWLINE ");
}
static FILE *log_fd;
static char_u e_log_open_failed[] = N_(
"Could not open temporary log file for writing, displaying on stderr... ");
/*
* Print the postfix notation of the current regexp.
*/
static void nfa_postfix_dump(char_u *expr, int retval)
{
int *p;
FILE *f;
f = fopen(NFA_REGEXP_DUMP_LOG, "a");
if (f != NULL) {
fprintf(f, "\n-------------------------\n");
if (retval == FAIL) {
fprintf(f, ">>> NFA engine failed... \n");
} else if (retval == OK) {
fprintf(f, ">>> NFA engine succeeded !\n");
}
fprintf(f, "Regexp: \"%s\"\nPostfix notation (char): \"", expr);
for (p = post_start; *p && p < post_ptr; p++) {
nfa_set_code(*p);
fprintf(f, "%s, ", code);
}
fprintf(f, "\"\nPostfix notation (int): ");
for (p = post_start; *p && p < post_ptr; p++)
fprintf(f, "%d ", *p);
fprintf(f, "\n\n");
fclose(f);
}
}
/*
* Print the NFA starting with a root node "state".
*/
static void nfa_print_state(FILE *debugf, nfa_state_T *state)
{
garray_T indent;
ga_init(&indent, 1, 64);
ga_append(&indent, '\0');
nfa_print_state2(debugf, state, &indent);
ga_clear(&indent);
}
static void nfa_print_state2(FILE *debugf, nfa_state_T *state, garray_T *indent)
{
char_u *p;
if (state == NULL)
return;
fprintf(debugf, "(%2d)", abs(state->id));
/* Output indent */
p = (char_u *)indent->ga_data;
if (indent->ga_len >= 3) {
int last = indent->ga_len - 3;
char_u save[2];
STRNCPY(save, &p[last], 2);
STRNCPY(&p[last], "+-", 2);
fprintf(debugf, " %s", p);
STRNCPY(&p[last], save, 2);
} else
fprintf(debugf, " %s", p);
nfa_set_code(state->c);
fprintf(debugf, "%s (%d) (id=%d) val=%d\n",
code,
state->c,
abs(state->id),
state->val);
if (state->id < 0)
return;
state->id = abs(state->id) * -1;
/* grow indent for state->out */
indent->ga_len -= 1;
if (state->out1)
ga_concat(indent, (char_u *)"| ");
else
ga_concat(indent, (char_u *)" ");
ga_append(indent, '\0');
nfa_print_state2(debugf, state->out, indent);
/* replace last part of indent for state->out1 */
indent->ga_len -= 3;
ga_concat(indent, (char_u *)" ");
ga_append(indent, '\0');
nfa_print_state2(debugf, state->out1, indent);
/* shrink indent */
indent->ga_len -= 3;
ga_append(indent, '\0');
}
/*
* Print the NFA state machine.
*/
static void nfa_dump(nfa_regprog_T *prog)
{
FILE *debugf = fopen(NFA_REGEXP_DUMP_LOG, "a");
if (debugf != NULL) {
nfa_print_state(debugf, prog->start);
if (prog->reganch)
fprintf(debugf, "reganch: %d\n", prog->reganch);
if (prog->regstart != NUL)
fprintf(debugf, "regstart: %c (decimal: %d)\n",
prog->regstart, prog->regstart);
if (prog->match_text != NULL)
fprintf(debugf, "match_text: \"%s\"\n", prog->match_text);
fclose(debugf);
}
}
#endif /* REGEXP_DEBUG */
/*
* Parse r.e. @expr and convert it into postfix form.
* Return the postfix string on success, NULL otherwise.
*/
static int *re2post(void)
{
if (nfa_reg(REG_NOPAREN) == FAIL)
return NULL;
EMIT(NFA_MOPEN);
return post_start;
}
/* NB. Some of the code below is inspired by Russ's. */
/*
* Represents an NFA state plus zero or one or two arrows exiting.
* if c == MATCH, no arrows out; matching state.
* If c == SPLIT, unlabeled arrows to out and out1 (if != NULL).
* If c < 256, labeled arrow with character c to out.
*/
static nfa_state_T *state_ptr; /* points to nfa_prog->state */
/*
* Allocate and initialize nfa_state_T.
*/
static nfa_state_T *alloc_state(int c, nfa_state_T *out, nfa_state_T *out1)
{
nfa_state_T *s;
if (istate >= nstate)
return NULL;
s = &state_ptr[istate++];
s->c = c;
s->out = out;
s->out1 = out1;
s->val = 0;
s->id = istate;
s->lastlist[0] = 0;
s->lastlist[1] = 0;
return s;
}
/*
* A partially built NFA without the matching state filled in.
* Frag_T.start points at the start state.
* Frag_T.out is a list of places that need to be set to the
* next state for this fragment.
*/
/*
* Initialize a Frag_T struct and return it.
*/
static Frag_T frag(nfa_state_T *start, Ptrlist *out)
{
Frag_T n;
n.start = start;
n.out = out;
return n;
}
/*
* Create singleton list containing just outp.
*/
static Ptrlist *list1(nfa_state_T **outp)
{
Ptrlist *l;
l = (Ptrlist *)outp;
l->next = NULL;
return l;
}
/*
* Patch the list of states at out to point to start.
*/
static void patch(Ptrlist *l, nfa_state_T *s)
{
Ptrlist *next;
for (; l; l = next) {
next = l->next;
l->s = s;
}
}
/*
* Join the two lists l1 and l2, returning the combination.
*/
static Ptrlist *append(Ptrlist *l1, Ptrlist *l2)
{
Ptrlist *oldl1;
oldl1 = l1;
while (l1->next)
l1 = l1->next;
l1->next = l2;
return oldl1;
}
/*
* Stack used for transforming postfix form into NFA.
*/
static Frag_T empty;
static void st_error(int *postfix, int *end, int *p)
{
#ifdef NFA_REGEXP_ERROR_LOG
FILE *df;
int *p2;
df = fopen(NFA_REGEXP_ERROR_LOG, "a");
if (df) {
fprintf(df, "Error popping the stack!\n");
#ifdef REGEXP_DEBUG
fprintf(df, "Current regexp is \"%s\"\n", nfa_regengine.expr);
#endif
fprintf(df, "Postfix form is: ");
#ifdef REGEXP_DEBUG
for (p2 = postfix; p2 < end; p2++) {
nfa_set_code(*p2);
fprintf(df, "%s, ", code);
}
nfa_set_code(*p);
fprintf(df, "\nCurrent position is: ");
for (p2 = postfix; p2 <= p; p2++) {
nfa_set_code(*p2);
fprintf(df, "%s, ", code);
}
#else
for (p2 = postfix; p2 < end; p2++) {
fprintf(df, "%d, ", *p2);
}
fprintf(df, "\nCurrent position is: ");
for (p2 = postfix; p2 <= p; p2++) {
fprintf(df, "%d, ", *p2);
}
#endif
fprintf(df, "\n--------------------------\n");
fclose(df);
}
#endif
EMSG(_("E874: (NFA) Could not pop the stack!"));
}
/*
* Push an item onto the stack.
*/
static void st_push(Frag_T s, Frag_T **p, Frag_T *stack_end)
{
Frag_T *stackp = *p;
if (stackp >= stack_end)
return;
*stackp = s;
*p = *p + 1;
}
/*
* Pop an item from the stack.
*/
static Frag_T st_pop(Frag_T **p, Frag_T *stack)
{
Frag_T *stackp;
*p = *p - 1;
stackp = *p;
if (stackp < stack)
return empty;
return **p;
}
/*
* Estimate the maximum byte length of anything matching "state".
* When unknown or unlimited return -1.
*/
static int nfa_max_width(nfa_state_T *startstate, int depth)
{
int l, r;
nfa_state_T *state = startstate;
int len = 0;
/* detect looping in a NFA_SPLIT */
if (depth > 4)
return -1;
while (state != NULL) {
switch (state->c) {
case NFA_END_INVISIBLE:
case NFA_END_INVISIBLE_NEG:
/* the end, return what we have */
return len;
case NFA_SPLIT:
/* two alternatives, use the maximum */
l = nfa_max_width(state->out, depth + 1);
r = nfa_max_width(state->out1, depth + 1);
if (l < 0 || r < 0)
return -1;
return len + (l > r ? l : r);
case NFA_ANY:
case NFA_START_COLL:
case NFA_START_NEG_COLL:
// Matches some character, including composing chars.
len += MB_MAXBYTES;
if (state->c != NFA_ANY) {
// Skip over the characters.
state = state->out1->out;
continue;
}
break;
case NFA_DIGIT:
case NFA_WHITE:
case NFA_HEX:
case NFA_OCTAL:
/* ascii */
++len;
break;
case NFA_IDENT:
case NFA_SIDENT:
case NFA_KWORD:
case NFA_SKWORD:
case NFA_FNAME:
case NFA_SFNAME:
case NFA_PRINT:
case NFA_SPRINT:
case NFA_NWHITE:
case NFA_NDIGIT:
case NFA_NHEX:
case NFA_NOCTAL:
case NFA_WORD:
case NFA_NWORD:
case NFA_HEAD:
case NFA_NHEAD:
case NFA_ALPHA:
case NFA_NALPHA:
case NFA_LOWER:
case NFA_NLOWER:
case NFA_UPPER:
case NFA_NUPPER:
case NFA_LOWER_IC:
case NFA_NLOWER_IC:
case NFA_UPPER_IC:
case NFA_NUPPER_IC:
case NFA_ANY_COMPOSING:
/* possibly non-ascii */
if (has_mbyte)
len += 3;
else
++len;
break;
case NFA_START_INVISIBLE:
case NFA_START_INVISIBLE_NEG:
case NFA_START_INVISIBLE_BEFORE:
case NFA_START_INVISIBLE_BEFORE_NEG:
/* zero-width, out1 points to the END state */
state = state->out1->out;
continue;
case NFA_BACKREF1:
case NFA_BACKREF2:
case NFA_BACKREF3:
case NFA_BACKREF4:
case NFA_BACKREF5:
case NFA_BACKREF6:
case NFA_BACKREF7:
case NFA_BACKREF8:
case NFA_BACKREF9:
case NFA_ZREF1:
case NFA_ZREF2:
case NFA_ZREF3:
case NFA_ZREF4:
case NFA_ZREF5:
case NFA_ZREF6:
case NFA_ZREF7:
case NFA_ZREF8:
case NFA_ZREF9:
case NFA_NEWL:
case NFA_SKIP:
/* unknown width */
return -1;
case NFA_BOL:
case NFA_EOL:
case NFA_BOF:
case NFA_EOF:
case NFA_BOW:
case NFA_EOW:
case NFA_MOPEN:
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
case NFA_ZCLOSE:
case NFA_ZCLOSE1:
case NFA_ZCLOSE2:
case NFA_ZCLOSE3:
case NFA_ZCLOSE4:
case NFA_ZCLOSE5:
case NFA_ZCLOSE6:
case NFA_ZCLOSE7:
case NFA_ZCLOSE8:
case NFA_ZCLOSE9:
case NFA_MCLOSE:
case NFA_MCLOSE1:
case NFA_MCLOSE2:
case NFA_MCLOSE3:
case NFA_MCLOSE4:
case NFA_MCLOSE5:
case NFA_MCLOSE6:
case NFA_MCLOSE7:
case NFA_MCLOSE8:
case NFA_MCLOSE9:
case NFA_NOPEN:
case NFA_NCLOSE:
case NFA_LNUM_GT:
case NFA_LNUM_LT:
case NFA_COL_GT:
case NFA_COL_LT:
case NFA_VCOL_GT:
case NFA_VCOL_LT:
case NFA_MARK_GT:
case NFA_MARK_LT:
case NFA_VISUAL:
case NFA_LNUM:
case NFA_CURSOR:
case NFA_COL:
case NFA_VCOL:
case NFA_MARK:
case NFA_ZSTART:
case NFA_ZEND:
case NFA_OPT_CHARS:
case NFA_EMPTY:
case NFA_START_PATTERN:
case NFA_END_PATTERN:
case NFA_COMPOSING:
case NFA_END_COMPOSING:
/* zero-width */
break;
default:
if (state->c < 0)
/* don't know what this is */
return -1;
/* normal character */
len += MB_CHAR2LEN(state->c);
break;
}
/* normal way to continue */
state = state->out;
}
/* unrecognized, "cannot happen" */
return -1;
}
/*
* Convert a postfix form into its equivalent NFA.
* Return the NFA start state on success, NULL otherwise.
*/
static nfa_state_T *post2nfa(int *postfix, int *end, int nfa_calc_size)
{
int *p;
int mopen;
int mclose;
Frag_T *stack = NULL;
Frag_T *stackp = NULL;
Frag_T *stack_end = NULL;
Frag_T e1;
Frag_T e2;
Frag_T e;
nfa_state_T *s;
nfa_state_T *s1;
nfa_state_T *matchstate;
nfa_state_T *ret = NULL;
if (postfix == NULL)
return NULL;
#define PUSH(s) st_push((s), &stackp, stack_end)
#define POP() st_pop(&stackp, stack); \
if (stackp < stack) { \
st_error(postfix, end, p); \
xfree(stack); \
return NULL; \
}
if (nfa_calc_size == false) {
// Allocate space for the stack. Max states on the stack: "nstate".
stack = xmalloc((nstate + 1) * sizeof(Frag_T));
stackp = stack;
stack_end = stack + (nstate + 1);
}
for (p = postfix; p < end; ++p) {
switch (*p) {
case NFA_CONCAT:
/* Concatenation.
