vo_gpu: vulkan: use libplacebo instead

This commit rips out the entire mpv vulkan implementation in favor of
exposing lightweight wrappers on top of libplacebo instead, which
provides much of the same except in a more up-to-date and polished form.

This (finally) unifies the code base between mpv and libplacebo, which
is something I've been hoping to do for a long time.

Note: The ra_pl wrappers are abstract enough from the actual libplacebo
device type that we can in theory re-use them for other devices like
d3d11 or even opengl in the future, so I moved them to a separate
directory for the time being. However, the rest of the code is still
vulkan-specific, so I've kept the "vulkan" naming and file paths, rather
than introducing a new `--gpu-api` type. (Which would have been ended up
with significantly more code duplicaiton)

Plus, the code and functionality is similar enough that for most users
this should just be a straight-up drop-in replacement.

Note: This commit excludes some changes; specifically, the updates to
context_win and hwdec_cuda are deferred to separate commits for
authorship reasons.
This commit is contained in:
Niklas Haas 2018-11-10 12:53:33 +01:00 committed by Jan Ekström
parent 9f7dcc0726
commit 7006d6752d
24 changed files with 875 additions and 4375 deletions

View File

@ -127,19 +127,19 @@ static void update_loglevel(struct mp_log *log)
pthread_mutex_unlock(&mp_msg_lock);
}
// Return whether the message at this verbosity level would be actually printed.
// Get the current effective msg level.
// Thread-safety: see mp_msg().
bool mp_msg_test(struct mp_log *log, int lev)
int mp_msg_level(struct mp_log *log)
{
struct mp_log_root *root = log->root;
if (!root)
return false;
return -1;
if (atomic_load_explicit(&log->reload_counter, memory_order_relaxed) !=
atomic_load_explicit(&root->reload_counter, memory_order_relaxed))
{
update_loglevel(log);
}
return lev <= log->level;
return log->level;
}
// Reposition cursor and clear lines for outputting the status line. In certain

View File

@ -52,7 +52,12 @@ void mp_msg(struct mp_log *log, int lev, const char *format, ...)
PRINTF_ATTRIBUTE(3, 4);
void mp_msg_va(struct mp_log *log, int lev, const char *format, va_list va);
bool mp_msg_test(struct mp_log *log, int lev);
int mp_msg_level(struct mp_log *log);
static inline bool mp_msg_test(struct mp_log *log, int lev)
{
return lev <= mp_msg_level(log);
}
// Convenience macros.
#define mp_fatal(log, ...) mp_msg(log, MSGL_FATAL, __VA_ARGS__)

View File

@ -50,7 +50,7 @@ extern const struct ra_ctx_fns ra_ctx_vdpauglx;
/* Vulkan */
extern const struct ra_ctx_fns ra_ctx_vulkan_wayland;
extern const struct ra_ctx_fns ra_ctx_vulkan_win;
//extern const struct ra_ctx_fns ra_ctx_vulkan_win;
extern const struct ra_ctx_fns ra_ctx_vulkan_xlib;
/* Direct3D 11 */
@ -105,9 +105,11 @@ static const struct ra_ctx_fns *contexts[] = {
// Vulkan contexts:
#if HAVE_VULKAN
/*
#if HAVE_WIN32_DESKTOP
&ra_ctx_vulkan_win,
#endif
*/
#if HAVE_WAYLAND
&ra_ctx_vulkan_wayland,
#endif

View File

@ -39,9 +39,11 @@
#include "ra_gl.h"
#endif
#if HAVE_VULKAN
/*
#include "video/out/vulkan/formats.h"
#include "video/out/vulkan/ra_vk.h"
#include "video/out/vulkan/utils.h"
*/
#endif
#if HAVE_WIN32_DESKTOP
@ -125,6 +127,8 @@ static int cuda_init(struct ra_hwdec *hw)
#endif
#if HAVE_VULKAN
return -1; // TODO: reimplement
/*
p->is_vk = ra_vk_get(hw->ra) != NULL;
if (p->is_vk) {
if (!ra_vk_get(hw->ra)->has_ext_external_memory_export) {
@ -133,6 +137,7 @@ static int cuda_init(struct ra_hwdec *hw)
return -1;
}
}
*/
#endif
if (!p->is_gl && !p->is_vk) {
@ -197,6 +202,7 @@ static int cuda_init(struct ra_hwdec *hw)
}
} else if (p->is_vk) {
#if HAVE_VULKAN
/*
uint8_t vk_uuid[VK_UUID_SIZE];
struct mpvk_ctx *vk = ra_vk_get(hw->ra);
@ -236,6 +242,7 @@ static int cuda_init(struct ra_hwdec *hw)
return -1;
p->decode_ctx = p->display_ctx;
*/
#endif
}
@ -293,6 +300,7 @@ static void cuda_uninit(struct ra_hwdec *hw)
#define CHECK_CU(x) check_cu((mapper)->owner, (x), #x)
#if HAVE_VULKAN
/*
static struct ra_buf *cuda_buf_pool_get(struct ra_hwdec_mapper *mapper, int n)
{
struct priv_owner *p_owner = mapper->owner->priv;
@ -390,6 +398,7 @@ static void cuda_buf_pool_uninit(struct ra_hwdec_mapper *mapper, int n)
}
ra_buf_pool_uninit(mapper->ra, pool);
}
*/
#endif // HAVE_VULKAN
static int mapper_init(struct ra_hwdec_mapper *mapper)
@ -497,7 +506,7 @@ static void mapper_uninit(struct ra_hwdec_mapper *mapper)
ra_tex_free(mapper->ra, &mapper->tex[n]);
#if HAVE_VULKAN
cuda_buf_pool_uninit(mapper, n);
//cuda_buf_pool_uninit(mapper, n);
#endif
}
CHECK_CU(cu->cuCtxPopCurrent(&dummy));

