neovim/src/tree_sitter/subtree.c

981 lines
33 KiB
C

#include <assert.h>
#include <ctype.h>
#include <limits.h>
#include <stdbool.h>
#include <string.h>
#include <stdio.h>
#include "./alloc.h"
#include "./atomic.h"
#include "./subtree.h"
#include "./length.h"
#include "./language.h"
#include "./error_costs.h"
#include <stddef.h>
typedef struct {
Length start;
Length old_end;
Length new_end;
} Edit;
#define TS_MAX_INLINE_TREE_LENGTH UINT8_MAX
#define TS_MAX_TREE_POOL_SIZE 32
static const ExternalScannerState empty_state = {.length = 0, .short_data = {0}};
// ExternalScannerState
void ts_external_scanner_state_init(ExternalScannerState *self, const char *data, unsigned length) {
self->length = length;
if (length > sizeof(self->short_data)) {
self->long_data = ts_malloc(length);
memcpy(self->long_data, data, length);
} else {
memcpy(self->short_data, data, length);
}
}
ExternalScannerState ts_external_scanner_state_copy(const ExternalScannerState *self) {
ExternalScannerState result = *self;
if (self->length > sizeof(self->short_data)) {
result.long_data = ts_malloc(self->length);
memcpy(result.long_data, self->long_data, self->length);
}
return result;
}
void ts_external_scanner_state_delete(ExternalScannerState *self) {
if (self->length > sizeof(self->short_data)) {
ts_free(self->long_data);
}
}
const char *ts_external_scanner_state_data(const ExternalScannerState *self) {
if (self->length > sizeof(self->short_data)) {
return self->long_data;
} else {
return self->short_data;
}
}
bool ts_external_scanner_state_eq(const ExternalScannerState *a, const ExternalScannerState *b) {
return a == b || (
a->length == b->length &&
!memcmp(ts_external_scanner_state_data(a), ts_external_scanner_state_data(b), a->length)
);
}
// SubtreeArray
void ts_subtree_array_copy(SubtreeArray self, SubtreeArray *dest) {
dest->size = self.size;
dest->capacity = self.capacity;
dest->contents = self.contents;
if (self.capacity > 0) {
dest->contents = ts_calloc(self.capacity, sizeof(Subtree));
memcpy(dest->contents, self.contents, self.size * sizeof(Subtree));
for (uint32_t i = 0; i < self.size; i++) {
ts_subtree_retain(dest->contents[i]);
}
}
}
void ts_subtree_array_delete(SubtreePool *pool, SubtreeArray *self) {
for (uint32_t i = 0; i < self->size; i++) {
ts_subtree_release(pool, self->contents[i]);
}
array_delete(self);
}
SubtreeArray ts_subtree_array_remove_trailing_extras(SubtreeArray *self) {
SubtreeArray result = array_new();
uint32_t i = self->size - 1;
for (; i + 1 > 0; i--) {
Subtree child = self->contents[i];
if (!ts_subtree_extra(child)) break;
array_push(&result, child);
}
self->size = i + 1;
ts_subtree_array_reverse(&result);
return result;
}
void ts_subtree_array_reverse(SubtreeArray *self) {
for (uint32_t i = 0, limit = self->size / 2; i < limit; i++) {
size_t reverse_index = self->size - 1 - i;
Subtree swap = self->contents[i];
self->contents[i] = self->contents[reverse_index];
self->contents[reverse_index] = swap;
}
}
// SubtreePool
SubtreePool ts_subtree_pool_new(uint32_t capacity) {
SubtreePool self = {array_new(), array_new()};
array_reserve(&self.free_trees, capacity);
return self;
}
void ts_subtree_pool_delete(SubtreePool *self) {
if (self->free_trees.contents) {
for (unsigned i = 0; i < self->free_trees.size; i++) {
ts_free(self->free_trees.contents[i].ptr);
}
array_delete(&self->free_trees);
}
if (self->tree_stack.contents) array_delete(&self->tree_stack);
}
static SubtreeHeapData *ts_subtree_pool_allocate(SubtreePool *self) {
if (self->free_trees.size > 0) {
return array_pop(&self->free_trees).ptr;
} else {
return ts_malloc(sizeof(SubtreeHeapData));
}
}
static void ts_subtree_pool_free(SubtreePool *self, SubtreeHeapData *tree) {
if (self->free_trees.capacity > 0 && self->free_trees.size + 1 <= TS_MAX_TREE_POOL_SIZE) {
array_push(&self->free_trees, (MutableSubtree) {.ptr = tree});
} else {
ts_free(tree);
}
}