* Pay attention: this operator does not exist in the r.e. itself
* (it is implicit, really). It is added when r.e. is translated
* to postfix form in re2post(). */
if (nfa_calc_size == TRUE) {
/* nstate += 0; */
break;
}
e2 = POP();
e1 = POP();
patch(e1.out, e2.start);
PUSH(frag(e1.start, e2.out));
break;
case NFA_OR:
/* Alternation */
if (nfa_calc_size == TRUE) {
nstate++;
break;
}
e2 = POP();
e1 = POP();
s = alloc_state(NFA_SPLIT, e1.start, e2.start);
if (s == NULL)
goto theend;
PUSH(frag(s, append(e1.out, e2.out)));
break;
case NFA_STAR:
/* Zero or more, prefer more */
if (nfa_calc_size == TRUE) {
nstate++;
break;
}
e = POP();
s = alloc_state(NFA_SPLIT, e.start, NULL);
if (s == NULL)
goto theend;
patch(e.out, s);
PUSH(frag(s, list1(&s->out1)));
break;
case NFA_STAR_NONGREEDY:
/* Zero or more, prefer zero */
if (nfa_calc_size == TRUE) {
nstate++;
break;
}
e = POP();
s = alloc_state(NFA_SPLIT, NULL, e.start);
if (s == NULL)
goto theend;
patch(e.out, s);
PUSH(frag(s, list1(&s->out)));
break;
case NFA_QUEST:
/* one or zero atoms=> greedy match */
if (nfa_calc_size == TRUE) {
nstate++;
break;
}
e = POP();
s = alloc_state(NFA_SPLIT, e.start, NULL);
if (s == NULL)
goto theend;
PUSH(frag(s, append(e.out, list1(&s->out1))));
break;
case NFA_QUEST_NONGREEDY:
/* zero or one atoms => non-greedy match */
if (nfa_calc_size == TRUE) {
nstate++;
break;
}
e = POP();
s = alloc_state(NFA_SPLIT, NULL, e.start);
if (s == NULL)
goto theend;
PUSH(frag(s, append(e.out, list1(&s->out))));
break;
case NFA_END_COLL:
case NFA_END_NEG_COLL:
/* On the stack is the sequence starting with NFA_START_COLL or
* NFA_START_NEG_COLL and all possible characters. Patch it to
* add the output to the start. */
if (nfa_calc_size == TRUE) {
nstate++;
break;
}
e = POP();
s = alloc_state(NFA_END_COLL, NULL, NULL);
if (s == NULL)
goto theend;
patch(e.out, s);
e.start->out1 = s;
PUSH(frag(e.start, list1(&s->out)));
break;
case NFA_RANGE:
/* Before this are two characters, the low and high end of a
* range. Turn them into two states with MIN and MAX. */
if (nfa_calc_size == TRUE) {
/* nstate += 0; */
break;
}
e2 = POP();
e1 = POP();
e2.start->val = e2.start->c;
e2.start->c = NFA_RANGE_MAX;
e1.start->val = e1.start->c;
e1.start->c = NFA_RANGE_MIN;
patch(e1.out, e2.start);
PUSH(frag(e1.start, e2.out));
break;
case NFA_EMPTY:
/* 0-length, used in a repetition with max/min count of 0 */
if (nfa_calc_size == TRUE) {
nstate++;
break;
}
s = alloc_state(NFA_EMPTY, NULL, NULL);
if (s == NULL)
goto theend;
PUSH(frag(s, list1(&s->out)));
break;
case NFA_OPT_CHARS:
{
int n;
/* \%[abc] implemented as:
* NFA_SPLIT
* +-CHAR(a)
* | +-NFA_SPLIT
* | +-CHAR(b)
* | | +-NFA_SPLIT
* | | +-CHAR(c)
* | | | +-next
* | | +- next
* | +- next
* +- next
*/
n = *++p; /* get number of characters */
if (nfa_calc_size == TRUE) {
nstate += n;
break;
}
s = NULL; /* avoid compiler warning */
e1.out = NULL; /* stores list with out1's */
s1 = NULL; /* previous NFA_SPLIT to connect to */
while (n-- > 0) {
e = POP(); /* get character */
s = alloc_state(NFA_SPLIT, e.start, NULL);
if (s == NULL)
goto theend;
if (e1.out == NULL)
e1 = e;
patch(e.out, s1);
append(e1.out, list1(&s->out1));
s1 = s;
}
PUSH(frag(s, e1.out));
break;
}
case NFA_PREV_ATOM_NO_WIDTH:
case NFA_PREV_ATOM_NO_WIDTH_NEG:
case NFA_PREV_ATOM_JUST_BEFORE:
case NFA_PREV_ATOM_JUST_BEFORE_NEG:
case NFA_PREV_ATOM_LIKE_PATTERN:
{
int before = (*p == NFA_PREV_ATOM_JUST_BEFORE
|| *p == NFA_PREV_ATOM_JUST_BEFORE_NEG);
int pattern = (*p == NFA_PREV_ATOM_LIKE_PATTERN);
int start_state;
int end_state;
int n = 0;
nfa_state_T *zend;
nfa_state_T *skip;
switch (*p) {
case NFA_PREV_ATOM_NO_WIDTH:
start_state = NFA_START_INVISIBLE;
end_state = NFA_END_INVISIBLE;
break;
case NFA_PREV_ATOM_NO_WIDTH_NEG:
start_state = NFA_START_INVISIBLE_NEG;
end_state = NFA_END_INVISIBLE_NEG;
break;
case NFA_PREV_ATOM_JUST_BEFORE:
start_state = NFA_START_INVISIBLE_BEFORE;
end_state = NFA_END_INVISIBLE;
break;
case NFA_PREV_ATOM_JUST_BEFORE_NEG:
start_state = NFA_START_INVISIBLE_BEFORE_NEG;
end_state = NFA_END_INVISIBLE_NEG;
break;
default: /* NFA_PREV_ATOM_LIKE_PATTERN: */
start_state = NFA_START_PATTERN;
end_state = NFA_END_PATTERN;
break;
}
if (before)
n = *++p; /* get the count */
/* The \@= operator: match the preceding atom with zero width.
* The \@! operator: no match for the preceding atom.
* The \@<= operator: match for the preceding atom.
* The \@<! operator: no match for the preceding atom.
* Surrounds the preceding atom with START_INVISIBLE and
* END_INVISIBLE, similarly to MOPEN. */
if (nfa_calc_size == TRUE) {
nstate += pattern ? 4 : 2;
break;
}
e = POP();
s1 = alloc_state(end_state, NULL, NULL);
if (s1 == NULL)
goto theend;
s = alloc_state(start_state, e.start, s1);
if (s == NULL)
goto theend;
if (pattern) {
/* NFA_ZEND -> NFA_END_PATTERN -> NFA_SKIP -> what follows. */
skip = alloc_state(NFA_SKIP, NULL, NULL);
if (skip == NULL) {
goto theend;
}
zend = alloc_state(NFA_ZEND, s1, NULL);
if (zend == NULL) {
goto theend;
}
s1->out= skip;
patch(e.out, zend);
PUSH(frag(s, list1(&skip->out)));
} else {
patch(e.out, s1);
PUSH(frag(s, list1(&s1->out)));
if (before) {
if (n <= 0)
/* See if we can guess the maximum width, it avoids a
* lot of pointless tries. */
n = nfa_max_width(e.start, 0);
s->val = n; /* store the count */
}
}
break;
}
case NFA_COMPOSING: // char with composing char
FALLTHROUGH;
case NFA_MOPEN: /* \( \) Submatch */
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
case NFA_ZOPEN: /* \z( \) Submatch */
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
case NFA_NOPEN: /* \%( \) "Invisible Submatch" */
if (nfa_calc_size == TRUE) {
nstate += 2;
break;
}
mopen = *p;
switch (*p) {
case NFA_NOPEN: mclose = NFA_NCLOSE; break;
case NFA_ZOPEN: mclose = NFA_ZCLOSE; break;
case NFA_ZOPEN1: mclose = NFA_ZCLOSE1; break;
case NFA_ZOPEN2: mclose = NFA_ZCLOSE2; break;
case NFA_ZOPEN3: mclose = NFA_ZCLOSE3; break;
case NFA_ZOPEN4: mclose = NFA_ZCLOSE4; break;
case NFA_ZOPEN5: mclose = NFA_ZCLOSE5; break;
case NFA_ZOPEN6: mclose = NFA_ZCLOSE6; break;
case NFA_ZOPEN7: mclose = NFA_ZCLOSE7; break;
case NFA_ZOPEN8: mclose = NFA_ZCLOSE8; break;
case NFA_ZOPEN9: mclose = NFA_ZCLOSE9; break;
case NFA_COMPOSING: mclose = NFA_END_COMPOSING; break;
default:
/* NFA_MOPEN, NFA_MOPEN1 .. NFA_MOPEN9 */
mclose = *p + NSUBEXP;
break;
}
/* Allow "NFA_MOPEN" as a valid postfix representation for
* the empty regexp "". In this case, the NFA will be
* NFA_MOPEN -> NFA_MCLOSE. Note that this also allows
* empty groups of parenthesis, and empty mbyte chars */
if (stackp == stack) {
s = alloc_state(mopen, NULL, NULL);
if (s == NULL)
goto theend;
s1 = alloc_state(mclose, NULL, NULL);
if (s1 == NULL)
goto theend;
patch(list1(&s->out), s1);
PUSH(frag(s, list1(&s1->out)));
break;
}
/* At least one node was emitted before NFA_MOPEN, so
* at least one node will be between NFA_MOPEN and NFA_MCLOSE */
e = POP();
s = alloc_state(mopen, e.start, NULL); /* `(' */
if (s == NULL)
goto theend;
s1 = alloc_state(mclose, NULL, NULL); /* `)' */
if (s1 == NULL)
goto theend;
patch(e.out, s1);
if (mopen == NFA_COMPOSING)
/* COMPOSING->out1 = END_COMPOSING */
patch(list1(&s->out1), s1);
PUSH(frag(s, list1(&s1->out)));
break;
case NFA_BACKREF1:
case NFA_BACKREF2:
case NFA_BACKREF3:
case NFA_BACKREF4:
case NFA_BACKREF5:
case NFA_BACKREF6:
case NFA_BACKREF7:
case NFA_BACKREF8:
case NFA_BACKREF9:
case NFA_ZREF1:
case NFA_ZREF2:
case NFA_ZREF3:
case NFA_ZREF4:
case NFA_ZREF5:
case NFA_ZREF6:
case NFA_ZREF7:
case NFA_ZREF8:
case NFA_ZREF9:
if (nfa_calc_size == TRUE) {
nstate += 2;
break;
}
s = alloc_state(*p, NULL, NULL);
if (s == NULL)
goto theend;
s1 = alloc_state(NFA_SKIP, NULL, NULL);
if (s1 == NULL)
goto theend;
patch(list1(&s->out), s1);
PUSH(frag(s, list1(&s1->out)));
break;
case NFA_LNUM:
case NFA_LNUM_GT:
case NFA_LNUM_LT:
case NFA_VCOL:
case NFA_VCOL_GT:
case NFA_VCOL_LT:
case NFA_COL:
case NFA_COL_GT:
case NFA_COL_LT:
case NFA_MARK:
case NFA_MARK_GT:
case NFA_MARK_LT:
{
int n = *++p; /* lnum, col or mark name */
if (nfa_calc_size == TRUE) {
nstate += 1;
break;
}
s = alloc_state(p[-1], NULL, NULL);
if (s == NULL)
goto theend;
s->val = n;
PUSH(frag(s, list1(&s->out)));
break;
}
case NFA_ZSTART:
case NFA_ZEND:
default:
/* Operands */
if (nfa_calc_size == TRUE) {
nstate++;
break;
}
s = alloc_state(*p, NULL, NULL);
if (s == NULL)
goto theend;
PUSH(frag(s, list1(&s->out)));
break;
} /* switch(*p) */
} /* for(p = postfix; *p; ++p) */
if (nfa_calc_size == TRUE) {
nstate++;
goto theend; /* Return value when counting size is ignored anyway */
}
e = POP();
if (stackp != stack) {
xfree(stack);
EMSG_RET_NULL(_("E875: (NFA regexp) (While converting from postfix to NFA),"
"too many states left on stack"));
}
if (istate >= nstate) {
xfree(stack);
EMSG_RET_NULL(_("E876: (NFA regexp) "
"Not enough space to store the whole NFA "));
}
matchstate = &state_ptr[istate++]; /* the match state */
matchstate->c = NFA_MATCH;
matchstate->out = matchstate->out1 = NULL;
matchstate->id = 0;
patch(e.out, matchstate);
ret = e.start;
theend:
xfree(stack);
return ret;
#undef POP1
#undef PUSH1
#undef POP2
#undef PUSH2
#undef POP
#undef PUSH
}
/*
* After building the NFA program, inspect it to add optimization hints.
*/
static void nfa_postprocess(nfa_regprog_T *prog)
{
int i;
int c;
for (i = 0; i < prog->nstate; ++i) {
c = prog->state[i].c;
if (c == NFA_START_INVISIBLE
|| c == NFA_START_INVISIBLE_NEG
|| c == NFA_START_INVISIBLE_BEFORE
|| c == NFA_START_INVISIBLE_BEFORE_NEG) {
int directly;
/* Do it directly when what follows is possibly the end of the
* match. */
if (match_follows(prog->state[i].out1->out, 0))
directly = TRUE;
else {
int ch_invisible = failure_chance(prog->state[i].out, 0);
int ch_follows = failure_chance(prog->state[i].out1->out, 0);
/* Postpone when the invisible match is expensive or has a
* lower chance of failing. */
if (c == NFA_START_INVISIBLE_BEFORE
|| c == NFA_START_INVISIBLE_BEFORE_NEG) {
/* "before" matches are very expensive when
* unbounded, always prefer what follows then,
* unless what follows will always match.
* Otherwise strongly prefer what follows. */
if (prog->state[i].val <= 0 && ch_follows > 0)
directly = FALSE;
else
directly = ch_follows * 10 < ch_invisible;
} else {
/* normal invisible, first do the one with the
* highest failure chance */
directly = ch_follows < ch_invisible;
}
}
if (directly)
/* switch to the _FIRST state */
++prog->state[i].c;
}
}
}
/****************************************************************
* NFA execution code.