628
video/out/placebo/ra_pl.c Normal file
View File

@ -0,0 +1,628 @@
#include "common/common.h"
#include "common/msg.h"
#include "ra_pl.h"
#include "utils.h"
struct ra_pl {
const struct pl_gpu *gpu;
};
static inline const struct pl_gpu *get_gpu(struct ra *ra)
{
struct ra_pl *p = ra->priv;
return p->gpu;
}
static struct ra_fns ra_fns_pl;
struct ra *ra_create_pl(const struct pl_gpu *gpu, struct mp_log *log)
{
assert(gpu);
struct ra *ra = talloc_zero(NULL, struct ra);
ra->log = log;
ra->fns = &ra_fns_pl;
struct ra_pl *p = ra->priv = talloc_zero(ra, struct ra_pl);
p->gpu = gpu;
ra->glsl_version = gpu->glsl.version;
ra->glsl_vulkan = gpu->glsl.vulkan;
ra->glsl_es = gpu->glsl.gles;
ra->caps = RA_CAP_DIRECT_UPLOAD | RA_CAP_NESTED_ARRAY | RA_CAP_FRAGCOORD;
if (gpu->caps & PL_GPU_CAP_COMPUTE)
ra->caps |= RA_CAP_COMPUTE | RA_CAP_NUM_GROUPS;
if (gpu->caps & PL_GPU_CAP_PARALLEL_COMPUTE)
ra->caps |= RA_CAP_PARALLEL_COMPUTE;
if (gpu->caps & PL_GPU_CAP_INPUT_VARIABLES)
ra->caps |= RA_CAP_GLOBAL_UNIFORM;
if (gpu->limits.max_tex_1d_dim)
ra->caps |= RA_CAP_TEX_1D;
if (gpu->limits.max_tex_3d_dim)
ra->caps |= RA_CAP_TEX_3D;
if (gpu->limits.max_ubo_size)
ra->caps |= RA_CAP_BUF_RO;
if (gpu->limits.max_ssbo_size)
ra->caps |= RA_CAP_BUF_RW;
if (gpu->limits.min_gather_offset && gpu->limits.max_gather_offset)
ra->caps |= RA_CAP_GATHER;
// Semi-hack: assume all textures are blittable if r8 is
const struct pl_fmt *r8 = pl_find_named_fmt(gpu, "r8");
if (r8->caps & PL_FMT_CAP_BLITTABLE)
ra->caps |= RA_CAP_BLIT;
ra->max_texture_wh = gpu->limits.max_tex_2d_dim;
ra->max_shmem = gpu->limits.max_shmem_size;
ra->max_pushc_size = gpu->limits.max_pushc_size;
// Set up format wrappers
for (int i = 0; i < gpu->num_formats; i++) {
const struct pl_fmt *plfmt = gpu->formats[i];
static const enum ra_ctype fmt_type_map[PL_FMT_TYPE_COUNT] = {
[PL_FMT_UNORM] = RA_CTYPE_UNORM,
[PL_FMT_UINT] = RA_CTYPE_UINT,
[PL_FMT_FLOAT] = RA_CTYPE_FLOAT,
};
enum ra_ctype type = fmt_type_map[plfmt->type];
if (!type || !(plfmt->caps & PL_FMT_CAP_SAMPLEABLE))
continue;
struct ra_format *rafmt = talloc_zero(ra, struct ra_format);
*rafmt = (struct ra_format) {
.name = plfmt->name,
.priv = (void *) plfmt,
.ctype = type,
.ordered = pl_fmt_is_ordered(plfmt),
.num_components = plfmt->num_components,
.pixel_size = plfmt->texel_size,
.linear_filter = plfmt->caps & PL_FMT_CAP_LINEAR,
.renderable = plfmt->caps & PL_FMT_CAP_RENDERABLE,
.glsl_format = plfmt->glsl_format,
};
for (int c = 0; c < plfmt->num_components; c++) {
rafmt->component_size[c] = plfmt->host_bits[c];
rafmt->component_depth[c] = plfmt->component_depth[c];
}
MP_TARRAY_APPEND(ra, ra->formats, ra->num_formats, rafmt);
}
return ra;
}
static void destroy_ra_pl(struct ra *ra)
{
talloc_free(ra);
}
static struct ra_format *map_fmt(struct ra *ra, const struct pl_fmt *plfmt)
{
for (int i = 0; i < ra->num_formats; i++) {
if (ra->formats[i]->priv == plfmt)
return ra->formats[i];
}
MP_ERR(ra, "Failed mapping pl_fmt '%s' to ra_fmt?\n", plfmt->name);
return NULL;
}
bool mppl_wrap_tex(struct ra *ra, const struct pl_tex *pltex,
struct ra_tex *out_tex)
{
if (!pltex)
return false;
*out_tex = (struct ra_tex) {
.params = {
.dimensions = pl_tex_params_dimension(pltex->params),
.w = pltex->params.w,
.h = pltex->params.h,
.d = pltex->params.d,
.format = map_fmt(ra, pltex->params.format),
.render_src = pltex->params.sampleable,