// Subtree
static inline bool ts_subtree_can_inline(Length padding, Length size, uint32_t lookahead_bytes) {
return
padding.bytes < TS_MAX_INLINE_TREE_LENGTH &&
padding.extent.row < 16 &&
padding.extent.column < TS_MAX_INLINE_TREE_LENGTH &&
size.extent.row == 0 &&
size.extent.column < TS_MAX_INLINE_TREE_LENGTH &&
lookahead_bytes < 16;
}
Subtree ts_subtree_new_leaf(
SubtreePool *pool, TSSymbol symbol, Length padding, Length size,
uint32_t lookahead_bytes, TSStateId parse_state, bool has_external_tokens,
bool is_keyword, const TSLanguage *language
) {
TSSymbolMetadata metadata = ts_language_symbol_metadata(language, symbol);
bool extra = symbol == ts_builtin_sym_end;
bool is_inline = (
symbol <= UINT8_MAX &&
!has_external_tokens &&
ts_subtree_can_inline(padding, size, lookahead_bytes)
);
if (is_inline) {
return (Subtree) {{
.parse_state = parse_state,
.symbol = symbol,
.padding_bytes = padding.bytes,
.padding_rows = padding.extent.row,
.padding_columns = padding.extent.column,
.size_bytes = size.bytes,
.lookahead_bytes = lookahead_bytes,
.visible = metadata.visible,
.named = metadata.named,
.extra = extra,
.has_changes = false,
.is_missing = false,
.is_keyword = is_keyword,
.is_inline = true,
}};
} else {
SubtreeHeapData *data = ts_subtree_pool_allocate(pool);
*data = (SubtreeHeapData) {
.ref_count = 1,
.padding = padding,
.size = size,
.lookahead_bytes = lookahead_bytes,
.error_cost = 0,
.child_count = 0,
.symbol = symbol,
.parse_state = parse_state,
.visible = metadata.visible,
.named = metadata.named,
.extra = extra,
.fragile_left = false,
.fragile_right = false,
.has_changes = false,
.has_external_tokens = has_external_tokens,
.is_missing = false,
.is_keyword = is_keyword,
.first_leaf = {.symbol = 0, .parse_state = 0},
};
return (Subtree) {.ptr = data};
}
}
void ts_subtree_set_symbol(
MutableSubtree *self,
TSSymbol symbol,
const TSLanguage *language
) {
TSSymbolMetadata metadata = ts_language_symbol_metadata(language, symbol);
if (self->data.is_inline) {
assert(symbol < UINT8_MAX);
self->data.symbol = symbol;
self->data.named = metadata.named;
self->data.visible = metadata.visible;
} else {
self->ptr->symbol = symbol;
self->ptr->named = metadata.named;
self->ptr->visible = metadata.visible;
}
}
Subtree ts_subtree_new_error(
SubtreePool *pool, int32_t lookahead_char, Length padding, Length size,
uint32_t bytes_scanned, TSStateId parse_state, const TSLanguage *language
) {
Subtree result = ts_subtree_new_leaf(
pool, ts_builtin_sym_error, padding, size, bytes_scanned,
parse_state, false, false, language
);
SubtreeHeapData *data = (SubtreeHeapData *)result.ptr;
data->fragile_left = true;
data->fragile_right = true;
data->lookahead_char = lookahead_char;
return result;
}
MutableSubtree ts_subtree_make_mut(SubtreePool *pool, Subtree self) {
if (self.data.is_inline) return (MutableSubtree) {self.data};
if (self.ptr->ref_count == 1) return ts_subtree_to_mut_unsafe(self);
SubtreeHeapData *result = ts_subtree_pool_allocate(pool);
memcpy(result, self.ptr, sizeof(SubtreeHeapData));
if (result->child_count > 0) {
result->children = ts_calloc(self.ptr->child_count, sizeof(Subtree));
memcpy(result->children, self.ptr->children, result->child_count * sizeof(Subtree));
for (uint32_t i = 0; i < result->child_count; i++) {
ts_subtree_retain(result->children[i]);
}
} else if (result->has_external_tokens) {
result->external_scanner_state = ts_external_scanner_state_copy(&self.ptr->external_scanner_state);
}
result->ref_count = 1;
ts_subtree_release(pool, self);
return (MutableSubtree) {.ptr = result};
}
static void ts_subtree__compress(MutableSubtree self, unsigned count, const TSLanguage *language,
MutableSubtreeArray *stack) {
unsigned initial_stack_size = stack->size;
MutableSubtree tree = self;
TSSymbol symbol = tree.ptr->symbol;
for (unsigned i = 0; i < count; i++) {
if (tree.ptr->ref_count > 1 || tree.ptr->child_count < 2) break;