****************************************************************/
/* Values for done in nfa_pim_T. */
#define NFA_PIM_UNUSED 0 /* pim not used */
#define NFA_PIM_TODO 1 /* pim not done yet */
#define NFA_PIM_MATCH 2 /* pim executed, matches */
#define NFA_PIM_NOMATCH 3 /* pim executed, no match */
#ifdef REGEXP_DEBUG
static void log_subsexpr(regsubs_T *subs)
{
log_subexpr(&subs->norm);
if (nfa_has_zsubexpr)
log_subexpr(&subs->synt);
}
static void log_subexpr(regsub_T *sub)
{
int j;
for (j = 0; j < sub->in_use; j++)
if (REG_MULTI)
fprintf(log_fd, "*** group %d, start: c=%d, l=%d, end: c=%d, l=%d\n",
j,
sub->list.multi[j].start_col,
(int)sub->list.multi[j].start_lnum,
sub->list.multi[j].end_col,
(int)sub->list.multi[j].end_lnum);
else {
char *s = (char *)sub->list.line[j].start;
char *e = (char *)sub->list.line[j].end;
fprintf(log_fd, "*** group %d, start: \"%s\", end: \"%s\"\n",
j,
s == NULL ? "NULL" : s,
e == NULL ? "NULL" : e);
}
}
static char *pim_info(nfa_pim_T *pim)
{
static char buf[30];
if (pim == NULL || pim->result == NFA_PIM_UNUSED)
buf[0] = NUL;
else {
sprintf(buf, " PIM col %d", REG_MULTI ? (int)pim->end.pos.col
: (int)(pim->end.ptr - reginput));
}
return buf;
}
#endif
// Used during execution: whether a match has been found.
static int nfa_match;
static proftime_T *nfa_time_limit;
static int *nfa_timed_out;
static int nfa_time_count;
// Copy postponed invisible match info from "from" to "to".
static void copy_pim(nfa_pim_T *to, nfa_pim_T *from)
{
to->result = from->result;
to->state = from->state;
copy_sub(&to->subs.norm, &from->subs.norm);
if (nfa_has_zsubexpr)
copy_sub(&to->subs.synt, &from->subs.synt);
to->end = from->end;
}
static void clear_sub(regsub_T *sub)
{
if (REG_MULTI)
/* Use 0xff to set lnum to -1 */
memset(sub->list.multi, 0xff,
sizeof(struct multipos) * nfa_nsubexpr);
else
memset(sub->list.line, 0, sizeof(struct linepos) * nfa_nsubexpr);
sub->in_use = 0;
}
/*
* Copy the submatches from "from" to "to".
*/
static void copy_sub(regsub_T *to, regsub_T *from)
{
to->in_use = from->in_use;
if (from->in_use > 0) {
/* Copy the match start and end positions. */
if (REG_MULTI)
memmove(&to->list.multi[0],
&from->list.multi[0],
sizeof(struct multipos) * from->in_use);
else
memmove(&to->list.line[0],
&from->list.line[0],
sizeof(struct linepos) * from->in_use);
}
}
/*
* Like copy_sub() but exclude the main match.
*/
static void copy_sub_off(regsub_T *to, regsub_T *from)
{
if (to->in_use < from->in_use)
to->in_use = from->in_use;
if (from->in_use > 1) {
/* Copy the match start and end positions. */
if (REG_MULTI)
memmove(&to->list.multi[1],
&from->list.multi[1],
sizeof(struct multipos) * (from->in_use - 1));
else
memmove(&to->list.line[1],
&from->list.line[1],
sizeof(struct linepos) * (from->in_use - 1));
}
}
/*
* Like copy_sub() but only do the end of the main match if \ze is present.
*/
static void copy_ze_off(regsub_T *to, regsub_T *from)
{
if (nfa_has_zend) {
if (REG_MULTI) {
if (from->list.multi[0].end_lnum >= 0){
to->list.multi[0].end_lnum = from->list.multi[0].end_lnum;
to->list.multi[0].end_col = from->list.multi[0].end_col;
}
} else {
if (from->list.line[0].end != NULL)
to->list.line[0].end = from->list.line[0].end;
}
}
}
// Return TRUE if "sub1" and "sub2" have the same start positions.
// When using back-references also check the end position.
static int sub_equal(regsub_T *sub1, regsub_T *sub2)
{
int i;
int todo;
linenr_T s1;
linenr_T s2;
char_u *sp1;
char_u *sp2;
todo = sub1->in_use > sub2->in_use ? sub1->in_use : sub2->in_use;
if (REG_MULTI) {
for (i = 0; i < todo; ++i) {
if (i < sub1->in_use)
s1 = sub1->list.multi[i].start_lnum;
else
s1 = -1;
if (i < sub2->in_use)
s2 = sub2->list.multi[i].start_lnum;
else
s2 = -1;
if (s1 != s2)
return FALSE;
if (s1 != -1 && sub1->list.multi[i].start_col
!= sub2->list.multi[i].start_col)
return FALSE;
if (nfa_has_backref) {
if (i < sub1->in_use) {
s1 = sub1->list.multi[i].end_lnum;
} else {
s1 = -1;
}
if (i < sub2->in_use) {
s2 = sub2->list.multi[i].end_lnum;
} else {
s2 = -1;
}
if (s1 != s2) {
return FALSE;
}
if (s1 != -1
&& sub1->list.multi[i].end_col != sub2->list.multi[i].end_col) {
return FALSE;
}
}
}
} else {
for (i = 0; i < todo; ++i) {
if (i < sub1->in_use)
sp1 = sub1->list.line[i].start;
else
sp1 = NULL;
if (i < sub2->in_use)
sp2 = sub2->list.line[i].start;
else
sp2 = NULL;
if (sp1 != sp2)
return FALSE;
if (nfa_has_backref) {
if (i < sub1->in_use) {
sp1 = sub1->list.line[i].end;
} else {
sp1 = NULL;
}
if (i < sub2->in_use) {
sp2 = sub2->list.line[i].end;
} else {
sp2 = NULL;
}
if (sp1 != sp2) {
return FALSE;
}
}
}
}
return TRUE;
}
#ifdef REGEXP_DEBUG
static void report_state(char *action,
regsub_T *sub,
nfa_state_T *state,
int lid,
nfa_pim_T *pim) {
int col;
if (sub->in_use <= 0)
col = -1;
else if (REG_MULTI)
col = sub->list.multi[0].start_col;
else
col = (int)(sub->list.line[0].start - regline);
nfa_set_code(state->c);
fprintf(log_fd, "> %s state %d to list %d. char %d: %s (start col %d)%s\n",
action, abs(state->id), lid, state->c, code, col,
pim_info(pim));
}
#endif
/*
* Return TRUE if the same state is already in list "l" with the same
* positions as "subs".
*/
static int
has_state_with_pos (
nfa_list_T *l, /* runtime state list */
nfa_state_T *state, /* state to update */
regsubs_T *subs, /* pointers to subexpressions */
nfa_pim_T *pim /* postponed match or NULL */
)
{
nfa_thread_T *thread;
int i;
for (i = 0; i < l->n; ++i) {
thread = &l->t[i];
if (thread->state->id == state->id
&& sub_equal(&thread->subs.norm, &subs->norm)
&& (!nfa_has_zsubexpr
|| sub_equal(&thread->subs.synt, &subs->synt))
&& pim_equal(&thread->pim, pim))
return TRUE;
}
return FALSE;
}
/*
* Return TRUE if "one" and "two" are equal. That includes when both are not
* set.
*/
static int pim_equal(nfa_pim_T *one, nfa_pim_T *two)
{
int one_unused = (one == NULL || one->result == NFA_PIM_UNUSED);
int two_unused = (two == NULL || two->result == NFA_PIM_UNUSED);
if (one_unused)
/* one is unused: equal when two is also unused */
return two_unused;
if (two_unused)
/* one is used and two is not: not equal */
return FALSE;
/* compare the state id */
if (one->state->id != two->state->id)
return FALSE;
/* compare the position */
if (REG_MULTI)
return one->end.pos.lnum == two->end.pos.lnum
&& one->end.pos.col == two->end.pos.col;
return one->end.ptr == two->end.ptr;
}
/*
* Return TRUE if "state" leads to a NFA_MATCH without advancing the input.
*/
static int match_follows(nfa_state_T *startstate, int depth)
{
nfa_state_T *state = startstate;
/* avoid too much recursion */
if (depth > 10)
return FALSE;
while (state != NULL) {
switch (state->c) {
case NFA_MATCH:
case NFA_MCLOSE:
case NFA_END_INVISIBLE:
case NFA_END_INVISIBLE_NEG:
case NFA_END_PATTERN:
return TRUE;
case NFA_SPLIT:
return match_follows(state->out, depth + 1)
|| match_follows(state->out1, depth + 1);
case NFA_START_INVISIBLE:
case NFA_START_INVISIBLE_FIRST:
case NFA_START_INVISIBLE_BEFORE:
case NFA_START_INVISIBLE_BEFORE_FIRST:
case NFA_START_INVISIBLE_NEG:
case NFA_START_INVISIBLE_NEG_FIRST:
case NFA_START_INVISIBLE_BEFORE_NEG:
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
case NFA_COMPOSING:
/* skip ahead to next state */
state = state->out1->out;
continue;
case NFA_ANY:
case NFA_ANY_COMPOSING:
case NFA_IDENT:
case NFA_SIDENT:
case NFA_KWORD:
case NFA_SKWORD:
case NFA_FNAME:
case NFA_SFNAME:
case NFA_PRINT:
case NFA_SPRINT:
case NFA_WHITE:
case NFA_NWHITE:
case NFA_DIGIT:
case NFA_NDIGIT:
case NFA_HEX:
case NFA_NHEX:
case NFA_OCTAL:
case NFA_NOCTAL:
case NFA_WORD:
case NFA_NWORD:
case NFA_HEAD:
case NFA_NHEAD:
case NFA_ALPHA:
case NFA_NALPHA:
case NFA_LOWER:
case NFA_NLOWER:
case NFA_UPPER:
case NFA_NUPPER:
case NFA_LOWER_IC:
case NFA_NLOWER_IC:
case NFA_UPPER_IC:
case NFA_NUPPER_IC:
case NFA_START_COLL:
case NFA_START_NEG_COLL:
case NFA_NEWL:
/* state will advance input */
return FALSE;
default:
if (state->c > 0)
/* state will advance input */
return FALSE;
/* Others: zero-width or possibly zero-width, might still find
* a match at the same position, keep looking. */
break;
}
state = state->out;
}
return FALSE;
}
/*
* Return TRUE if "state" is already in list "l".
*/
static int
state_in_list (
nfa_list_T *l, /* runtime state list */
nfa_state_T *state, /* state to update */
regsubs_T *subs /* pointers to subexpressions */
)
{
if (state->lastlist[nfa_ll_index] == l->id) {
if (!nfa_has_backref || has_state_with_pos(l, state, subs, NULL))
return TRUE;
}
return FALSE;
}
// Offset used for "off" by addstate_here().
#define ADDSTATE_HERE_OFFSET 10
// Add "state" and possibly what follows to state list ".".
// Returns "subs_arg", possibly copied into temp_subs.
// Returns NULL when recursiveness is too deep.
static regsubs_T *addstate(
nfa_list_T *l, // runtime state list
nfa_state_T *state, // state to update
regsubs_T *subs_arg, // pointers to subexpressions
nfa_pim_T *pim, // postponed look-behind match
int off_arg) // byte offset, when -1 go to next line
FUNC_ATTR_NONNULL_ARG(1, 2) FUNC_ATTR_WARN_UNUSED_RESULT
{
int subidx;
int off = off_arg;
int add_here = FALSE;
int listindex = 0;
int k;
int found = FALSE;
nfa_thread_T *thread;
struct multipos save_multipos;
int save_in_use;
char_u *save_ptr;
int i;
regsub_T *sub;
regsubs_T *subs = subs_arg;
static regsubs_T temp_subs;
#ifdef REGEXP_DEBUG
int did_print = FALSE;
#endif
static int depth = 0;
// This function is called recursively. When the depth is too much we run
// out of stack and crash, limit recursiveness here.
if (++depth >= 5000 || subs == NULL) {
depth--;
return NULL;
}
if (off_arg <= -ADDSTATE_HERE_OFFSET) {
add_here = true;
off = 0;
listindex = -(off_arg + ADDSTATE_HERE_OFFSET);
}
switch (state->c) {
case NFA_NCLOSE:
case NFA_MCLOSE:
case NFA_MCLOSE1:
case NFA_MCLOSE2:
case NFA_MCLOSE3:
case NFA_MCLOSE4:
case NFA_MCLOSE5:
case NFA_MCLOSE6:
case NFA_MCLOSE7:
case NFA_MCLOSE8:
case NFA_MCLOSE9:
case NFA_ZCLOSE:
case NFA_ZCLOSE1:
case NFA_ZCLOSE2:
case NFA_ZCLOSE3:
case NFA_ZCLOSE4:
case NFA_ZCLOSE5:
case NFA_ZCLOSE6:
case NFA_ZCLOSE7:
case NFA_ZCLOSE8:
case NFA_ZCLOSE9:
case NFA_MOPEN:
case NFA_ZEND:
case NFA_SPLIT:
case NFA_EMPTY:
/* These nodes are not added themselves but their "out" and/or
* "out1" may be added below. */
break;
case NFA_BOL:
case NFA_BOF:
/* "^" won't match past end-of-line, don't bother trying.
* Except when at the end of the line, or when we are going to the
* next line for a look-behind match. */
if (reginput > regline
&& *reginput != NUL
&& (nfa_endp == NULL
|| !REG_MULTI
|| reglnum == nfa_endp->se_u.pos.lnum))
goto skip_add;
FALLTHROUGH;
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
case NFA_NOPEN:
case NFA_ZSTART:
/* These nodes need to be added so that we can bail out when it
* was added to this list before at the same position to avoid an
* endless loop for "\(\)*" */
default:
if (state->lastlist[nfa_ll_index] == l->id && state->c != NFA_SKIP) {
/* This state is already in the list, don't add it again,
* unless it is an MOPEN that is used for a backreference or
* when there is a PIM. For NFA_MATCH check the position,
* lower position is preferred. */
if (!nfa_has_backref && pim == NULL && !l->has_pim
&& state->c != NFA_MATCH) {
/* When called from addstate_here() do insert before
* existing states. */
if (add_here) {
for (k = 0; k < l->n && k < listindex; ++k) {
if (l->t[k].state->id == state->id) {
found = TRUE;
break;
}
}
}
if (!add_here || found) {
skip_add:
#ifdef REGEXP_DEBUG
nfa_set_code(state->c);
fprintf(log_fd, "> Not adding state %d to list %d. char %d: %s pim: %s has_pim: %d found: %d\n",
abs(state->id), l->id, state->c, code,
pim == NULL ? "NULL" : "yes", l->has_pim, found);
#endif
depth--;
return subs;
}
}
/* Do not add the state again when it exists with the same
* positions. */
if (has_state_with_pos(l, state, subs, pim))
goto skip_add;
}
// When there are backreferences or PIMs the number of states may
// be (a lot) bigger than anticipated.