.render_dst = pltex->params.renderable,
.storage_dst = pltex->params.storable,
.blit_src = pltex->params.blit_src,
.blit_dst = pltex->params.blit_dst,
.host_mutable = pltex->params.host_writable,
.downloadable = pltex->params.host_readable,
.src_linear = pltex->params.sample_mode == PL_TEX_SAMPLE_LINEAR,
.src_repeat = pltex->params.address_mode == PL_TEX_ADDRESS_REPEAT,
},
.priv = (void *) pltex,
};
return !!out_tex->params.format;
}
static struct ra_tex *tex_create_pl(struct ra *ra,
const struct ra_tex_params *params)
{
const struct pl_gpu *gpu = get_gpu(ra);
// Check size limits
bool ok = false;
switch (params->dimensions) {
case 1:
ok = params->w <= gpu->limits.max_tex_1d_dim;
break;
case 2:
ok = params->w <= gpu->limits.max_tex_2d_dim &&
params->h <= gpu->limits.max_tex_2d_dim;
break;
case 3:
ok = params->w <= gpu->limits.max_tex_2d_dim &&
params->h <= gpu->limits.max_tex_2d_dim &&
params->d <= gpu->limits.max_tex_2d_dim;
break;
};
if (!ok) {
MP_ERR(ra, "Texture size %dx%dx%d exceeds dimension limits!\n",
params->w, params->h, params->d);
return NULL;
}
const struct pl_tex *pltex = pl_tex_create(gpu, &(struct pl_tex_params) {
.w = params->w,
.h = params->dimensions >= 2 ? params->h : 0,
.d = params->dimensions >= 3 ? params->d : 0,
.format = params->format->priv,
.sampleable = params->render_src,
.renderable = params->render_dst,
.storable = params->storage_dst,
.blit_src = params->blit_src,
.blit_dst = params->blit_dst || params->render_dst,
.host_writable = params->host_mutable,
.host_readable = params->downloadable,
.sample_mode = params->src_linear ? PL_TEX_SAMPLE_LINEAR
: PL_TEX_SAMPLE_NEAREST,
.address_mode = params->src_repeat ? PL_TEX_ADDRESS_REPEAT
: PL_TEX_ADDRESS_CLAMP,
.initial_data = params->initial_data,
});
struct ra_tex *ratex = talloc_ptrtype(NULL, ratex);
if (!mppl_wrap_tex(ra, pltex, ratex)) {
pl_tex_destroy(gpu, &pltex);
talloc_free(ratex);
return NULL;
}
return ratex;
}
static void tex_destroy_pl(struct ra *ra, struct ra_tex *tex)
{
if (!tex)
return;
pl_tex_destroy(get_gpu(ra), (const struct pl_tex **) &tex->priv);
talloc_free(tex);
}
static int texel_stride_w(size_t stride, const struct pl_tex *tex)
{
size_t texel_size = tex->params.format->texel_size;
int texels = stride / texel_size;
assert(texels * texel_size == stride);
return texels;
}
static bool tex_upload_pl(struct ra *ra, const struct ra_tex_upload_params *params)
{
const struct pl_tex *tex = params->tex->priv;
struct pl_tex_transfer_params pl_params = {
.tex = tex,
.buf = params->buf ? params->buf->priv : NULL,
.buf_offset = params->buf_offset,
.ptr = (void *) params->src,
};
if (params->tex->params.dimensions == 2) {
pl_params.stride_w = texel_stride_w(params->stride, tex);
if (params->rc) {
pl_params.rc = (struct pl_rect3d) {
.x0 = params->rc->x0, .x1 = params->rc->x1,
.y0 = params->rc->y0, .y1 = params->rc->y1,
};
}
}
return pl_tex_upload(get_gpu(ra), &pl_params);
}
static bool tex_download_pl(struct ra *ra, struct ra_tex_download_params *params)
{
const struct pl_tex *tex = params->tex->priv;
struct pl_tex_transfer_params pl_params = {
.tex = tex,
.ptr = params->dst,
.stride_w = texel_stride_w(params->stride, tex),
};
return pl_tex_download(get_gpu(ra), &pl_params);
}
static struct ra_buf *buf_create_pl(struct ra *ra,
const struct ra_buf_params *params)
{
static const enum pl_buf_type buf_type[] = {