MutableSubtree child = ts_subtree_to_mut_unsafe(tree.ptr->children[0]);
if (
child.data.is_inline ||
child.ptr->child_count < 2 ||
child.ptr->ref_count > 1 ||
child.ptr->symbol != symbol
) break;
MutableSubtree grandchild = ts_subtree_to_mut_unsafe(child.ptr->children[0]);
if (
grandchild.data.is_inline ||
grandchild.ptr->child_count < 2 ||
grandchild.ptr->ref_count > 1 ||
grandchild.ptr->symbol != symbol
) break;
tree.ptr->children[0] = ts_subtree_from_mut(grandchild);
child.ptr->children[0] = grandchild.ptr->children[grandchild.ptr->child_count - 1];
grandchild.ptr->children[grandchild.ptr->child_count - 1] = ts_subtree_from_mut(child);
array_push(stack, tree);
tree = grandchild;
}
while (stack->size > initial_stack_size) {
tree = array_pop(stack);
MutableSubtree child = ts_subtree_to_mut_unsafe(tree.ptr->children[0]);
MutableSubtree grandchild = ts_subtree_to_mut_unsafe(child.ptr->children[child.ptr->child_count - 1]);
ts_subtree_set_children(grandchild, grandchild.ptr->children, grandchild.ptr->child_count, language);
ts_subtree_set_children(child, child.ptr->children, child.ptr->child_count, language);
ts_subtree_set_children(tree, tree.ptr->children, tree.ptr->child_count, language);
}
}
void ts_subtree_balance(Subtree self, SubtreePool *pool, const TSLanguage *language) {
array_clear(&pool->tree_stack);
if (ts_subtree_child_count(self) > 0 && self.ptr->ref_count == 1) {
array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(self));
}
while (pool->tree_stack.size > 0) {
MutableSubtree tree = array_pop(&pool->tree_stack);
if (tree.ptr->repeat_depth > 0) {
Subtree child1 = tree.ptr->children[0];
Subtree child2 = tree.ptr->children[tree.ptr->child_count - 1];
long repeat_delta = (long)ts_subtree_repeat_depth(child1) - (long)ts_subtree_repeat_depth(child2);
if (repeat_delta > 0) {
unsigned n = repeat_delta;
for (unsigned i = n / 2; i > 0; i /= 2) {
ts_subtree__compress(tree, i, language, &pool->tree_stack);
n -= i;
}
}
}
for (uint32_t i = 0; i < tree.ptr->child_count; i++) {
Subtree child = tree.ptr->children[i];
if (ts_subtree_child_count(child) > 0 && child.ptr->ref_count == 1) {
array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(child));
}
}
}
}
void ts_subtree_set_children(
MutableSubtree self, Subtree *children, uint32_t child_count, const TSLanguage *language
) {
assert(!self.data.is_inline);
if (self.ptr->child_count > 0 && children != self.ptr->children) {
ts_free(self.ptr->children);
}
self.ptr->child_count = child_count;
self.ptr->children = children;
self.ptr->named_child_count = 0;
self.ptr->visible_child_count = 0;
self.ptr->error_cost = 0;
self.ptr->repeat_depth = 0;
self.ptr->node_count = 1;
self.ptr->has_external_tokens = false;
self.ptr->dynamic_precedence = 0;
uint32_t non_extra_index = 0;
const TSSymbol *alias_sequence = ts_language_alias_sequence(language, self.ptr->production_id);
uint32_t lookahead_end_byte = 0;
for (uint32_t i = 0; i < self.ptr->child_count; i++) {
Subtree child = self.ptr->children[i];
if (i == 0) {
self.ptr->padding = ts_subtree_padding(child);
self.ptr->size = ts_subtree_size(child);
} else {
self.ptr->size = length_add(self.ptr->size, ts_subtree_total_size(child));
}
uint32_t child_lookahead_end_byte =
self.ptr->padding.bytes +
self.ptr->size.bytes +
ts_subtree_lookahead_bytes(child);
if (child_lookahead_end_byte > lookahead_end_byte) lookahead_end_byte = child_lookahead_end_byte;
if (ts_subtree_symbol(child) != ts_builtin_sym_error_repeat) {
self.ptr->error_cost += ts_subtree_error_cost(child);
}
self.ptr->dynamic_precedence += ts_subtree_dynamic_precedence(child);
self.ptr->node_count += ts_subtree_node_count(child);
if (alias_sequence && alias_sequence[non_extra_index] != 0 && !ts_subtree_extra(child)) {
self.ptr->visible_child_count++;
if (ts_language_symbol_metadata(language, alias_sequence[non_extra_index]).named) {
self.ptr->named_child_count++;