if (l->n == l->len) {
const int newlen = l->len * 3 / 2 + 50;
const size_t newsize = newlen * sizeof(nfa_thread_T);
if ((long)(newsize >> 10) >= p_mmp) {
EMSG(_(e_maxmempat));
depth--;
return NULL;
}
if (subs != &temp_subs) {
/* "subs" may point into the current array, need to make a
* copy before it becomes invalid. */
copy_sub(&temp_subs.norm, &subs->norm);
if (nfa_has_zsubexpr)
copy_sub(&temp_subs.synt, &subs->synt);
subs = &temp_subs;
}
nfa_thread_T *const newt = xrealloc(l->t, newsize);
l->t = newt;
l->len = newlen;
}
/* add the state to the list */
state->lastlist[nfa_ll_index] = l->id;
thread = &l->t[l->n++];
thread->state = state;
if (pim == NULL)
thread->pim.result = NFA_PIM_UNUSED;
else {
copy_pim(&thread->pim, pim);
l->has_pim = TRUE;
}
copy_sub(&thread->subs.norm, &subs->norm);
if (nfa_has_zsubexpr)
copy_sub(&thread->subs.synt, &subs->synt);
#ifdef REGEXP_DEBUG
report_state("Adding", &thread->subs.norm, state, l->id, pim);
did_print = TRUE;
#endif
}
#ifdef REGEXP_DEBUG
if (!did_print)
report_state("Processing", &subs->norm, state, l->id, pim);
#endif
switch (state->c) {
case NFA_MATCH:
break;
case NFA_SPLIT:
/* order matters here */
subs = addstate(l, state->out, subs, pim, off_arg);
subs = addstate(l, state->out1, subs, pim, off_arg);
break;
case NFA_EMPTY:
case NFA_NOPEN:
case NFA_NCLOSE:
subs = addstate(l, state->out, subs, pim, off_arg);
break;
case NFA_MOPEN:
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
case NFA_ZSTART:
if (state->c == NFA_ZSTART) {
subidx = 0;
sub = &subs->norm;
} else if (state->c >= NFA_ZOPEN && state->c <= NFA_ZOPEN9) { // -V560
subidx = state->c - NFA_ZOPEN;
sub = &subs->synt;
} else {
subidx = state->c - NFA_MOPEN;
sub = &subs->norm;
}
/* avoid compiler warnings */
save_ptr = NULL;
memset(&save_multipos, 0, sizeof(save_multipos));
/* Set the position (with "off" added) in the subexpression. Save
* and restore it when it was in use. Otherwise fill any gap. */
if (REG_MULTI) {
if (subidx < sub->in_use) {
save_multipos = sub->list.multi[subidx];
save_in_use = -1;
} else {
save_in_use = sub->in_use;
for (i = sub->in_use; i < subidx; ++i) {
sub->list.multi[i].start_lnum = -1;
sub->list.multi[i].end_lnum = -1;
}
sub->in_use = subidx + 1;
}
if (off == -1) {
sub->list.multi[subidx].start_lnum = reglnum + 1;
sub->list.multi[subidx].start_col = 0;
} else {
sub->list.multi[subidx].start_lnum = reglnum;
sub->list.multi[subidx].start_col =
(colnr_T)(reginput - regline + off);
}
sub->list.multi[subidx].end_lnum = -1;
} else {
if (subidx < sub->in_use) {
save_ptr = sub->list.line[subidx].start;
save_in_use = -1;
} else {
save_in_use = sub->in_use;
for (i = sub->in_use; i < subidx; ++i) {
sub->list.line[i].start = NULL;
sub->list.line[i].end = NULL;
}
sub->in_use = subidx + 1;
}
sub->list.line[subidx].start = reginput + off;
}
subs = addstate(l, state->out, subs, pim, off_arg);
if (subs == NULL) {
break;
}
// "subs" may have changed, need to set "sub" again.
if (state->c >= NFA_ZOPEN && state->c <= NFA_ZOPEN9) { // -V560
sub = &subs->synt;
} else {
sub = &subs->norm;
}
if (save_in_use == -1) {
if (REG_MULTI) {
sub->list.multi[subidx] = save_multipos;
}
else
sub->list.line[subidx].start = save_ptr;
} else
sub->in_use = save_in_use;
break;
case NFA_MCLOSE:
if (nfa_has_zend && (REG_MULTI
? subs->norm.list.multi[0].end_lnum >= 0
: subs->norm.list.line[0].end != NULL)) {
// Do not overwrite the position set by \ze.
subs = addstate(l, state->out, subs, pim, off_arg);
break;
}
FALLTHROUGH;
case NFA_MCLOSE1:
case NFA_MCLOSE2:
case NFA_MCLOSE3:
case NFA_MCLOSE4:
case NFA_MCLOSE5:
case NFA_MCLOSE6:
case NFA_MCLOSE7:
case NFA_MCLOSE8:
case NFA_MCLOSE9:
case NFA_ZCLOSE:
case NFA_ZCLOSE1:
case NFA_ZCLOSE2:
case NFA_ZCLOSE3:
case NFA_ZCLOSE4:
case NFA_ZCLOSE5:
case NFA_ZCLOSE6:
case NFA_ZCLOSE7:
case NFA_ZCLOSE8:
case NFA_ZCLOSE9:
case NFA_ZEND:
if (state->c == NFA_ZEND) {
subidx = 0;
sub = &subs->norm;
} else if (state->c >= NFA_ZCLOSE && state->c <= NFA_ZCLOSE9) { // -V560
subidx = state->c - NFA_ZCLOSE;
sub = &subs->synt;
} else {
subidx = state->c - NFA_MCLOSE;
sub = &subs->norm;
}
/* We don't fill in gaps here, there must have been an MOPEN that
* has done that. */
save_in_use = sub->in_use;
if (sub->in_use <= subidx)
sub->in_use = subidx + 1;
if (REG_MULTI) {
save_multipos = sub->list.multi[subidx];
if (off == -1) {
sub->list.multi[subidx].end_lnum = reglnum + 1;
sub->list.multi[subidx].end_col = 0;
} else {
sub->list.multi[subidx].end_lnum = reglnum;
sub->list.multi[subidx].end_col =
(colnr_T)(reginput - regline + off);
}
/* avoid compiler warnings */
save_ptr = NULL;
} else {
save_ptr = sub->list.line[subidx].end;
sub->list.line[subidx].end = reginput + off;
// avoid compiler warnings
memset(&save_multipos, 0, sizeof(save_multipos));
}
subs = addstate(l, state->out, subs, pim, off_arg);
if (subs == NULL) {
break;
}
// "subs" may have changed, need to set "sub" again.
if (state->c >= NFA_ZCLOSE && state->c <= NFA_ZCLOSE9) { // -V560
sub = &subs->synt;
} else {
sub = &subs->norm;
}
if (REG_MULTI) {
sub->list.multi[subidx] = save_multipos;
}
else
sub->list.line[subidx].end = save_ptr;
sub->in_use = save_in_use;
break;
}
depth--;
return subs;
}
/*
* Like addstate(), but the new state(s) are put at position "*ip".
* Used for zero-width matches, next state to use is the added one.
* This makes sure the order of states to be tried does not change, which
* matters for alternatives.
*/
static regsubs_T *addstate_here(
nfa_list_T *l, // runtime state list
nfa_state_T *state, // state to update
regsubs_T *subs, // pointers to subexpressions
nfa_pim_T *pim, // postponed look-behind match
int *ip
)
FUNC_ATTR_NONNULL_ARG(1, 2, 5) FUNC_ATTR_WARN_UNUSED_RESULT
{
int tlen = l->n;
int count;
int listidx = *ip;
/* First add the state(s) at the end, so that we know how many there are.
* Pass the listidx as offset (avoids adding another argument to
* addstate(). */
regsubs_T *r = addstate(l, state, subs, pim, -listidx - ADDSTATE_HERE_OFFSET);
if (r == NULL) {
return NULL;
}
// when "*ip" was at the end of the list, nothing to do
if (listidx + 1 == tlen) {
return r;
}
// re-order to put the new state at the current position
count = l->n - tlen;
if (count == 0) {
return r; // no state got added
}
if (count == 1) {
// overwrite the current state
l->t[listidx] = l->t[l->n - 1];
} else if (count > 1) {
if (l->n + count - 1 >= l->len) {
/* not enough space to move the new states, reallocate the list
* and move the states to the right position */
const int newlen = l->len * 3 / 2 + 50;
const size_t newsize = newlen * sizeof(nfa_thread_T);
if ((long)(newsize >> 10) >= p_mmp) {
EMSG(_(e_maxmempat));
return NULL;
}
nfa_thread_T *const newl = xmalloc(newsize);
l->len = newlen;
memmove(&(newl[0]),
&(l->t[0]),
sizeof(nfa_thread_T) * listidx);
memmove(&(newl[listidx]),
&(l->t[l->n - count]),
sizeof(nfa_thread_T) * count);
memmove(&(newl[listidx + count]),
&(l->t[listidx + 1]),
sizeof(nfa_thread_T) * (l->n - count - listidx - 1));
xfree(l->t);
l->t = newl;
} else {
/* make space for new states, then move them from the
* end to the current position */
memmove(&(l->t[listidx + count]),
&(l->t[listidx + 1]),
sizeof(nfa_thread_T) * (l->n - listidx - 1));
memmove(&(l->t[listidx]),
&(l->t[l->n - 1]),
sizeof(nfa_thread_T) * count);
}
}
--l->n;
*ip = listidx - 1;
return r;
}
/*
* Check character class "class" against current character c.
*/
static int check_char_class(int class, int c)
{
switch (class) {
case NFA_CLASS_ALNUM:
if (c >= 1 && c < 128 && isalnum(c)) {
return OK;
}
break;
case NFA_CLASS_ALPHA:
if (c >= 1 && c < 128 && isalpha(c)) {
return OK;
}
break;
case NFA_CLASS_BLANK:
if (c == ' ' || c == '\t')
return OK;
break;
case NFA_CLASS_CNTRL:
if (c >= 1 && c <= 127 && iscntrl(c)) {
return OK;
}
break;
case NFA_CLASS_DIGIT:
if (ascii_isdigit(c))
return OK;
break;
case NFA_CLASS_GRAPH:
if (c >= 1 && c <= 127 && isgraph(c)) {
return OK;
}
break;
case NFA_CLASS_LOWER:
if (mb_islower(c) && c != 170 && c != 186) {
return OK;
}
break;
case NFA_CLASS_PRINT:
if (vim_isprintc(c))
return OK;
break;
case NFA_CLASS_PUNCT:
if (c >= 1 && c < 128 && ispunct(c)) {
return OK;
}
break;
case NFA_CLASS_SPACE:
if ((c >= 9 && c <= 13) || (c == ' '))
return OK;
break;
case NFA_CLASS_UPPER:
if (mb_isupper(c)) {
return OK;
}
break;
case NFA_CLASS_XDIGIT:
if (ascii_isxdigit(c))
return OK;
break;
case NFA_CLASS_TAB:
if (c == '\t')
return OK;
break;
case NFA_CLASS_RETURN:
if (c == '\r')
return OK;
break;
case NFA_CLASS_BACKSPACE:
if (c == '\b')
return OK;
break;
case NFA_CLASS_ESCAPE:
if (c == ESC) {
return OK;
}
break;
default:
// should not be here :P
IEMSGN(_(e_ill_char_class), class);
return FAIL;
}
return FAIL;
}
/*
* Check for a match with subexpression "subidx".
* Return TRUE if it matches.
*/
static int
match_backref (
regsub_T *sub, /* pointers to subexpressions */
int subidx,
int *bytelen /* out: length of match in bytes */
)
{
int len;
if (sub->in_use <= subidx) {
retempty:
/* backref was not set, match an empty string */
*bytelen = 0;
return TRUE;
}
if (REG_MULTI) {
if (sub->list.multi[subidx].start_lnum < 0
|| sub->list.multi[subidx].end_lnum < 0)
goto retempty;
if (sub->list.multi[subidx].start_lnum == reglnum
&& sub->list.multi[subidx].end_lnum == reglnum) {
len = sub->list.multi[subidx].end_col
- sub->list.multi[subidx].start_col;
if (cstrncmp(regline + sub->list.multi[subidx].start_col,
reginput, &len) == 0) {
*bytelen = len;
return TRUE;
}
} else {
if (match_with_backref(
sub->list.multi[subidx].start_lnum,
sub->list.multi[subidx].start_col,
sub->list.multi[subidx].end_lnum,
sub->list.multi[subidx].end_col,
bytelen) == RA_MATCH)
return TRUE;
}
} else {
if (sub->list.line[subidx].start == NULL
|| sub->list.line[subidx].end == NULL)
goto retempty;
len = (int)(sub->list.line[subidx].end - sub->list.line[subidx].start);
if (cstrncmp(sub->list.line[subidx].start, reginput, &len) == 0) {
*bytelen = len;
return TRUE;
}
}
return FALSE;
}
/*
* Check for a match with \z subexpression "subidx".
* Return TRUE if it matches.
*/
static int
match_zref (
int subidx,
int *bytelen /* out: length of match in bytes */
)
{
int len;
cleanup_zsubexpr();
if (re_extmatch_in == NULL || re_extmatch_in->matches[subidx] == NULL) {
/* backref was not set, match an empty string */
*bytelen = 0;
return TRUE;
}
len = (int)STRLEN(re_extmatch_in->matches[subidx]);
if (cstrncmp(re_extmatch_in->matches[subidx], reginput, &len) == 0) {
*bytelen = len;
return TRUE;
}
return FALSE;
}
/*
* Save list IDs for all NFA states of "prog" into "list".
* Also reset the IDs to zero.
* Only used for the recursive value lastlist[1].
*/
static void nfa_save_listids(nfa_regprog_T *prog, int *list)
{
int i;
nfa_state_T *p;
/* Order in the list is reverse, it's a bit faster that way. */
p = &prog->state[0];
for (i = prog->nstate; --i >= 0; ) {
list[i] = p->lastlist[1];
p->lastlist[1] = 0;
++p;
}
}
/*
* Restore list IDs from "list" to all NFA states.
*/
static void nfa_restore_listids(nfa_regprog_T *prog, int *list)
{
int i;
nfa_state_T *p;
p = &prog->state[0];
for (i = prog->nstate; --i >= 0; ) {
p->lastlist[1] = list[i];
++p;
}
}
static bool nfa_re_num_cmp(uintmax_t val, int op, uintmax_t pos)
{
if (op == 1) return pos > val;
if (op == 2) return pos < val;
return val == pos;
}
/*
* Recursively call nfa_regmatch()
* "pim" is NULL or contains info about a Postponed Invisible Match (start
* position).