[RA_BUF_TYPE_TEX_UPLOAD] = PL_BUF_TEX_TRANSFER,
[RA_BUF_TYPE_SHADER_STORAGE] = PL_BUF_STORAGE,
[RA_BUF_TYPE_UNIFORM] = PL_BUF_UNIFORM,
[RA_BUF_TYPE_SHARED_MEMORY] = 0,
};
const struct pl_gpu *gpu = get_gpu(ra);
size_t max_size[] = {
[PL_BUF_TEX_TRANSFER] = gpu->limits.max_xfer_size,
[PL_BUF_UNIFORM] = gpu->limits.max_ubo_size,
[PL_BUF_STORAGE] = gpu->limits.max_ssbo_size,
};
if (params->size > max_size[buf_type[params->type]]) {
MP_ERR(ra, "Buffer size %zu exceeds size limits!\n", params->size);
return NULL;
}
const struct pl_buf *plbuf = pl_buf_create(gpu, &(struct pl_buf_params) {
.type = buf_type[params->type],
.size = params->size,
.host_mapped = params->host_mapped,
.host_writable = params->host_mutable,
.initial_data = params->initial_data,
});
if (!plbuf)
return NULL;
struct ra_buf *rabuf = talloc_ptrtype(NULL, rabuf);
*rabuf = (struct ra_buf) {
.params = *params,
.data = plbuf->data,
.priv = (void *) plbuf,
};
rabuf->params.initial_data = NULL;
return rabuf;
}
static void buf_destroy_pl(struct ra *ra, struct ra_buf *buf)
{
if (!buf)
return;
pl_buf_destroy(get_gpu(ra), (const struct pl_buf **) &buf->priv);
talloc_free(buf);
}
static void buf_update_pl(struct ra *ra, struct ra_buf *buf, ptrdiff_t offset,
const void *data, size_t size)
{
pl_buf_write(get_gpu(ra), buf->priv, offset, data, size);
}
static bool buf_poll_pl(struct ra *ra, struct ra_buf *buf)
{
return !pl_buf_poll(get_gpu(ra), buf->priv, 0);
}
static void clear_pl(struct ra *ra, struct ra_tex *dst, float color[4],
struct mp_rect *scissor)
{
// TODO: implement scissor clearing by bltting a 1x1 tex instead
pl_tex_clear(get_gpu(ra), dst->priv, color);
}
static void blit_pl(struct ra *ra, struct ra_tex *dst, struct ra_tex *src,
struct mp_rect *dst_rc, struct mp_rect *src_rc)
{
struct pl_rect3d plsrc = {0}, pldst = {0};
if (src_rc) {
plsrc.x0 = MPMIN(MPMAX(src_rc->x0, 0), src->params.w);
plsrc.y0 = MPMIN(MPMAX(src_rc->y0, 0), src->params.h);
plsrc.x1 = MPMIN(MPMAX(src_rc->x1, 0), src->params.w);
plsrc.y1 = MPMIN(MPMAX(src_rc->y1, 0), src->params.h);
}
if (dst_rc) {
pldst.x0 = MPMIN(MPMAX(dst_rc->x0, 0), dst->params.w);
pldst.y0 = MPMIN(MPMAX(dst_rc->y0, 0), dst->params.h);
pldst.x1 = MPMIN(MPMAX(dst_rc->x1, 0), dst->params.w);
pldst.y1 = MPMIN(MPMAX(dst_rc->y1, 0), dst->params.h);
}
pl_tex_blit(get_gpu(ra), dst->priv, src->priv, pldst, plsrc);
}
static const enum pl_var_type var_type[RA_VARTYPE_COUNT] = {
[RA_VARTYPE_INT] = PL_VAR_SINT,
[RA_VARTYPE_FLOAT] = PL_VAR_FLOAT,
};
static const enum pl_desc_type desc_type[RA_VARTYPE_COUNT] = {
[RA_VARTYPE_TEX] = PL_DESC_SAMPLED_TEX,
[RA_VARTYPE_IMG_W] = PL_DESC_STORAGE_IMG,
[RA_VARTYPE_BUF_RO] = PL_DESC_BUF_UNIFORM,
[RA_VARTYPE_BUF_RW] = PL_DESC_BUF_STORAGE,
};
static const enum pl_fmt_type fmt_type[RA_VARTYPE_COUNT] = {
[RA_VARTYPE_INT] = PL_FMT_SINT,
[RA_VARTYPE_FLOAT] = PL_FMT_FLOAT,
[RA_VARTYPE_BYTE_UNORM] = PL_FMT_UNORM,
};
static const size_t var_size[RA_VARTYPE_COUNT] = {
[RA_VARTYPE_INT] = sizeof(int),
[RA_VARTYPE_FLOAT] = sizeof(float),
[RA_VARTYPE_BYTE_UNORM] = sizeof(uint8_t),
};
static struct ra_layout uniform_layout_pl(struct ra_renderpass_input *inp)
{
// To get the alignment requirements, we try laying this out with
// an offset of 1 and then see where it ends up. This will always be
// the minimum alignment requirement.
struct pl_var_layout layout = pl_buf_uniform_layout(1, &(struct pl_var) {
.name = inp->name,