}
} else if (ts_subtree_visible(child)) {
self.ptr->visible_child_count++;
if (ts_subtree_named(child)) self.ptr->named_child_count++;
} else if (ts_subtree_child_count(child) > 0) {
self.ptr->visible_child_count += child.ptr->visible_child_count;
self.ptr->named_child_count += child.ptr->named_child_count;
}
if (ts_subtree_has_external_tokens(child)) self.ptr->has_external_tokens = true;
if (ts_subtree_is_error(child)) {
self.ptr->fragile_left = self.ptr->fragile_right = true;
self.ptr->parse_state = TS_TREE_STATE_NONE;
}
if (!ts_subtree_extra(child)) non_extra_index++;
}
self.ptr->lookahead_bytes = lookahead_end_byte - self.ptr->size.bytes - self.ptr->padding.bytes;
if (self.ptr->symbol == ts_builtin_sym_error || self.ptr->symbol == ts_builtin_sym_error_repeat) {
self.ptr->error_cost +=
ERROR_COST_PER_RECOVERY +
ERROR_COST_PER_SKIPPED_CHAR * self.ptr->size.bytes +
ERROR_COST_PER_SKIPPED_LINE * self.ptr->size.extent.row;
for (uint32_t i = 0; i < self.ptr->child_count; i++) {
Subtree child = self.ptr->children[i];
uint32_t grandchild_count = ts_subtree_child_count(child);
if (ts_subtree_extra(child)) continue;
if (ts_subtree_is_error(child) && grandchild_count == 0) continue;
if (ts_subtree_visible(child)) {
self.ptr->error_cost += ERROR_COST_PER_SKIPPED_TREE;
} else if (grandchild_count > 0) {
self.ptr->error_cost += ERROR_COST_PER_SKIPPED_TREE * child.ptr->visible_child_count;
}
}
}
if (self.ptr->child_count > 0) {
Subtree first_child = self.ptr->children[0];
Subtree last_child = self.ptr->children[self.ptr->child_count - 1];
self.ptr->first_leaf.symbol = ts_subtree_leaf_symbol(first_child);
self.ptr->first_leaf.parse_state = ts_subtree_leaf_parse_state(first_child);
if (ts_subtree_fragile_left(first_child)) self.ptr->fragile_left = true;
if (ts_subtree_fragile_right(last_child)) self.ptr->fragile_right = true;
if (
self.ptr->child_count >= 2 &&
!self.ptr->visible &&
!self.ptr->named &&
ts_subtree_symbol(first_child) == self.ptr->symbol
) {
if (ts_subtree_repeat_depth(first_child) > ts_subtree_repeat_depth(last_child)) {
self.ptr->repeat_depth = ts_subtree_repeat_depth(first_child) + 1;
} else {
self.ptr->repeat_depth = ts_subtree_repeat_depth(last_child) + 1;
}
}
}
}
MutableSubtree ts_subtree_new_node(SubtreePool *pool, TSSymbol symbol,
SubtreeArray *children, unsigned production_id,
const TSLanguage *language) {
TSSymbolMetadata metadata = ts_language_symbol_metadata(language, symbol);
bool fragile = symbol == ts_builtin_sym_error || symbol == ts_builtin_sym_error_repeat;
SubtreeHeapData *data = ts_subtree_pool_allocate(pool);
*data = (SubtreeHeapData) {
.ref_count = 1,
.symbol = symbol,
.production_id = production_id,
.visible = metadata.visible,
.named = metadata.named,
.has_changes = false,
.fragile_left = fragile,
.fragile_right = fragile,
.is_keyword = false,
.node_count = 0,
.first_leaf = {.symbol = 0, .parse_state = 0},
};
MutableSubtree result = {.ptr = data};
ts_subtree_set_children(result, children->contents, children->size, language);
return result;
}
Subtree ts_subtree_new_error_node(SubtreePool *pool, SubtreeArray *children,
bool extra, const TSLanguage *language) {
MutableSubtree result = ts_subtree_new_node(
pool, ts_builtin_sym_error, children, 0, language
);
result.ptr->extra = extra;
return ts_subtree_from_mut(result);
}
Subtree ts_subtree_new_missing_leaf(SubtreePool *pool, TSSymbol symbol, Length padding,
const TSLanguage *language) {
Subtree result = ts_subtree_new_leaf(
pool, symbol, padding, length_zero(), 0,
0, false, false, language
);
if (result.data.is_inline) {
result.data.is_missing = true;
} else {
((SubtreeHeapData *)result.ptr)->is_missing = true;
}
return result;
}
void ts_subtree_retain(Subtree self) {
if (self.data.is_inline) return;
assert(self.ptr->ref_count > 0);
atomic_inc((volatile uint32_t *)&self.ptr->ref_count);
assert(self.ptr->ref_count != 0);
}