*/
static int recursive_regmatch(
nfa_state_T *state, nfa_pim_T *pim, nfa_regprog_T *prog,
regsubs_T *submatch, regsubs_T *m, int **listids, int *listids_len)
{
int save_reginput_col = (int)(reginput - regline);
int save_reglnum = reglnum;
int save_nfa_match = nfa_match;
int save_nfa_listid = nfa_listid;
save_se_T *save_nfa_endp = nfa_endp;
save_se_T endpos;
save_se_T *endposp = NULL;
int result;
int need_restore = FALSE;
if (pim != NULL) {
/* start at the position where the postponed match was */
if (REG_MULTI)
reginput = regline + pim->end.pos.col;
else
reginput = pim->end.ptr;
}
if (state->c == NFA_START_INVISIBLE_BEFORE
|| state->c == NFA_START_INVISIBLE_BEFORE_FIRST
|| state->c == NFA_START_INVISIBLE_BEFORE_NEG
|| state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST) {
/* The recursive match must end at the current position. When "pim" is
* not NULL it specifies the current position. */
endposp = &endpos;
if (REG_MULTI) {
if (pim == NULL) {
endpos.se_u.pos.col = (int)(reginput - regline);
endpos.se_u.pos.lnum = reglnum;
} else
endpos.se_u.pos = pim->end.pos;
} else {
if (pim == NULL)
endpos.se_u.ptr = reginput;
else
endpos.se_u.ptr = pim->end.ptr;
}
/* Go back the specified number of bytes, or as far as the
* start of the previous line, to try matching "\@<=" or
* not matching "\@<!". This is very inefficient, limit the number of
* bytes if possible. */
if (state->val <= 0) {
if (REG_MULTI) {
regline = reg_getline(--reglnum);
if (regline == NULL)
/* can't go before the first line */
regline = reg_getline(++reglnum);
}
reginput = regline;
} else {
if (REG_MULTI && (int)(reginput - regline) < state->val) {
/* Not enough bytes in this line, go to end of
* previous line. */
regline = reg_getline(--reglnum);
if (regline == NULL) {
/* can't go before the first line */
regline = reg_getline(++reglnum);
reginput = regline;
} else
reginput = regline + STRLEN(regline);
}
if ((int)(reginput - regline) >= state->val) {
reginput -= state->val;
reginput -= utf_head_off(regline, reginput);
} else {
reginput = regline;
}
}
}
#ifdef REGEXP_DEBUG
if (log_fd != stderr)
fclose(log_fd);
log_fd = NULL;
#endif
/* Have to clear the lastlist field of the NFA nodes, so that
* nfa_regmatch() and addstate() can run properly after recursion. */
if (nfa_ll_index == 1) {
/* Already calling nfa_regmatch() recursively. Save the lastlist[1]
* values and clear them. */
if (*listids == NULL || *listids_len < nstate) {
xfree(*listids);
*listids = xmalloc(sizeof(**listids) * nstate);
*listids_len = nstate;
}
nfa_save_listids(prog, *listids);
need_restore = TRUE;
/* any value of nfa_listid will do */
} else {
/* First recursive nfa_regmatch() call, switch to the second lastlist
* entry. Make sure nfa_listid is different from a previous recursive
* call, because some states may still have this ID. */
++nfa_ll_index;
if (nfa_listid <= nfa_alt_listid)
nfa_listid = nfa_alt_listid;
}
/* Call nfa_regmatch() to check if the current concat matches at this
* position. The concat ends with the node NFA_END_INVISIBLE */
nfa_endp = endposp;
result = nfa_regmatch(prog, state->out, submatch, m);
if (need_restore)
nfa_restore_listids(prog, *listids);
else {
--nfa_ll_index;
nfa_alt_listid = nfa_listid;
}
/* restore position in input text */
reglnum = save_reglnum;
if (REG_MULTI)
regline = reg_getline(reglnum);
reginput = regline + save_reginput_col;
if (result != NFA_TOO_EXPENSIVE) {
nfa_match = save_nfa_match;
nfa_listid = save_nfa_listid;
}
nfa_endp = save_nfa_endp;
#ifdef REGEXP_DEBUG
log_fd = fopen(NFA_REGEXP_RUN_LOG, "a");
if (log_fd != NULL) {
fprintf(log_fd, "****************************\n");
fprintf(log_fd, "FINISHED RUNNING nfa_regmatch() recursively\n");
fprintf(log_fd, "MATCH = %s\n", !result ? "FALSE" : "OK");
fprintf(log_fd, "****************************\n");
} else {
EMSG(_(e_log_open_failed));
log_fd = stderr;
}
#endif
return result;
}
/*
* Estimate the chance of a match with "state" failing.
* empty match: 0
* NFA_ANY: 1
* specific character: 99
*/
static int failure_chance(nfa_state_T *state, int depth)
{
int c = state->c;
int l, r;
/* detect looping */
if (depth > 4)
return 1;
switch (c) {
case NFA_SPLIT:
if (state->out->c == NFA_SPLIT || state->out1->c == NFA_SPLIT)
/* avoid recursive stuff */
return 1;
/* two alternatives, use the lowest failure chance */
l = failure_chance(state->out, depth + 1);
r = failure_chance(state->out1, depth + 1);
return l < r ? l : r;
case NFA_ANY:
/* matches anything, unlikely to fail */
return 1;
case NFA_MATCH:
case NFA_MCLOSE:
case NFA_ANY_COMPOSING:
/* empty match works always */
return 0;
case NFA_START_INVISIBLE:
case NFA_START_INVISIBLE_FIRST:
case NFA_START_INVISIBLE_NEG:
case NFA_START_INVISIBLE_NEG_FIRST:
case NFA_START_INVISIBLE_BEFORE:
case NFA_START_INVISIBLE_BEFORE_FIRST:
case NFA_START_INVISIBLE_BEFORE_NEG:
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
case NFA_START_PATTERN:
/* recursive regmatch is expensive, use low failure chance */
return 5;
case NFA_BOL:
case NFA_EOL:
case NFA_BOF:
case NFA_EOF:
case NFA_NEWL:
return 99;
case NFA_BOW:
case NFA_EOW:
return 90;
case NFA_MOPEN:
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
case NFA_ZCLOSE:
case NFA_ZCLOSE1:
case NFA_ZCLOSE2:
case NFA_ZCLOSE3:
case NFA_ZCLOSE4:
case NFA_ZCLOSE5:
case NFA_ZCLOSE6:
case NFA_ZCLOSE7:
case NFA_ZCLOSE8:
case NFA_ZCLOSE9:
case NFA_NOPEN:
case NFA_MCLOSE1:
case NFA_MCLOSE2:
case NFA_MCLOSE3:
case NFA_MCLOSE4:
case NFA_MCLOSE5:
case NFA_MCLOSE6:
case NFA_MCLOSE7:
case NFA_MCLOSE8:
case NFA_MCLOSE9:
case NFA_NCLOSE:
return failure_chance(state->out, depth + 1);
case NFA_BACKREF1:
case NFA_BACKREF2:
case NFA_BACKREF3:
case NFA_BACKREF4:
case NFA_BACKREF5:
case NFA_BACKREF6:
case NFA_BACKREF7:
case NFA_BACKREF8:
case NFA_BACKREF9:
case NFA_ZREF1:
case NFA_ZREF2:
case NFA_ZREF3:
case NFA_ZREF4:
case NFA_ZREF5:
case NFA_ZREF6:
case NFA_ZREF7:
case NFA_ZREF8:
case NFA_ZREF9:
/* backreferences don't match in many places */
return 94;
case NFA_LNUM_GT:
case NFA_LNUM_LT:
case NFA_COL_GT:
case NFA_COL_LT:
case NFA_VCOL_GT:
case NFA_VCOL_LT:
case NFA_MARK_GT:
case NFA_MARK_LT:
case NFA_VISUAL:
/* before/after positions don't match very often */
return 85;
case NFA_LNUM:
return 90;
case NFA_CURSOR:
case NFA_COL:
case NFA_VCOL:
case NFA_MARK:
/* specific positions rarely match */
return 98;
case NFA_COMPOSING:
return 95;
default:
if (c > 0)
/* character match fails often */
return 95;
}
/* something else, includes character classes */
return 50;
}
/*
* Skip until the char "c" we know a match must start with.
*/
static int skip_to_start(int c, colnr_T *colp)
{
const char_u *const s = cstrchr(regline + *colp, c);
if (s == NULL) {
return FAIL;
}
*colp = (int)(s - regline);
return OK;
}
/*
* Check for a match with match_text.
* Called after skip_to_start() has found regstart.
* Returns zero for no match, 1 for a match.
*/
static long find_match_text(colnr_T startcol, int regstart, char_u *match_text)
{
#define PTR2LEN(x) utf_ptr2len(x)
colnr_T col = startcol;
int regstart_len = PTR2LEN(regline + startcol);
for (;;) {
bool match = true;
char_u *s1 = match_text;
char_u *s2 = regline + col + regstart_len; // skip regstart
while (*s1) {
int c1_len = PTR2LEN(s1);
int c1 = PTR2CHAR(s1);
int c2_len = PTR2LEN(s2);
int c2 = PTR2CHAR(s2);
if ((c1 != c2 && (!rex.reg_ic || utf_fold(c1) != utf_fold(c2)))
|| c1_len != c2_len) {
match = false;
break;
}
s1 += c1_len;
s2 += c2_len;
}
if (match
// check that no composing char follows
&& !(enc_utf8 && utf_iscomposing(PTR2CHAR(s2)))) {
cleanup_subexpr();
if (REG_MULTI) {
rex.reg_startpos[0].lnum = reglnum;
rex.reg_startpos[0].col = col;
rex.reg_endpos[0].lnum = reglnum;
rex.reg_endpos[0].col = s2 - regline;
} else {
rex.reg_startp[0] = regline + col;
rex.reg_endp[0] = s2;
}
return 1L;
}
// Try finding regstart after the current match.
col += regstart_len; // skip regstart
if (skip_to_start(regstart, &col) == FAIL) {
break;
}
}
return 0L;
#undef PTR2LEN
}
static int nfa_did_time_out(void)
{
if (nfa_time_limit != NULL && profile_passed_limit(*nfa_time_limit)) {
if (nfa_timed_out != NULL) {
*nfa_timed_out = true;
}
return true;
}
return false;
}
/// Main matching routine.
///
/// Run NFA to determine whether it matches reginput.
///
/// When "nfa_endp" is not NULL it is a required end-of-match position.
///
/// Return TRUE if there is a match, FALSE if there is no match,
/// NFA_TOO_EXPENSIVE if we end up with too many states.
/// When there is a match "submatch" contains the positions.
///
/// Note: Caller must ensure that: start != NULL.
static int nfa_regmatch(nfa_regprog_T *prog, nfa_state_T *start,
regsubs_T *submatch, regsubs_T *m)
{
int result = false;
int flag = 0;
bool go_to_nextline = false;
nfa_thread_T *t;
nfa_list_T list[2];
int listidx;
nfa_list_T *thislist;
nfa_list_T *nextlist;
int *listids = NULL;
int listids_len = 0;
nfa_state_T *add_state;
bool add_here;
int add_count;
int add_off = 0;
int toplevel = start->c == NFA_MOPEN;
regsubs_T *r;
#ifdef NFA_REGEXP_DEBUG_LOG
FILE *debug = fopen(NFA_REGEXP_DEBUG_LOG, "a");
if (debug == NULL) {
EMSG2("(NFA) COULD NOT OPEN %s!", NFA_REGEXP_DEBUG_LOG);
return false;
}
#endif
// Some patterns may take a long time to match, especially when using
// recursive_regmatch(). Allow interrupting them with CTRL-C.
fast_breakcheck();
if (got_int) {
#ifdef NFA_REGEXP_DEBUG_LOG
fclose(debug);
#endif
return false;
}
if (nfa_did_time_out()) {
#ifdef NFA_REGEXP_DEBUG_LOG
fclose(debug);
#endif
return false;
}
nfa_match = false;
// Allocate memory for the lists of nodes.
size_t size = (nstate + 1) * sizeof(nfa_thread_T);
list[0].t = xmalloc(size);
list[0].len = nstate + 1;
list[1].t = xmalloc(size);
list[1].len = nstate + 1;
#ifdef REGEXP_DEBUG
log_fd = fopen(NFA_REGEXP_RUN_LOG, "a");
if (log_fd != NULL) {
fprintf(log_fd, "**********************************\n");
nfa_set_code(start->c);
fprintf(log_fd, " RUNNING nfa_regmatch() starting with state %d, code %s\n",
abs(start->id), code);
fprintf(log_fd, "**********************************\n");
} else {
EMSG(_(e_log_open_failed));
log_fd = stderr;
}
#endif
thislist = &list[0];
thislist->n = 0;
thislist->has_pim = FALSE;
nextlist = &list[1];
nextlist->n = 0;
nextlist->has_pim = FALSE;
#ifdef REGEXP_DEBUG
fprintf(log_fd, "(---) STARTSTATE first\n");
#endif
thislist->id = nfa_listid + 1;
/* Inline optimized code for addstate(thislist, start, m, 0) if we know
* it's the first MOPEN. */
if (toplevel) {
if (REG_MULTI) {
m->norm.list.multi[0].start_lnum = reglnum;
m->norm.list.multi[0].start_col = (colnr_T)(reginput - regline);
} else
m->norm.list.line[0].start = reginput;
m->norm.in_use = 1;
r = addstate(thislist, start->out, m, NULL, 0);
} else {
r = addstate(thislist, start, m, NULL, 0);
}
if (r == NULL) {
nfa_match = NFA_TOO_EXPENSIVE;
goto theend;
}
#define ADD_STATE_IF_MATCH(state) \
if (result) { \
add_state = state->out; \
add_off = clen; \
}
/*
* Run for each character.
*/
for (;; ) {
int curc = utf_ptr2char(reginput);
int clen = utfc_ptr2len(reginput);
if (curc == NUL) {
clen = 0;
go_to_nextline = false;
}
/* swap lists */
thislist = &list[flag];
nextlist = &list[flag ^= 1];
nextlist->n = 0; // clear nextlist
nextlist->has_pim = false;
nfa_listid++;
if (prog->re_engine == AUTOMATIC_ENGINE
&& (nfa_listid >= NFA_MAX_STATES)) {
// Too many states, retry with old engine.
nfa_match = NFA_TOO_EXPENSIVE;
goto theend;
}
thislist->id = nfa_listid;
nextlist->id = nfa_listid + 1;
#ifdef REGEXP_DEBUG
fprintf(log_fd, "------------------------------------------\n");
fprintf(log_fd, ">>> Reginput is \"%s\"\n", reginput);
fprintf(log_fd,
">>> Advanced one character... Current char is %c (code %d) \n",
curc,
(int)curc);
fprintf(log_fd, ">>> Thislist has %d states available: ", thislist->n);
{
int i;
for (i = 0; i < thislist->n; i++)
fprintf(log_fd, "%d ", abs(thislist->t[i].state->id));
}
fprintf(log_fd, "\n");
#endif
#ifdef NFA_REGEXP_DEBUG_LOG
fprintf(debug, "\n-------------------\n");
#endif
/*
* If the state lists are empty we can stop.