.type = var_type[inp->type],
.dim_v = inp->dim_v,
.dim_m = inp->dim_m,
.dim_a = 1,
});
return (struct ra_layout) {
.align = layout.offset,
.stride = layout.stride,
.size = layout.size,
};
}
static struct ra_layout push_constant_layout_pl(struct ra_renderpass_input *inp)
{
struct pl_var_layout layout = pl_push_constant_layout(1, &(struct pl_var) {
.name = inp->name,
.type = var_type[inp->type],
.dim_v = inp->dim_v,
.dim_m = inp->dim_m,
.dim_a = 1,
});
return (struct ra_layout) {
.align = layout.offset,
.stride = layout.stride,
.size = layout.size,
};
}
static int desc_namespace_pl(struct ra *ra, enum ra_vartype type)
{
return pl_desc_namespace(get_gpu(ra), desc_type[type]);
}
struct pass_priv {
const struct pl_pass *pl_pass;
uint16_t *inp_index; // index translation map
// Space to hold the descriptor bindings and variable updates
struct pl_desc_binding *binds;
struct pl_var_update *varups;
int num_varups;
};
static struct ra_renderpass *renderpass_create_pl(struct ra *ra,
const struct ra_renderpass_params *params)
{
void *tmp = talloc_new(NULL);
const struct pl_gpu *gpu = get_gpu(ra);
struct ra_renderpass *pass = NULL;
static const enum pl_pass_type pass_type[] = {
[RA_RENDERPASS_TYPE_RASTER] = PL_PASS_RASTER,
[RA_RENDERPASS_TYPE_COMPUTE] = PL_PASS_COMPUTE,
};
struct pl_var *vars = NULL;
struct pl_desc *descs = NULL;
int num_vars = 0, num_descs = 0;
struct pass_priv *priv = talloc_ptrtype(tmp, priv);
priv->inp_index = talloc_zero_array(priv, uint16_t, params->num_inputs);
for (int i = 0; i < params->num_inputs; i++) {
const struct ra_renderpass_input *inp = &params->inputs[i];
if (var_type[inp->type]) {
priv->inp_index[i] = num_vars;
MP_TARRAY_APPEND(tmp, vars, num_vars, (struct pl_var) {
.name = inp->name,
.type = var_type[inp->type],
.dim_v = inp->dim_v,
.dim_m = inp->dim_m,
.dim_a = 1,
});
} else if (desc_type[inp->type]) {
priv->inp_index[i] = num_descs;
MP_TARRAY_APPEND(tmp, descs, num_descs, (struct pl_desc) {
.name = inp->name,
.type = desc_type[inp->type],
.binding = inp->binding,
.access = inp->type == RA_VARTYPE_IMG_W ? PL_DESC_ACCESS_WRITEONLY
: inp->type == RA_VARTYPE_BUF_RW ? PL_DESC_ACCESS_READWRITE
: PL_DESC_ACCESS_READONLY,
});
}
}
// Allocate space to store the bindings map persistently
priv->binds = talloc_zero_array(priv, struct pl_desc_binding, num_descs);
struct pl_pass_params pl_params = {
.type = pass_type[params->type],
.variables = vars,
.num_variables = num_vars,
.descriptors = descs,
.num_descriptors = num_descs,
.push_constants_size = params->push_constants_size,
.glsl_shader = params->type == RA_RENDERPASS_TYPE_COMPUTE
? params->compute_shader
: params->frag_shader,
.cached_program = params->cached_program.start,
.cached_program_len = params->cached_program.len,
};
struct pl_blend_params blend_params;
if (params->type == RA_RENDERPASS_TYPE_RASTER) {
pl_params.vertex_shader = params->vertex_shader;
pl_params.vertex_type = PL_PRIM_TRIANGLE_LIST;
pl_params.vertex_stride = params->vertex_stride;
pl_params.target_dummy.params.format = params->target_format->priv;
pl_params.load_target = !params->invalidate_target;
if (params->enable_blend) {
pl_params.blend_params = &blend_params;
blend_params = (struct pl_blend_params) {
// Same enum order as ra_blend
.src_rgb = (enum ra_blend) params->blend_src_rgb,
.dst_rgb = (enum ra_blend) params->blend_dst_rgb,