void ts_subtree_release(SubtreePool *pool, Subtree self) {
if (self.data.is_inline) return;
array_clear(&pool->tree_stack);
assert(self.ptr->ref_count > 0);
if (atomic_dec((volatile uint32_t *)&self.ptr->ref_count) == 0) {
array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(self));
}
while (pool->tree_stack.size > 0) {
MutableSubtree tree = array_pop(&pool->tree_stack);
if (tree.ptr->child_count > 0) {
for (uint32_t i = 0; i < tree.ptr->child_count; i++) {
Subtree child = tree.ptr->children[i];
if (child.data.is_inline) continue;
assert(child.ptr->ref_count > 0);
if (atomic_dec((volatile uint32_t *)&child.ptr->ref_count) == 0) {
array_push(&pool->tree_stack, ts_subtree_to_mut_unsafe(child));
}
}
ts_free(tree.ptr->children);
} else if (tree.ptr->has_external_tokens) {
ts_external_scanner_state_delete(&tree.ptr->external_scanner_state);
}
ts_subtree_pool_free(pool, tree.ptr);
}
}
bool ts_subtree_eq(Subtree self, Subtree other) {
if (self.data.is_inline || other.data.is_inline) {
return memcmp(&self, &other, sizeof(SubtreeInlineData)) == 0;
}
if (self.ptr) {
if (!other.ptr) return false;
} else {
return !other.ptr;
}
if (self.ptr->symbol != other.ptr->symbol) return false;
if (self.ptr->visible != other.ptr->visible) return false;
if (self.ptr->named != other.ptr->named) return false;
if (self.ptr->padding.bytes != other.ptr->padding.bytes) return false;
if (self.ptr->size.bytes != other.ptr->size.bytes) return false;
if (self.ptr->symbol == ts_builtin_sym_error) return self.ptr->lookahead_char == other.ptr->lookahead_char;
if (self.ptr->child_count != other.ptr->child_count) return false;
if (self.ptr->child_count > 0) {
if (self.ptr->visible_child_count != other.ptr->visible_child_count) return false;
if (self.ptr->named_child_count != other.ptr->named_child_count) return false;
for (uint32_t i = 0; i < self.ptr->child_count; i++) {
if (!ts_subtree_eq(self.ptr->children[i], other.ptr->children[i])) {
return false;
}
}
}
return true;
}
int ts_subtree_compare(Subtree left, Subtree right) {
if (ts_subtree_symbol(left) < ts_subtree_symbol(right)) return -1;
if (ts_subtree_symbol(right) < ts_subtree_symbol(left)) return 1;
if (ts_subtree_child_count(left) < ts_subtree_child_count(right)) return -1;
if (ts_subtree_child_count(right) < ts_subtree_child_count(left)) return 1;
for (uint32_t i = 0, n = ts_subtree_child_count(left); i < n; i++) {
Subtree left_child = left.ptr->children[i];
Subtree right_child = right.ptr->children[i];
switch (ts_subtree_compare(left_child, right_child)) {
case -1: return -1;
case 1: return 1;
default: break;
}
}
return 0;
}
static inline void ts_subtree_set_has_changes(MutableSubtree *self) {
if (self->data.is_inline) {
self->data.has_changes = true;
} else {
self->ptr->has_changes = true;
}
}
Subtree ts_subtree_edit(Subtree self, const TSInputEdit *edit, SubtreePool *pool) {
typedef struct {
Subtree *tree;
Edit edit;
} StackEntry;
Array(StackEntry) stack = array_new();
array_push(&stack, ((StackEntry) {
.tree = &self,
.edit = (Edit) {
.start = {edit->start_byte, edit->start_point},
.old_end = {edit->old_end_byte, edit->old_end_point},
.new_end = {edit->new_end_byte, edit->new_end_point},
},
}));
while (stack.size) {
StackEntry entry = array_pop(&stack);
Edit edit = entry.edit;
bool is_noop = edit.old_end.bytes == edit.start.bytes && edit.new_end.bytes == edit.start.bytes;
bool is_pure_insertion = edit.old_end.bytes == edit.start.bytes;
Length size = ts_subtree_size(*entry.tree);
Length padding = ts_subtree_padding(*entry.tree);
uint32_t lookahead_bytes = ts_subtree_lookahead_bytes(*entry.tree);
uint32_t end_byte = padding.bytes + size.bytes + lookahead_bytes;
if (edit.start.bytes > end_byte || (is_noop && edit.start.bytes == end_byte)) continue;
// If the edit is entirely within the space before this subtree, then shift this
// subtree over according to the edit without changing its size.