*/
if (thislist->n == 0)
break;
// compute nextlist
for (listidx = 0; listidx < thislist->n; listidx++) {
// If the list gets very long there probably is something wrong.
// At least allow interrupting with CTRL-C.
fast_breakcheck();
if (got_int) {
break;
}
if (nfa_time_limit != NULL && ++nfa_time_count == 20) {
nfa_time_count = 0;
if (nfa_did_time_out()) {
break;
}
}
t = &thislist->t[listidx];
#ifdef NFA_REGEXP_DEBUG_LOG
nfa_set_code(t->state->c);
fprintf(debug, "%s, ", code);
#endif
#ifdef REGEXP_DEBUG
{
int col;
if (t->subs.norm.in_use <= 0) {
col = -1;
} else if (REG_MULTI) {
col = t->subs.norm.list.multi[0].start_col;
} else {
col = (int)(t->subs.norm.list.line[0].start - regline);
}
nfa_set_code(t->state->c);
fprintf(log_fd, "(%d) char %d %s (start col %d)%s... \n",
abs(t->state->id), (int)t->state->c, code, col,
pim_info(&t->pim));
}
#endif
/*
* Handle the possible codes of the current state.
* The most important is NFA_MATCH.
*/
add_state = NULL;
add_here = false;
add_count = 0;
switch (t->state->c) {
case NFA_MATCH:
{
// If the match ends before a composing characters and
// rex.reg_icombine is not set, that is not really a match.
if (enc_utf8 && !rex.reg_icombine && utf_iscomposing(curc)) {
break;
}
nfa_match = true;
copy_sub(&submatch->norm, &t->subs.norm);
if (nfa_has_zsubexpr)
copy_sub(&submatch->synt, &t->subs.synt);
#ifdef REGEXP_DEBUG
log_subsexpr(&t->subs);
#endif
/* Found the left-most longest match, do not look at any other
* states at this position. When the list of states is going
* to be empty quit without advancing, so that "reginput" is
* correct. */
if (nextlist->n == 0)
clen = 0;
goto nextchar;
}
case NFA_END_INVISIBLE:
case NFA_END_INVISIBLE_NEG:
case NFA_END_PATTERN:
/*
* This is only encountered after a NFA_START_INVISIBLE or
* NFA_START_INVISIBLE_BEFORE node.
* They surround a zero-width group, used with "\@=", "\&",
* "\@!", "\@<=" and "\@<!".
* If we got here, it means that the current "invisible" group
* finished successfully, so return control to the parent
* nfa_regmatch(). For a look-behind match only when it ends
* in the position in "nfa_endp".
* Submatches are stored in *m, and used in the parent call.
*/
#ifdef REGEXP_DEBUG
if (nfa_endp != NULL) {
if (REG_MULTI)
fprintf(
log_fd,
"Current lnum: %d, endp lnum: %d; current col: %d, endp col: %d\n",
(int)reglnum,
(int)nfa_endp->se_u.pos.lnum,
(int)(reginput - regline),
nfa_endp->se_u.pos.col);
else
fprintf(log_fd, "Current col: %d, endp col: %d\n",
(int)(reginput - regline),
(int)(nfa_endp->se_u.ptr - reginput));
}
#endif
/* If "nfa_endp" is set it's only a match if it ends at
* "nfa_endp" */
if (nfa_endp != NULL && (REG_MULTI
? (reglnum != nfa_endp->se_u.pos.lnum
|| (int)(reginput - regline)
!= nfa_endp->se_u.pos.col)
: reginput != nfa_endp->se_u.ptr))
break;
/* do not set submatches for \@! */
if (t->state->c != NFA_END_INVISIBLE_NEG) {
copy_sub(&m->norm, &t->subs.norm);
if (nfa_has_zsubexpr)
copy_sub(&m->synt, &t->subs.synt);
}
#ifdef REGEXP_DEBUG
fprintf(log_fd, "Match found:\n");
log_subsexpr(m);
#endif
nfa_match = true;
// See comment above at "goto nextchar".
if (nextlist->n == 0) {
clen = 0;
}
goto nextchar;
case NFA_START_INVISIBLE:
case NFA_START_INVISIBLE_FIRST:
case NFA_START_INVISIBLE_NEG:
case NFA_START_INVISIBLE_NEG_FIRST:
case NFA_START_INVISIBLE_BEFORE:
case NFA_START_INVISIBLE_BEFORE_FIRST:
case NFA_START_INVISIBLE_BEFORE_NEG:
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
{
#ifdef REGEXP_DEBUG
fprintf(log_fd, "Failure chance invisible: %d, what follows: %d\n",
failure_chance(t->state->out, 0),
failure_chance(t->state->out1->out, 0));
#endif
// Do it directly if there already is a PIM or when
// nfa_postprocess() detected it will work better.
if (t->pim.result != NFA_PIM_UNUSED
|| t->state->c == NFA_START_INVISIBLE_FIRST
|| t->state->c == NFA_START_INVISIBLE_NEG_FIRST
|| t->state->c == NFA_START_INVISIBLE_BEFORE_FIRST
|| t->state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST) {
int in_use = m->norm.in_use;
// Copy submatch info for the recursive call, opposite
// of what happens on success below.
copy_sub_off(&m->norm, &t->subs.norm);
if (nfa_has_zsubexpr)
copy_sub_off(&m->synt, &t->subs.synt);
// First try matching the invisible match, then what
// follows.
result = recursive_regmatch(t->state, NULL, prog, submatch, m,
&listids, &listids_len);
if (result == NFA_TOO_EXPENSIVE) {
nfa_match = result;
goto theend;
}
// for \@! and \@<! it is a match when the result is
// FALSE
if (result != (t->state->c == NFA_START_INVISIBLE_NEG
|| t->state->c == NFA_START_INVISIBLE_NEG_FIRST
|| t->state->c
== NFA_START_INVISIBLE_BEFORE_NEG
|| t->state->c
== NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) {
// Copy submatch info from the recursive call
copy_sub_off(&t->subs.norm, &m->norm);
if (nfa_has_zsubexpr)
copy_sub_off(&t->subs.synt, &m->synt);
// If the pattern has \ze and it matched in the
// sub pattern, use it.
copy_ze_off(&t->subs.norm, &m->norm);
// t->state->out1 is the corresponding
// END_INVISIBLE node; Add its out to the current
// list (zero-width match).
add_here = true;
add_state = t->state->out1->out;
}
m->norm.in_use = in_use;
} else {
nfa_pim_T pim;
// First try matching what follows. Only if a match
// is found verify the invisible match matches. Add a
// nfa_pim_T to the following states, it contains info
// about the invisible match.
pim.state = t->state;
pim.result = NFA_PIM_TODO;
pim.subs.norm.in_use = 0;
pim.subs.synt.in_use = 0;
if (REG_MULTI) {
pim.end.pos.col = (int)(reginput - regline);
pim.end.pos.lnum = reglnum;
} else
pim.end.ptr = reginput;
// t->state->out1 is the corresponding END_INVISIBLE
// node; Add its out to the current list (zero-width
// match).
if (addstate_here(thislist, t->state->out1->out, &t->subs,
&pim, &listidx) == NULL) {
nfa_match = NFA_TOO_EXPENSIVE;
goto theend;
}
}
}
break;
case NFA_START_PATTERN:
{
nfa_state_T *skip = NULL;
#ifdef REGEXP_DEBUG
int skip_lid = 0;
#endif
// There is no point in trying to match the pattern if the
// output state is not going to be added to the list.
if (state_in_list(nextlist, t->state->out1->out, &t->subs)) {
skip = t->state->out1->out;
#ifdef REGEXP_DEBUG
skip_lid = nextlist->id;
#endif
} else if (state_in_list(nextlist,
t->state->out1->out->out, &t->subs)) {
skip = t->state->out1->out->out;
#ifdef REGEXP_DEBUG
skip_lid = nextlist->id;
#endif
} else if (state_in_list(thislist,
t->state->out1->out->out, &t->subs)) {
skip = t->state->out1->out->out;
#ifdef REGEXP_DEBUG
skip_lid = thislist->id;
#endif
}
if (skip != NULL) {
#ifdef REGEXP_DEBUG
nfa_set_code(skip->c);
fprintf(
log_fd,
"> Not trying to match pattern, output state %d is already in list %d. char %d: %s\n",
abs(skip->id), skip_lid, skip->c, code);
#endif
break;
}
// Copy submatch info to the recursive call, opposite of what
// happens afterwards.
copy_sub_off(&m->norm, &t->subs.norm);
if (nfa_has_zsubexpr) {
copy_sub_off(&m->synt, &t->subs.synt);
}
// First try matching the pattern.
result = recursive_regmatch(t->state, NULL, prog, submatch, m,
&listids, &listids_len);
if (result == NFA_TOO_EXPENSIVE) {
nfa_match = result;
goto theend;
}
if (result) {
int bytelen;
#ifdef REGEXP_DEBUG
fprintf(log_fd, "NFA_START_PATTERN matches:\n");
log_subsexpr(m);
#endif
// Copy submatch info from the recursive call
copy_sub_off(&t->subs.norm, &m->norm);
if (nfa_has_zsubexpr) {
copy_sub_off(&t->subs.synt, &m->synt);
}
// Now we need to skip over the matched text and then
// continue with what follows.
if (REG_MULTI) {
// TODO(RE): multi-line match
bytelen = m->norm.list.multi[0].end_col
- (int)(reginput - regline);
} else {
bytelen = (int)(m->norm.list.line[0].end - reginput);
}
#ifdef REGEXP_DEBUG
fprintf(log_fd, "NFA_START_PATTERN length: %d\n", bytelen);
#endif
if (bytelen == 0) {
// empty match, output of corresponding
// NFA_END_PATTERN/NFA_SKIP to be used at current
// position
add_here = true;
add_state = t->state->out1->out->out;
} else if (bytelen <= clen) {
// match current character, output of corresponding
// NFA_END_PATTERN to be used at next position.
add_state = t->state->out1->out->out;
add_off = clen;
} else {
// skip over the matched characters, set character
// count in NFA_SKIP
add_state = t->state->out1->out;
add_off = bytelen;
add_count = bytelen - clen;
}
}
break;
}
case NFA_BOL:
if (reginput == regline) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_EOL:
if (curc == NUL) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_BOW:
result = true;
if (curc == NUL) {
result = false;
} else if (has_mbyte) {
int this_class;
// Get class of current and previous char (if it exists).
this_class = mb_get_class_tab(reginput, rex.reg_buf->b_chartab);
if (this_class <= 1) {
result = false;
} else if (reg_prev_class() == this_class) {
result = false;
}
} else if (!vim_iswordc_buf(curc, rex.reg_buf)
|| (reginput > regline
&& vim_iswordc_buf(reginput[-1], rex.reg_buf))) {
result = false;
}
if (result) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_EOW:
result = true;
if (reginput == regline) {
result = false;
} else if (has_mbyte) {
int this_class, prev_class;
// Get class of current and previous char (if it exists).
this_class = mb_get_class_tab(reginput, rex.reg_buf->b_chartab);
prev_class = reg_prev_class();
if (this_class == prev_class
|| prev_class == 0 || prev_class == 1) {
result = false;
}
} else if (!vim_iswordc_buf(reginput[-1], rex.reg_buf)
|| (reginput[0] != NUL
&& vim_iswordc_buf(curc, rex.reg_buf))) {
result = false;
}
if (result) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_BOF:
if (reglnum == 0 && reginput == regline
&& (!REG_MULTI || rex.reg_firstlnum == 1)) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_EOF:
if (reglnum == rex.reg_maxline && curc == NUL) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_COMPOSING:
{
int mc = curc;
int len = 0;
nfa_state_T *end;
nfa_state_T *sta;
int cchars[MAX_MCO];
int ccount = 0;
int j;
sta = t->state->out;
len = 0;
if (utf_iscomposing(sta->c)) {
// Only match composing character(s), ignore base
// character. Used for ".{composing}" and "{composing}"
// (no preceding character).
len += mb_char2len(mc);
}
if (rex.reg_icombine && len == 0) {
// If \Z was present, then ignore composing characters.
// When ignoring the base character this always matches.
if (sta->c != curc) {
result = FAIL;
} else {
result = OK;
}
while (sta->c != NFA_END_COMPOSING) {
sta = sta->out;
}
} else if (len > 0 || mc == sta->c) {
// Check base character matches first, unless ignored.
if (len == 0) {
len += mb_char2len(mc);
sta = sta->out;
}
// We don't care about the order of composing characters.
// Get them into cchars[] first.
while (len < clen) {
mc = utf_ptr2char(reginput + len);
cchars[ccount++] = mc;
len += mb_char2len(mc);
if (ccount == MAX_MCO)
break;
}
// Check that each composing char in the pattern matches a
// composing char in the text. We do not check if all
// composing chars are matched.
result = OK;
while (sta->c != NFA_END_COMPOSING) {
for (j = 0; j < ccount; ++j)
if (cchars[j] == sta->c)
break;
if (j == ccount) {
result = FAIL;
break;
}
sta = sta->out;
}
} else
result = FAIL;
end = t->state->out1; // NFA_END_COMPOSING
ADD_STATE_IF_MATCH(end);
break;
}
case NFA_NEWL:
if (curc == NUL && !rex.reg_line_lbr && REG_MULTI
&& reglnum <= rex.reg_maxline) {
go_to_nextline = true;
// Pass -1 for the offset, which means taking the position
// at the start of the next line.
add_state = t->state->out;
add_off = -1;
} else if (curc == '\n' && rex.reg_line_lbr) {
// match \n as if it is an ordinary character
add_state = t->state->out;
add_off = 1;
}
break;
case NFA_START_COLL:
case NFA_START_NEG_COLL:
{
// What follows is a list of characters, until NFA_END_COLL.