.src_alpha = (enum ra_blend) params->blend_src_alpha,
.dst_alpha = (enum ra_blend) params->blend_dst_alpha,
};
}
for (int i = 0; i < params->num_vertex_attribs; i++) {
const struct ra_renderpass_input *inp = &params->vertex_attribs[i];
struct pl_vertex_attrib attrib = {
.name = inp->name,
.offset = inp->offset,
.location = i,
.fmt = pl_find_fmt(gpu, fmt_type[inp->type], inp->dim_v, 0,
var_size[inp->type] * 8, PL_FMT_CAP_VERTEX),
};
if (!attrib.fmt) {
MP_ERR(ra, "Failed mapping vertex attrib '%s' to pl_fmt?\n",
inp->name);
goto error;
}
MP_TARRAY_APPEND(tmp, pl_params.vertex_attribs,
pl_params.num_vertex_attribs, attrib);
}
}
priv->pl_pass = pl_pass_create(gpu, &pl_params);
if (!priv->pl_pass)
goto error;
pass = talloc_ptrtype(NULL, pass);
*pass = (struct ra_renderpass) {
.params = *ra_renderpass_params_copy(pass, params),
.priv = talloc_steal(pass, priv),
};
pass->params.cached_program = (struct bstr) {
.start = (void *) priv->pl_pass->params.cached_program,
.len = priv->pl_pass->params.cached_program_len,
};
// fall through
error:
talloc_free(tmp);
return pass;
}
static void renderpass_destroy_pl(struct ra *ra, struct ra_renderpass *pass)
{
if (!pass)
return;
struct pass_priv *priv = pass->priv;
pl_pass_destroy(get_gpu(ra), (const struct pl_pass **) &priv->pl_pass);
talloc_free(pass);
}
static void renderpass_run_pl(struct ra *ra,
const struct ra_renderpass_run_params *params)
{
struct pass_priv *p = params->pass->priv;
p->num_varups = 0;
for (int i = 0; i < params->num_values; i++) {
const struct ra_renderpass_input_val *val = &params->values[i];
const struct ra_renderpass_input *inp = &params->pass->params.inputs[i];
if (var_type[inp->type]) {
MP_TARRAY_APPEND(p, p->varups, p->num_varups, (struct pl_var_update) {
.index = p->inp_index[val->index],
.data = val->data,
});
} else {
struct pl_desc_binding bind;
switch (inp->type) {
case RA_VARTYPE_TEX:
case RA_VARTYPE_IMG_W:
bind.object = (* (struct ra_tex **) val->data)->priv;
break;
case RA_VARTYPE_BUF_RO:
case RA_VARTYPE_BUF_RW:
bind.object = (* (struct ra_buf **) val->data)->priv;
break;
default: abort();
};
p->binds[p->inp_index[val->index]] = bind;
};
}
struct pl_pass_run_params pl_params = {
.pass = p->pl_pass,
.var_updates = p->varups,
.num_var_updates = p->num_varups,
.desc_bindings = p->binds,
.push_constants = params->push_constants,
};
if (p->pl_pass->params.type == PL_PASS_RASTER) {
pl_params.target = params->target->priv;
pl_params.viewport = mp_rect2d_to_pl(params->viewport);
pl_params.scissors = mp_rect2d_to_pl(params->scissors);
pl_params.vertex_data = params->vertex_data;
pl_params.vertex_count = params->vertex_count;
} else {
for (int i = 0; i < MP_ARRAY_SIZE(pl_params.compute_groups); i++)
pl_params.compute_groups[i] = params->compute_groups[i];
}
pl_pass_run(get_gpu(ra), &pl_params);
}
static struct ra_fns ra_fns_pl = {
.destroy = destroy_ra_pl,
.tex_create = tex_create_pl,
.tex_destroy = tex_destroy_pl,
.tex_upload = tex_upload_pl,
.tex_download = tex_download_pl,
.buf_create = buf_create_pl,
.buf_destroy = buf_destroy_pl,
.buf_update = buf_update_pl,
.buf_poll = buf_poll_pl,
.clear = clear_pl,
.blit = blit_pl,
.uniform_layout = uniform_layout_pl,
.push_constant_layout = push_constant_layout_pl,
.desc_namespace = desc_namespace_pl,
.renderpass_create = renderpass_create_pl,
.renderpass_destroy = renderpass_destroy_pl,
.renderpass_run = renderpass_run_pl,
};