if (edit.old_end.bytes <= padding.bytes) {
padding = length_add(edit.new_end, length_sub(padding, edit.old_end));
}
// If the edit starts in the space before this subtree and extends into this subtree,
// shrink the subtree's content to compensate for the change in the space before it.
else if (edit.start.bytes < padding.bytes) {
size = length_sub(size, length_sub(edit.old_end, padding));
padding = edit.new_end;
}
// If the edit is a pure insertion right at the start of the subtree,
// shift the subtree over according to the insertion.
else if (edit.start.bytes == padding.bytes && is_pure_insertion) {
padding = edit.new_end;
}
// If the edit is within this subtree, resize the subtree to reflect the edit.
else {
uint32_t total_bytes = padding.bytes + size.bytes;
if (edit.start.bytes < total_bytes ||
(edit.start.bytes == total_bytes && is_pure_insertion)) {
size = length_add(
length_sub(edit.new_end, padding),
length_sub(size, length_sub(edit.old_end, padding))
);
}
}
MutableSubtree result = ts_subtree_make_mut(pool, *entry.tree);
if (result.data.is_inline) {
if (ts_subtree_can_inline(padding, size, lookahead_bytes)) {
result.data.padding_bytes = padding.bytes;
result.data.padding_rows = padding.extent.row;
result.data.padding_columns = padding.extent.column;
result.data.size_bytes = size.bytes;
} else {
SubtreeHeapData *data = ts_subtree_pool_allocate(pool);
data->ref_count = 1;
data->padding = padding;
data->size = size;
data->lookahead_bytes = lookahead_bytes;
data->error_cost = 0;
data->child_count = 0;
data->symbol = result.data.symbol;
data->parse_state = result.data.parse_state;
data->visible = result.data.visible;
data->named = result.data.named;
data->extra = result.data.extra;
data->fragile_left = false;
data->fragile_right = false;
data->has_changes = false;
data->has_external_tokens = false;
data->is_missing = result.data.is_missing;
data->is_keyword = result.data.is_keyword;
result.ptr = data;
}
} else {
result.ptr->padding = padding;
result.ptr->size = size;
}
ts_subtree_set_has_changes(&result);
*entry.tree = ts_subtree_from_mut(result);
Length child_left, child_right = length_zero();
for (uint32_t i = 0, n = ts_subtree_child_count(*entry.tree); i < n; i++) {
Subtree *child = &result.ptr->children[i];
Length child_size = ts_subtree_total_size(*child);
child_left = child_right;
child_right = length_add(child_left, child_size);
// If this child ends before the edit, it is not affected.
if (child_right.bytes + ts_subtree_lookahead_bytes(*child) < edit.start.bytes) continue;
// If this child starts after the edit, then we're done processing children.
if (child_left.bytes > edit.old_end.bytes ||
(child_left.bytes == edit.old_end.bytes && child_size.bytes > 0 && i > 0)) break;
// Transform edit into the child's coordinate space.
Edit child_edit = {
.start = length_sub(edit.start, child_left),
.old_end = length_sub(edit.old_end, child_left),
.new_end = length_sub(edit.new_end, child_left),
};
// Clamp child_edit to the child's bounds.
if (edit.start.bytes < child_left.bytes) child_edit.start = length_zero();
if (edit.old_end.bytes < child_left.bytes) child_edit.old_end = length_zero();
if (edit.new_end.bytes < child_left.bytes) child_edit.new_end = length_zero();
if (edit.old_end.bytes > child_right.bytes) child_edit.old_end = child_size;
// Interpret all inserted text as applying to the *first* child that touches the edit.