// One of them must match or none of them must match.
nfa_state_T *state;
int result_if_matched;
int c1, c2;
// Never match EOL. If it's part of the collection it is added
// as a separate state with an OR.
if (curc == NUL) {
break;
}
state = t->state->out;
result_if_matched = (t->state->c == NFA_START_COLL);
for (;; ) {
if (state->c == NFA_END_COLL) {
result = !result_if_matched;
break;
}
if (state->c == NFA_RANGE_MIN) {
c1 = state->val;
state = state->out; // advance to NFA_RANGE_MAX
c2 = state->val;
#ifdef REGEXP_DEBUG
fprintf(log_fd, "NFA_RANGE_MIN curc=%d c1=%d c2=%d\n",
curc, c1, c2);
#endif
if (curc >= c1 && curc <= c2) {
result = result_if_matched;
break;
}
if (rex.reg_ic) {
int curc_low = utf_fold(curc);
int done = false;
for (; c1 <= c2; c1++) {
if (utf_fold(c1) == curc_low) {
result = result_if_matched;
done = TRUE;
break;
}
}
if (done) {
break;
}
}
} else if (state->c < 0 ? check_char_class(state->c, curc)
: (curc == state->c
|| (rex.reg_ic
&& utf_fold(curc) == utf_fold(state->c)))) {
result = result_if_matched;
break;
}
state = state->out;
}
if (result) {
// next state is in out of the NFA_END_COLL, out1 of
// START points to the END state
add_state = t->state->out1->out;
add_off = clen;
}
break;
}
case NFA_ANY:
// Any char except '\0', (end of input) does not match.
if (curc > 0) {
add_state = t->state->out;
add_off = clen;
}
break;
case NFA_ANY_COMPOSING:
// On a composing character skip over it. Otherwise do
// nothing. Always matches.
if (enc_utf8 && utf_iscomposing(curc)) {
add_off = clen;
} else {
add_here = true;
add_off = 0;
}
add_state = t->state->out;
break;
// Character classes like \a for alpha, \d for digit etc.
case NFA_IDENT: // \i
result = vim_isIDc(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_SIDENT: // \I
result = !ascii_isdigit(curc) && vim_isIDc(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_KWORD: // \k
result = vim_iswordp_buf(reginput, rex.reg_buf);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_SKWORD: // \K
result = !ascii_isdigit(curc)
&& vim_iswordp_buf(reginput, rex.reg_buf);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_FNAME: // \f
result = vim_isfilec(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_SFNAME: // \F
result = !ascii_isdigit(curc) && vim_isfilec(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_PRINT: // \p
result = vim_isprintc(PTR2CHAR(reginput));
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_SPRINT: // \P
result = !ascii_isdigit(curc) && vim_isprintc(PTR2CHAR(reginput));
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_WHITE: // \s
result = ascii_iswhite(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NWHITE: // \S
result = curc != NUL && !ascii_iswhite(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_DIGIT: // \d
result = ri_digit(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NDIGIT: // \D
result = curc != NUL && !ri_digit(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_HEX: // \x
result = ri_hex(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NHEX: // \X
result = curc != NUL && !ri_hex(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_OCTAL: // \o
result = ri_octal(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NOCTAL: // \O
result = curc != NUL && !ri_octal(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_WORD: // \w
result = ri_word(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NWORD: // \W
result = curc != NUL && !ri_word(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_HEAD: // \h
result = ri_head(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NHEAD: // \H
result = curc != NUL && !ri_head(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_ALPHA: // \a
result = ri_alpha(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NALPHA: // \A
result = curc != NUL && !ri_alpha(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_LOWER: // \l
result = ri_lower(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NLOWER: // \L
result = curc != NUL && !ri_lower(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_UPPER: // \u
result = ri_upper(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NUPPER: // \U
result = curc != NUL && !ri_upper(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_LOWER_IC: // [a-z]
result = ri_lower(curc) || (rex.reg_ic && ri_upper(curc));
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NLOWER_IC: // [^a-z]
result = curc != NUL
&& !(ri_lower(curc) || (rex.reg_ic && ri_upper(curc)));
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_UPPER_IC: // [A-Z]
result = ri_upper(curc) || (rex.reg_ic && ri_lower(curc));
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NUPPER_IC: // [^A-Z]
result = curc != NUL
&& !(ri_upper(curc) || (rex.reg_ic && ri_lower(curc)));
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_BACKREF1:
case NFA_BACKREF2:
case NFA_BACKREF3:
case NFA_BACKREF4:
case NFA_BACKREF5:
case NFA_BACKREF6:
case NFA_BACKREF7:
case NFA_BACKREF8:
case NFA_BACKREF9:
case NFA_ZREF1:
case NFA_ZREF2:
case NFA_ZREF3:
case NFA_ZREF4:
case NFA_ZREF5:
case NFA_ZREF6:
case NFA_ZREF7:
case NFA_ZREF8:
case NFA_ZREF9:
// \1 .. \9 \z1 .. \z9
{
int subidx;
int bytelen;
if (t->state->c <= NFA_BACKREF9) {
subidx = t->state->c - NFA_BACKREF1 + 1;
result = match_backref(&t->subs.norm, subidx, &bytelen);
} else {
subidx = t->state->c - NFA_ZREF1 + 1;
result = match_zref(subidx, &bytelen);
}
if (result) {
if (bytelen == 0) {
// empty match always works, output of NFA_SKIP to be
// used next
add_here = true;
add_state = t->state->out->out;
} else if (bytelen <= clen) {
// match current character, jump ahead to out of
// NFA_SKIP
add_state = t->state->out->out;
add_off = clen;
} else {
// skip over the matched characters, set character
// count in NFA_SKIP
add_state = t->state->out;
add_off = bytelen;
add_count = bytelen - clen;
}
}
break;
}
case NFA_SKIP:
// character of previous matching \1 .. \9 or \@>
if (t->count - clen <= 0) {
// end of match, go to what follows
add_state = t->state->out;
add_off = clen;
} else {
// add state again with decremented count
add_state = t->state;
add_off = 0;
add_count = t->count - clen;
}
break;
case NFA_LNUM:
case NFA_LNUM_GT:
case NFA_LNUM_LT:
assert(t->state->val >= 0
&& !((rex.reg_firstlnum > 0
&& reglnum > LONG_MAX - rex.reg_firstlnum)
|| (rex.reg_firstlnum < 0
&& reglnum < LONG_MIN + rex.reg_firstlnum))
&& reglnum + rex.reg_firstlnum >= 0);
result = (REG_MULTI
&& nfa_re_num_cmp((uintmax_t)t->state->val,
t->state->c - NFA_LNUM,
(uintmax_t)(reglnum + rex.reg_firstlnum)));
if (result) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_COL:
case NFA_COL_GT:
case NFA_COL_LT:
assert(t->state->val >= 0
&& reginput >= regline
&& (uintmax_t)(reginput - regline) <= UINTMAX_MAX - 1);
result = nfa_re_num_cmp((uintmax_t)t->state->val,
t->state->c - NFA_COL,
(uintmax_t)(reginput - regline + 1));
if (result) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_VCOL:
case NFA_VCOL_GT:
case NFA_VCOL_LT:
{
int op = t->state->c - NFA_VCOL;
colnr_T col = (colnr_T)(reginput - regline);
// Bail out quickly when there can't be a match, avoid the overhead of
// win_linetabsize() on long lines.
if (op != 1 && col > t->state->val * (has_mbyte ? MB_MAXBYTES : 1)) {
break;
}
result = false;
win_T *wp = rex.reg_win == NULL ? curwin : rex.reg_win;
if (op == 1 && col - 1 > t->state->val && col > 100) {
long ts = wp->w_buffer->b_p_ts;
// Guess that a character won't use more columns than 'tabstop',
// with a minimum of 4.
if (ts < 4) {
ts = 4;
}
result = col > t->state->val * ts;
}
if (!result) {
uintmax_t lts = win_linetabsize(wp, regline, col);
assert(t->state->val >= 0);
result = nfa_re_num_cmp((uintmax_t)t->state->val, op, lts + 1);
}
if (result) {
add_here = true;
add_state = t->state->out;
}
}
break;
case NFA_MARK:
case NFA_MARK_GT:
case NFA_MARK_LT:
{
pos_T *pos = getmark_buf(rex.reg_buf, t->state->val, false);
// Compare the mark position to the match position.
result = (pos != NULL // mark doesn't exist
&& pos->lnum > 0 // mark isn't set in reg_buf
&& (pos->lnum == reglnum + rex.reg_firstlnum
? (pos->col == (colnr_T)(reginput - regline)
? t->state->c == NFA_MARK
: (pos->col < (colnr_T)(reginput - regline)
? t->state->c == NFA_MARK_GT
: t->state->c == NFA_MARK_LT))
: (pos->lnum < reglnum + rex.reg_firstlnum
? t->state->c == NFA_MARK_GT
: t->state->c == NFA_MARK_LT)));
if (result) {
add_here = true;
add_state = t->state->out;
}
break;
}
case NFA_CURSOR:
result = (rex.reg_win != NULL
&& (reglnum + rex.reg_firstlnum == rex.reg_win->w_cursor.lnum)
&& ((colnr_T)(reginput - regline)
== rex.reg_win->w_cursor.col));
if (result) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_VISUAL:
result = reg_match_visual();
if (result) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
case NFA_NOPEN:
case NFA_ZSTART:
// These states are only added to be able to bail out when
// they are added again, nothing is to be done.
break;
default: // regular character
{
int c = t->state->c;
#ifdef REGEXP_DEBUG
if (c < 0) {
IEMSGN("INTERNAL: Negative state char: %" PRId64, c);
}
#endif
result = (c == curc);
if (!result && rex.reg_ic) {
result = utf_fold(c) == utf_fold(curc);
}
// If rex.reg_icombine is not set only skip over the character
// itself. When it is set skip over composing characters.
if (result && enc_utf8 && !rex.reg_icombine) {
clen = utf_ptr2len(reginput);
}
ADD_STATE_IF_MATCH(t->state);
break;
}
} // switch (t->state->c)
if (add_state != NULL) {
nfa_pim_T *pim;
nfa_pim_T pim_copy;
if (t->pim.result == NFA_PIM_UNUSED)
pim = NULL;
else
pim = &t->pim;
// Handle the postponed invisible match if the match might end
// without advancing and before the end of the line.
if (pim != NULL && (clen == 0 || match_follows(add_state, 0))) {
if (pim->result == NFA_PIM_TODO) {
#ifdef REGEXP_DEBUG
fprintf(log_fd, "\n");
fprintf(log_fd, "==================================\n");
fprintf(log_fd, "Postponed recursive nfa_regmatch()\n");
fprintf(log_fd, "\n");
#endif
result = recursive_regmatch(pim->state, pim, prog, submatch, m,
&listids, &listids_len);
pim->result = result ? NFA_PIM_MATCH : NFA_PIM_NOMATCH;
// for \@! and \@<! it is a match when the result is
// FALSE
if (result != (pim->state->c == NFA_START_INVISIBLE_NEG
|| pim->state->c == NFA_START_INVISIBLE_NEG_FIRST
|| pim->state->c
== NFA_START_INVISIBLE_BEFORE_NEG
|| pim->state->c
== NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) {
// Copy submatch info from the recursive call
copy_sub_off(&pim->subs.norm, &m->norm);
if (nfa_has_zsubexpr)
copy_sub_off(&pim->subs.synt, &m->synt);
}
} else {
result = (pim->result == NFA_PIM_MATCH);
#ifdef REGEXP_DEBUG
fprintf(log_fd, "\n");
fprintf(
log_fd,
"Using previous recursive nfa_regmatch() result, result == %d\n",
pim->result);
fprintf(log_fd, "MATCH = %s\n", result ? "OK" : "FALSE");
fprintf(log_fd, "\n");
#endif
}
// for \@! and \@<! it is a match when result is FALSE
if (result != (pim->state->c == NFA_START_INVISIBLE_NEG
|| pim->state->c == NFA_START_INVISIBLE_NEG_FIRST
|| pim->state->c
== NFA_START_INVISIBLE_BEFORE_NEG
|| pim->state->c
== NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) {
// Copy submatch info from the recursive call
copy_sub_off(&t->subs.norm, &pim->subs.norm);
if (nfa_has_zsubexpr)
copy_sub_off(&t->subs.synt, &pim->subs.synt);
} else {
// look-behind match failed, don't add the state
continue;
}
// Postponed invisible match was handled, don't add it to
// following states.
pim = NULL;
}
// If "pim" points into l->t it will become invalid when
// adding the state causes the list to be reallocated. Make a
// local copy to avoid that.
if (pim == &t->pim) {
copy_pim(&pim_copy, pim);
pim = &pim_copy;
}
if (add_here) {
r = addstate_here(thislist, add_state, &t->subs, pim, &listidx);
} else {
r = addstate(nextlist, add_state, &t->subs, pim, add_off);
if (add_count > 0) {
nextlist->t[nextlist->n - 1].count = add_count;
}
}
if (r == NULL) {
nfa_match = NFA_TOO_EXPENSIVE;
goto theend;
}
}
} // for (thislist = thislist; thislist->state; thislist++)
// Look for the start of a match in the current position by adding the
// start state to the list of states.
// The first found match is the leftmost one, thus the order of states
// matters!
// Do not add the start state in recursive calls of nfa_regmatch(),
// because recursive calls should only start in the first position.
// Unless "nfa_endp" is not NULL, then we match the end position.