10
video/out/placebo/ra_pl.h Normal file
View File

@ -0,0 +1,10 @@
#pragma once
#include "video/out/gpu/ra.h"
#include <libplacebo/gpu.h>
struct ra *ra_create_pl(const struct pl_gpu *gpu, struct mp_log *log);
// Wrap a pl_tex into a ra_tex struct, returns if successful
bool mppl_wrap_tex(struct ra *ra, const struct pl_tex *pltex,
struct ra_tex *out_tex);

62
video/out/placebo/utils.c Normal file
View File

@ -0,0 +1,62 @@
#include "common/common.h"
#include "utils.h"
static const int pl_log_to_msg_lev[PL_LOG_ALL+1] = {
[PL_LOG_FATAL] = MSGL_FATAL,
[PL_LOG_ERR] = MSGL_ERR,
[PL_LOG_WARN] = MSGL_WARN,
[PL_LOG_INFO] = MSGL_V,
[PL_LOG_DEBUG] = MSGL_DEBUG,
[PL_LOG_TRACE] = MSGL_TRACE,
};
static const enum pl_log_level msg_lev_to_pl_log[MSGL_MAX+1] = {
[MSGL_FATAL] = PL_LOG_FATAL,
[MSGL_ERR] = PL_LOG_ERR,
[MSGL_WARN] = PL_LOG_WARN,
[MSGL_INFO] = PL_LOG_WARN,
[MSGL_STATUS] = PL_LOG_WARN,
[MSGL_V] = PL_LOG_INFO,
[MSGL_DEBUG] = PL_LOG_DEBUG,
[MSGL_TRACE] = PL_LOG_TRACE,
[MSGL_MAX] = PL_LOG_ALL,
};
// translates log levels while probing
static const enum pl_log_level probing_map(enum pl_log_level level)
{
switch (level) {
case PL_LOG_FATAL:
return PL_LOG_ERR;
case PL_LOG_ERR:
case PL_LOG_WARN:
return PL_LOG_INFO;
default:
return level;
}
}
static void log_cb(void *priv, enum pl_log_level level, const char *msg)
{
struct mp_log *log = priv;
mp_msg(log, pl_log_to_msg_lev[level], "%s\n", msg);
}
static void log_cb_probing(void *priv, enum pl_log_level level, const char *msg)
{
struct mp_log *log = priv;
mp_msg(log, pl_log_to_msg_lev[probing_map(level)], "%s\n", msg);
}
void mppl_ctx_set_log(struct pl_context *ctx, struct mp_log *log, bool probing)
{
assert(log);
pl_context_update(ctx, &(struct pl_context_params) {
.log_cb = probing ? log_cb_probing : log_cb,
.log_level = msg_lev_to_pl_log[mp_msg_level(log)],
.log_priv = log,
});
}

18
video/out/placebo/utils.h Normal file
View File

@ -0,0 +1,18 @@
#pragma once
#include "common/common.h"
#include "common/msg.h"
#include <libplacebo/common.h>
void mppl_ctx_set_log(struct pl_context *ctx, struct mp_log *log, bool probing);
static inline struct pl_rect2d mp_rect2d_to_pl(struct mp_rect rc)
{
return (struct pl_rect2d) {
.x0 = rc.x0,
.y0 = rc.y0,
.x1 = rc.x1,
.y1 = rc.y1,
};
}

View File

@ -23,58 +23,14 @@
#define VK_USE_PLATFORM_WIN32_KHR
#endif
#include <vulkan/vulkan.h>
// Vulkan allows the optional use of a custom allocator. We don't need one but
// mark this parameter with a better name in case we ever decide to change this
// in the future. (And to make the code more readable)
#define MPVK_ALLOCATOR NULL
// A lot of things depend on streaming resources across frames. Depending on
// how many frames we render ahead of time, we need to pick enough to avoid
// any conflicts, so make all of these tunable relative to this constant in
// order to centralize them.
#define MPVK_MAX_STREAMING_DEPTH 8
#include <libplacebo/vulkan.h>
// Shared struct used to hold vulkan context information
struct mpvk_ctx {
struct mp_log *log;
VkInstance inst;
VkPhysicalDevice physd;
VkDebugReportCallbackEXT dbg;
VkDevice dev;
// Surface, must be initialized fter the context itself
VkSurfaceKHR surf;
VkSurfaceFormatKHR surf_format; // picked at surface initialization time
struct vk_malloc *alloc; // memory allocator for this device
struct spirv_compiler *spirv; // GLSL -> SPIR-V compiler
struct vk_cmdpool **pools; // command pools (one per queue family)
int num_pools;
struct vk_cmd *last_cmd; // most recently submitted command
// Queued/pending commands. These are shared for the entire mpvk_ctx to
// ensure submission and callbacks are FIFO
struct vk_cmd **cmds_queued; // recorded but not yet submitted
struct vk_cmd **cmds_pending; // submitted but not completed
int num_cmds_queued;
int num_cmds_pending;
// Pointers into *pools
struct vk_cmdpool *pool_graphics; // required
struct vk_cmdpool *pool_compute; // optional
struct vk_cmdpool *pool_transfer; // optional
// Common pool of signals, to avoid having to re-create these objects often
struct vk_signal **signals;
int num_signals;
// Cached capabilities
VkPhysicalDeviceLimits limits;
VkPhysicalDeviceFeatures features;
// Extension availability
bool has_ext_external_memory;
bool has_ext_external_memory_export;
struct mp_log *pl_log;
struct pl_context *ctx;
const struct pl_vk_inst *vkinst;
const struct pl_vulkan *vulkan;
const struct pl_gpu *gpu; // points to vulkan->gpu for convenience
VkSurfaceKHR surface;
};