// Subsequent children are only never have any text inserted into them; they are only
// shrunk to compensate for the edit.
if (child_right.bytes > edit.start.bytes ||
(child_right.bytes == edit.start.bytes && is_pure_insertion)) {
edit.new_end = edit.start;
}
// Children that occur before the edit are not reshaped by the edit.
else {
child_edit.old_end = child_edit.start;
child_edit.new_end = child_edit.start;
}
// Queue processing of this child's subtree.
array_push(&stack, ((StackEntry) {
.tree = child,
.edit = child_edit,
}));
}
}
array_delete(&stack);
return self;
}
Subtree ts_subtree_last_external_token(Subtree tree) {
if (!ts_subtree_has_external_tokens(tree)) return NULL_SUBTREE;
while (tree.ptr->child_count > 0) {
for (uint32_t i = tree.ptr->child_count - 1; i + 1 > 0; i--) {
Subtree child = tree.ptr->children[i];
if (ts_subtree_has_external_tokens(child)) {
tree = child;
break;
}
}
}
return tree;
}
static size_t ts_subtree__write_char_to_string(char *s, size_t n, int32_t c) {
if (c == -1)
return snprintf(s, n, "INVALID");
else if (c == '\0')
return snprintf(s, n, "'\\0'");
else if (c == '\n')
return snprintf(s, n, "'\\n'");
else if (c == '\t')
return snprintf(s, n, "'\\t'");
else if (c == '\r')
return snprintf(s, n, "'\\r'");
else if (0 < c && c < 128 && isprint(c))
return snprintf(s, n, "'%c'", c);
else
return snprintf(s, n, "%d", c);
}
static void ts_subtree__write_dot_string(FILE *f, const char *string) {
for (const char *c = string; *c; c++) {
if (*c == '"') {
fputs("\\\"", f);
} else if (*c == '\n') {
fputs("\\n", f);
} else {
fputc(*c, f);
}
}
}
static const char *ROOT_FIELD = "__ROOT__";
static size_t ts_subtree__write_to_string(
Subtree self, char *string, size_t limit,
const TSLanguage *language, bool include_all,
TSSymbol alias_symbol, bool alias_is_named, const char *field_name
) {
if (!self.ptr) return snprintf(string, limit, "(NULL)");
char *cursor = string;
char **writer = (limit > 0) ? &cursor : &string;
bool is_root = field_name == ROOT_FIELD;
bool is_visible =
include_all ||
ts_subtree_missing(self) ||
(
alias_symbol
? alias_is_named
: ts_subtree_visible(self) && ts_subtree_named(self)
);
if (is_visible) {
if (!is_root) {
cursor += snprintf(*writer, limit, " ");
if (field_name) {
cursor += snprintf(*writer, limit, "%s: ", field_name);
}
}
if (ts_subtree_is_error(self) && ts_subtree_child_count(self) == 0 && self.ptr->size.bytes > 0) {
cursor += snprintf(*writer, limit, "(UNEXPECTED ");
cursor += ts_subtree__write_char_to_string(*writer, limit, self.ptr->lookahead_char);
} else {
TSSymbol symbol = alias_symbol ? alias_symbol : ts_subtree_symbol(self);
const char *symbol_name = ts_language_symbol_name(language, symbol);
if (ts_subtree_missing(self)) {
cursor += snprintf(*writer, limit, "(MISSING ");
if (alias_is_named || ts_subtree_named(self)) {
cursor += snprintf(*writer, limit, "%s", symbol_name);
} else {
cursor += snprintf(*writer, limit, "\"%s\"", symbol_name);
}
} else {
cursor += snprintf(*writer, limit, "(%s", symbol_name);
}
}
} else if (is_root) {
TSSymbol symbol = ts_subtree_symbol(self);
const char *symbol_name = ts_language_symbol_name(language, symbol);
cursor += snprintf(*writer, limit, "(\"%s\")", symbol_name);
}
if (ts_subtree_child_count(self)) {
const TSSymbol *alias_sequence = ts_language_alias_sequence(language, self.ptr->production_id);
const TSFieldMapEntry *field_map, *field_map_end;
ts_language_field_map(
language,
self.ptr->production_id,
&field_map,
&field_map_end
);
uint32_t structural_child_index = 0;
for (uint32_t i = 0; i < self.ptr->child_count; i++) {
Subtree child = self.ptr->children[i];
if (ts_subtree_extra(child)) {