// Also don't start a match past the first line.
if (!nfa_match
&& ((toplevel
&& reglnum == 0
&& clen != 0
&& (rex.reg_maxcol == 0
|| (colnr_T)(reginput - regline) < rex.reg_maxcol))
|| (nfa_endp != NULL
&& (REG_MULTI
? (reglnum < nfa_endp->se_u.pos.lnum
|| (reglnum == nfa_endp->se_u.pos.lnum
&& (int)(reginput - regline)
< nfa_endp->se_u.pos.col))
: reginput < nfa_endp->se_u.ptr)))) {
#ifdef REGEXP_DEBUG
fprintf(log_fd, "(---) STARTSTATE\n");
#endif
// Inline optimized code for addstate() if we know the state is
// the first MOPEN.
if (toplevel) {
int add = TRUE;
int c;
if (prog->regstart != NUL && clen != 0) {
if (nextlist->n == 0) {
colnr_T col = (colnr_T)(reginput - regline) + clen;
// Nextlist is empty, we can skip ahead to the
// character that must appear at the start.
if (skip_to_start(prog->regstart, &col) == FAIL) {
break;
}
#ifdef REGEXP_DEBUG
fprintf(log_fd, " Skipping ahead %d bytes to regstart\n",
col - ((colnr_T)(reginput - regline) + clen));
#endif
reginput = regline + col - clen;
} else {
// Checking if the required start character matches is
// cheaper than adding a state that won't match.
c = PTR2CHAR(reginput + clen);
if (c != prog->regstart
&& (!rex.reg_ic
|| utf_fold(c) != utf_fold(prog->regstart))) {
#ifdef REGEXP_DEBUG
fprintf(log_fd,
" Skipping start state, regstart does not match\n");
#endif
add = FALSE;
}
}
}
if (add) {
if (REG_MULTI)
m->norm.list.multi[0].start_col =
(colnr_T)(reginput - regline) + clen;
else
m->norm.list.line[0].start = reginput + clen;
if (addstate(nextlist, start->out, m, NULL, clen) == NULL) {
nfa_match = NFA_TOO_EXPENSIVE;
goto theend;
}
}
} else {
if (addstate(nextlist, start, m, NULL, clen) == NULL) {
nfa_match = NFA_TOO_EXPENSIVE;
goto theend;
}
}
}
#ifdef REGEXP_DEBUG
fprintf(log_fd, ">>> Thislist had %d states available: ", thislist->n);
{
int i;
for (i = 0; i < thislist->n; i++)
fprintf(log_fd, "%d ", abs(thislist->t[i].state->id));
}
fprintf(log_fd, "\n");
#endif
nextchar:
// Advance to the next character, or advance to the next line, or
// finish.
if (clen != 0) {
reginput += clen;
} else if (go_to_nextline || (nfa_endp != NULL && REG_MULTI
&& reglnum < nfa_endp->se_u.pos.lnum)) {
reg_nextline();
} else {
break;
}
// Allow interrupting with CTRL-C.
line_breakcheck();
if (got_int) {
break;
}
// Check for timeout once every twenty times to avoid overhead.
if (nfa_time_limit != NULL && ++nfa_time_count == 20) {
nfa_time_count = 0;
if (nfa_did_time_out()) {
break;
}
}
}
#ifdef REGEXP_DEBUG
if (log_fd != stderr)
fclose(log_fd);
log_fd = NULL;
#endif
theend:
// Free memory
xfree(list[0].t);
xfree(list[1].t);
xfree(listids);
#undef ADD_STATE_IF_MATCH
#ifdef NFA_REGEXP_DEBUG_LOG
fclose(debug);
#endif
return nfa_match;
}
// Try match of "prog" with at regline["col"].
// Returns <= 0 for failure, number of lines contained in the match otherwise.
static long nfa_regtry(nfa_regprog_T *prog,
colnr_T col,
proftime_T *tm, // timeout limit or NULL
int *timed_out) // flag set on timeout or NULL
{
int i;
regsubs_T subs, m;
nfa_state_T *start = prog->start;
#ifdef REGEXP_DEBUG
FILE *f;
#endif
reginput = regline + col;
nfa_time_limit = tm;
nfa_timed_out = timed_out;
nfa_time_count = 0;
#ifdef REGEXP_DEBUG
f = fopen(NFA_REGEXP_RUN_LOG, "a");
if (f != NULL) {
fprintf(f,
"\n\n\t=======================================================\n");
#ifdef REGEXP_DEBUG
fprintf(f, "\tRegexp is \"%s\"\n", nfa_regengine.expr);
#endif
fprintf(f, "\tInput text is \"%s\" \n", reginput);
fprintf(f, "\t=======================================================\n\n");
nfa_print_state(f, start);
fprintf(f, "\n\n");
fclose(f);
} else {
EMSG("Could not open temporary log file for writing");
}
#endif
clear_sub(&subs.norm);
clear_sub(&m.norm);
clear_sub(&subs.synt);
clear_sub(&m.synt);
int result = nfa_regmatch(prog, start, &subs, &m);
if (!result) {
return 0;
} else if (result == NFA_TOO_EXPENSIVE) {
return result;
}
cleanup_subexpr();
if (REG_MULTI) {
for (i = 0; i < subs.norm.in_use; i++) {
rex.reg_startpos[i].lnum = subs.norm.list.multi[i].start_lnum;
rex.reg_startpos[i].col = subs.norm.list.multi[i].start_col;
rex.reg_endpos[i].lnum = subs.norm.list.multi[i].end_lnum;
rex.reg_endpos[i].col = subs.norm.list.multi[i].end_col;
}
if (rex.reg_startpos[0].lnum < 0) {
rex.reg_startpos[0].lnum = 0;
rex.reg_startpos[0].col = col;
}
if (rex.reg_endpos[0].lnum < 0) {
// pattern has a \ze but it didn't match, use current end
rex.reg_endpos[0].lnum = reglnum;
rex.reg_endpos[0].col = (int)(reginput - regline);
} else {
// Use line number of "\ze".
reglnum = rex.reg_endpos[0].lnum;
}
} else {
for (i = 0; i < subs.norm.in_use; i++) {
rex.reg_startp[i] = subs.norm.list.line[i].start;
rex.reg_endp[i] = subs.norm.list.line[i].end;
}
if (rex.reg_startp[0] == NULL) {
rex.reg_startp[0] = regline + col;
}
if (rex.reg_endp[0] == NULL) {
rex.reg_endp[0] = reginput;
}
}
/* Package any found \z(...\) matches for export. Default is none. */
unref_extmatch(re_extmatch_out);
re_extmatch_out = NULL;
if (prog->reghasz == REX_SET) {
cleanup_zsubexpr();
re_extmatch_out = make_extmatch();
// Loop over \z1, \z2, etc. There is no \z0.
for (i = 1; i < subs.synt.in_use; i++) {
if (REG_MULTI) {
struct multipos *mpos = &subs.synt.list.multi[i];
// Only accept single line matches that are valid.
if (mpos->start_lnum >= 0
&& mpos->start_lnum == mpos->end_lnum
&& mpos->end_col >= mpos->start_col) {
re_extmatch_out->matches[i] =
vim_strnsave(reg_getline(mpos->start_lnum) + mpos->start_col,
mpos->end_col - mpos->start_col);
}
} else {
struct linepos *lpos = &subs.synt.list.line[i];
if (lpos->start != NULL && lpos->end != NULL)
re_extmatch_out->matches[i] =
vim_strnsave(lpos->start,
(int)(lpos->end - lpos->start));
}
}
}
return 1 + reglnum;
}
/// Match a regexp against a string ("line" points to the string) or multiple
/// lines ("line" is NULL, use reg_getline()).
///
/// @param line String in which to search or NULL
/// @param startcol Column to start looking for match
/// @param tm Timeout limit or NULL
/// @param timed_out Flag set on timeout or NULL
///
/// @return <= 0 if there is no match and number of lines contained in the
/// match otherwise.
static long nfa_regexec_both(char_u *line, colnr_T startcol,
proftime_T *tm, int *timed_out)
{
nfa_regprog_T *prog;
long retval = 0L;
int i;
colnr_T col = startcol;
if (REG_MULTI) {
prog = (nfa_regprog_T *)rex.reg_mmatch->regprog;
line = reg_getline((linenr_T)0); // relative to the cursor
rex.reg_startpos = rex.reg_mmatch->startpos;
rex.reg_endpos = rex.reg_mmatch->endpos;
} else {
prog = (nfa_regprog_T *)rex.reg_match->regprog;
rex.reg_startp = rex.reg_match->startp;
rex.reg_endp = rex.reg_match->endp;
}
/* Be paranoid... */
if (prog == NULL || line == NULL) {
EMSG(_(e_null));
goto theend;
}
// If pattern contains "\c" or "\C": overrule value of rex.reg_ic
if (prog->regflags & RF_ICASE) {
rex.reg_ic = true;
} else if (prog->regflags & RF_NOICASE) {
rex.reg_ic = false;
}
// If pattern contains "\Z" overrule value of rex.reg_icombine
if (prog->regflags & RF_ICOMBINE) {
rex.reg_icombine = true;
}
regline = line;
reglnum = 0; /* relative to line */
nfa_has_zend = prog->has_zend;
nfa_has_backref = prog->has_backref;
nfa_nsubexpr = prog->nsubexp;
nfa_listid = 1;
nfa_alt_listid = 2;
nfa_regengine.expr = prog->pattern;
if (prog->reganch && col > 0)
return 0L;
need_clear_subexpr = TRUE;
/* Clear the external match subpointers if necessary. */
if (prog->reghasz == REX_SET) {
nfa_has_zsubexpr = TRUE;
need_clear_zsubexpr = TRUE;
} else
nfa_has_zsubexpr = FALSE;
if (prog->regstart != NUL) {
/* Skip ahead until a character we know the match must start with.
* When there is none there is no match. */
if (skip_to_start(prog->regstart, &col) == FAIL)
return 0L;
// If match_text is set it contains the full text that must match.
// Nothing else to try. Doesn't handle combining chars well.
if (prog->match_text != NULL && !rex.reg_icombine) {
return find_match_text(col, prog->regstart, prog->match_text);
}
}
// If the start column is past the maximum column: no need to try.
if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) {
goto theend;
}
nstate = prog->nstate;
for (i = 0; i < nstate; ++i) {
prog->state[i].id = i;
prog->state[i].lastlist[0] = 0;
prog->state[i].lastlist[1] = 0;
}
retval = nfa_regtry(prog, col, tm, timed_out);
nfa_regengine.expr = NULL;
theend:
return retval;
}
/*
* Compile a regular expression into internal code for the NFA matcher.
* Returns the program in allocated space. Returns NULL for an error.
*/
static regprog_T *nfa_regcomp(char_u *expr, int re_flags)
{
nfa_regprog_T *prog = NULL;
int *postfix;
if (expr == NULL)
return NULL;
nfa_regengine.expr = expr;
nfa_re_flags = re_flags;
init_class_tab();
nfa_regcomp_start(expr, re_flags);
// Build postfix form of the regexp. Needed to build the NFA
// (and count its size).
postfix = re2post();
if (postfix == NULL) {
goto fail; // Cascaded (syntax?) error
}
/*
* In order to build the NFA, we parse the input regexp twice:
* 1. first pass to count size (so we can allocate space)
* 2. second to emit code
*/
#ifdef REGEXP_DEBUG
{
FILE *f = fopen(NFA_REGEXP_RUN_LOG, "a");
if (f != NULL) {
fprintf(f,
"\n*****************************\n\n\n\n\t"
"Compiling regexp \"%s\"... hold on !\n",
expr);
fclose(f);
}
}
#endif
/*
* PASS 1
* Count number of NFA states in "nstate". Do not build the NFA.
*/
post2nfa(postfix, post_ptr, TRUE);
/* allocate the regprog with space for the compiled regexp */
size_t prog_size = sizeof(nfa_regprog_T) + sizeof(nfa_state_T) * (nstate - 1);
prog = xmalloc(prog_size);
state_ptr = prog->state;
/*
* PASS 2
* Build the NFA
*/
prog->start = post2nfa(postfix, post_ptr, FALSE);
if (prog->start == NULL)
goto fail;
prog->regflags = regflags;
prog->engine = &nfa_regengine;
prog->nstate = nstate;
prog->has_zend = nfa_has_zend;
prog->has_backref = nfa_has_backref;
prog->nsubexp = regnpar;
nfa_postprocess(prog);
prog->reganch = nfa_get_reganch(prog->start, 0);
prog->regstart = nfa_get_regstart(prog->start, 0);
prog->match_text = nfa_get_match_text(prog->start);
#ifdef REGEXP_DEBUG
nfa_postfix_dump(expr, OK);
nfa_dump(prog);
#endif
/* Remember whether this pattern has any \z specials in it. */
prog->reghasz = re_has_z;
prog->pattern = vim_strsave(expr);
nfa_regengine.expr = NULL;
out:
xfree(post_start);
post_start = post_ptr = post_end = NULL;
state_ptr = NULL;
return (regprog_T *)prog;
fail:
XFREE_CLEAR(prog);
#ifdef REGEXP_DEBUG
nfa_postfix_dump(expr, FAIL);
#endif
nfa_regengine.expr = NULL;
goto out;
}
/*
* Free a compiled regexp program, returned by nfa_regcomp().
*/
static void nfa_regfree(regprog_T *prog)
{
if (prog != NULL) {
xfree(((nfa_regprog_T *)prog)->match_text);
xfree(((nfa_regprog_T *)prog)->pattern);
xfree(prog);
}
}
/*
* Match a regexp against a string.
* "rmp->regprog" is a compiled regexp as returned by nfa_regcomp().
* Uses curbuf for line count and 'iskeyword'.
* If "line_lbr" is true, consider a "\n" in "line" to be a line break.
*
* Returns <= 0 for failure, number of lines contained in the match otherwise.
*/
static int
nfa_regexec_nl (
regmatch_T *rmp,
char_u *line, /* string to match against */
colnr_T col, /* column to start looking for match */
bool line_lbr
)
{
rex.reg_match = rmp;
rex.reg_mmatch = NULL;
rex.reg_maxline = 0;
rex.reg_line_lbr = line_lbr;
rex.reg_buf = curbuf;
rex.reg_win = NULL;
rex.reg_ic = rmp->rm_ic;
rex.reg_icombine = false;
rex.reg_maxcol = 0;
return nfa_regexec_both(line, col, NULL, NULL);
}
/// Matches a regexp against multiple lines.
/// "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
/// Uses curbuf for line count and 'iskeyword'.
///
/// @param win Window in which to search or NULL
/// @param buf Buffer in which to search
/// @param lnum Number of line to start looking for match
/// @param col Column to start looking for match
/// @param tm Timeout limit or NULL
/// @param timed_out Flag set on timeout or NULL
///
/// @return <= 0 if there is no match and number of lines contained in the match
/// otherwise.
///
/// @note The body is the same as bt_regexec() except for nfa_regexec_both()
///
/// @warning
/// Match may actually be in another line. e.g.:
/// when r.e. is \nc, cursor is at 'a' and the text buffer looks like
///
/// @par
///
/// +-------------------------+
/// |a |
/// |b |
/// |c |
/// | |
/// +-------------------------+
///
/// @par
/// then nfa_regexec_multi() returns 3. while the original vim_regexec_multi()
/// returns 0 and a second call at line 2 will return 2.
///
/// @par
/// FIXME if this behavior is not compatible.
static long nfa_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf,
linenr_T lnum, colnr_T col,
proftime_T *tm, int *timed_out)
{
rex.reg_match = NULL;
rex.reg_mmatch = rmp;
rex.reg_buf = buf;
rex.reg_win = win;
rex.reg_firstlnum = lnum;
rex.reg_maxline = rex.reg_buf->b_ml.ml_line_count - lnum;
rex.reg_line_lbr = false;
rex.reg_ic = rmp->rmm_ic;
rex.reg_icombine = false;
rex.reg_maxcol = rmp->rmm_maxcol;
return nfa_regexec_both(NULL, col, tm, timed_out);
}