cursor += ts_subtree__write_to_string(
child, *writer, limit,
language, include_all,
0, false, NULL
);
} else {
TSSymbol alias_symbol = alias_sequence
? alias_sequence[structural_child_index]
: 0;
bool alias_is_named = alias_symbol
? ts_language_symbol_metadata(language, alias_symbol).named
: false;
const char *child_field_name = is_visible ? NULL : field_name;
for (const TSFieldMapEntry *i = field_map; i < field_map_end; i++) {
if (!i->inherited && i->child_index == structural_child_index) {
child_field_name = language->field_names[i->field_id];
break;
}
}
cursor += ts_subtree__write_to_string(
child, *writer, limit,
language, include_all,
alias_symbol, alias_is_named, child_field_name
);
structural_child_index++;
}
}
}
if (is_visible) cursor += snprintf(*writer, limit, ")");
return cursor - string;
}
char *ts_subtree_string(
Subtree self,
const TSLanguage *language,
bool include_all
) {
char scratch_string[1];
size_t size = ts_subtree__write_to_string(
self, scratch_string, 0,
language, include_all,
0, false, ROOT_FIELD
) + 1;
char *result = malloc(size * sizeof(char));
ts_subtree__write_to_string(
self, result, size,
language, include_all,
0, false, ROOT_FIELD
);
return result;
}
void ts_subtree__print_dot_graph(const Subtree *self, uint32_t start_offset,
const TSLanguage *language, TSSymbol alias_symbol,
FILE *f) {
TSSymbol subtree_symbol = ts_subtree_symbol(*self);
TSSymbol symbol = alias_symbol ? alias_symbol : subtree_symbol;
uint32_t end_offset = start_offset + ts_subtree_total_bytes(*self);
fprintf(f, "tree_%p [label=\"", self);
ts_subtree__write_dot_string(f, ts_language_symbol_name(language, symbol));
fprintf(f, "\"");
if (ts_subtree_child_count(*self) == 0) fprintf(f, ", shape=plaintext");
if (ts_subtree_extra(*self)) fprintf(f, ", fontcolor=gray");
fprintf(f, ", tooltip=\""
"range: %u - %u\n"
"state: %d\n"
"error-cost: %u\n"
"has-changes: %u\n"
"repeat-depth: %u\n"
"lookahead-bytes: %u",
start_offset, end_offset,
ts_subtree_parse_state(*self),
ts_subtree_error_cost(*self),
ts_subtree_has_changes(*self),
ts_subtree_repeat_depth(*self),
ts_subtree_lookahead_bytes(*self)
);
if (ts_subtree_is_error(*self) && ts_subtree_child_count(*self) == 0) {
fprintf(f, "\ncharacter: '%c'", self->ptr->lookahead_char);
}
fprintf(f, "\"]\n");
uint32_t child_start_offset = start_offset;
uint32_t child_info_offset =
language->max_alias_sequence_length *
ts_subtree_production_id(*self);
for (uint32_t i = 0, n = ts_subtree_child_count(*self); i < n; i++) {
const Subtree *child = &self->ptr->children[i];
TSSymbol alias_symbol = 0;
if (!ts_subtree_extra(*child) && child_info_offset) {
alias_symbol = language->alias_sequences[child_info_offset];
child_info_offset++;
}
ts_subtree__print_dot_graph(child, child_start_offset, language, alias_symbol, f);
fprintf(f, "tree_%p -> tree_%p [tooltip=%u]\n", self, child, i);
child_start_offset += ts_subtree_total_bytes(*child);
}
}
void ts_subtree_print_dot_graph(Subtree self, const TSLanguage *language, FILE *f) {
fprintf(f, "digraph tree {\n");
fprintf(f, "edge [arrowhead=none]\n");
ts_subtree__print_dot_graph(&self, 0, language, 0, f);
fprintf(f, "}\n");
}
bool ts_subtree_external_scanner_state_eq(Subtree self, Subtree other) {
const ExternalScannerState *state1 = &empty_state;
const ExternalScannerState *state2 = &empty_state;
if (self.ptr && ts_subtree_has_external_tokens(self) && !self.ptr->child_count) {
state1 = &self.ptr->external_scanner_state;
}
if (other.ptr && ts_subtree_has_external_tokens(other) && !other.ptr->child_count) {
state2 = &other.ptr->external_scanner_state;
}
return ts_external_scanner_state_eq(state1, state2);
}