View File

@ -16,25 +16,17 @@
*/
#include "options/m_config.h"
#include "video/out/gpu/spirv.h"
#include "video/out/placebo/ra_pl.h"
#include "context.h"
#include "ra_vk.h"
#include "utils.h"
enum {
SWAP_AUTO = 0,
SWAP_FIFO,
SWAP_FIFO_RELAXED,
SWAP_MAILBOX,
SWAP_IMMEDIATE,
SWAP_COUNT,
};
struct vulkan_opts {
struct mpvk_device_opts dev_opts; // logical device options
char *device; // force a specific GPU
int swap_mode;
int queue_count;
int async_transfer;
int async_compute;
};
static int vk_validate_dev(struct mp_log *log, const struct m_option *opt,
@ -52,7 +44,7 @@ static int vk_validate_dev(struct mp_log *log, const struct m_option *opt,
VkPhysicalDevice *devices = NULL;
uint32_t num = 0;
res = vkCreateInstance(&info, MPVK_ALLOCATOR, &inst);
res = vkCreateInstance(&info, NULL, &inst);
if (res != VK_SUCCESS)
goto done;
@ -97,45 +89,30 @@ const struct m_sub_options vulkan_conf = {
.opts = (const struct m_option[]) {
OPT_STRING_VALIDATE("vulkan-device", device, 0, vk_validate_dev),
OPT_CHOICE("vulkan-swap-mode", swap_mode, 0,
({"auto", SWAP_AUTO},
{"fifo", SWAP_FIFO},
{"fifo-relaxed", SWAP_FIFO_RELAXED},
{"mailbox", SWAP_MAILBOX},
{"immediate", SWAP_IMMEDIATE})),
OPT_INTRANGE("vulkan-queue-count", dev_opts.queue_count, 0, 1, 8,
OPTDEF_INT(1)),
OPT_FLAG("vulkan-async-transfer", dev_opts.async_transfer, 0),
OPT_FLAG("vulkan-async-compute", dev_opts.async_compute, 0),
({"auto", -1},
{"fifo", VK_PRESENT_MODE_FIFO_KHR},
{"fifo-relaxed", VK_PRESENT_MODE_FIFO_RELAXED_KHR},
{"mailbox", VK_PRESENT_MODE_MAILBOX_KHR},
{"immediate", VK_PRESENT_MODE_IMMEDIATE_KHR})),
OPT_INTRANGE("vulkan-queue-count", queue_count, 0, 1, 8),
OPT_FLAG("vulkan-async-transfer", async_transfer, 0),
OPT_FLAG("vulkan-async-compute", async_compute, 0),
{0}
},
.size = sizeof(struct vulkan_opts),
.defaults = &(struct vulkan_opts) {
.dev_opts = {
.async_transfer = 1,
},
.swap_mode = -1,
.queue_count = 1,
.async_transfer = true,
.async_compute = true,
},
};
struct priv {
struct mpvk_ctx *vk;
struct vulkan_opts *opts;
// Swapchain metadata:
int w, h; // current size
VkSwapchainCreateInfoKHR protoInfo; // partially filled-in prototype
VkSwapchainKHR swapchain;
VkSwapchainKHR old_swapchain;
int frames_in_flight;
// state of the images:
struct ra_tex **images; // ra_tex wrappers for the vkimages
int num_images; // size of images
VkSemaphore *sems_in; // pool of semaphores used to synchronize images
VkSemaphore *sems_out; // outgoing semaphores (rendering complete)
int num_sems;
int idx_sems; // index of next free semaphore pair
int last_imgidx; // the image index last acquired (for submit)
// This is used to pre-fetch the next frame at the end of swap_buffers
struct ra_fbo queued_fbo;
const struct pl_swapchain *swapchain;
struct ra_tex proxy_tex;
};
static const struct ra_swapchain_fns vulkan_swapchain;
@ -149,133 +126,26 @@ struct mpvk_ctx *ra_vk_ctx_get(struct ra_ctx *ctx)
return p->vk;
}
static bool update_swapchain_info(struct priv *p,
VkSwapchainCreateInfoKHR *info)
{
struct mpvk_ctx *vk = p->vk;
// Query the supported capabilities and update this struct as needed
VkSurfaceCapabilitiesKHR caps;
VK(vkGetPhysicalDeviceSurfaceCapabilitiesKHR(vk->physd, vk->surf, &caps));
// Sorted by preference
static const VkCompositeAlphaFlagsKHR alphaModes[] = {
VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR,
VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,
};
for (int i = 0; i < MP_ARRAY_SIZE(alphaModes); i++) {
if (caps.supportedCompositeAlpha & alphaModes[i]) {
info->compositeAlpha = alphaModes[i];
break;
}
}
if (!info->compositeAlpha) {
MP_ERR(vk, "Failed picking alpha compositing mode (caps: 0x%x)\n",
caps.supportedCompositeAlpha);
goto error;
}
static const VkSurfaceTransformFlagsKHR rotModes[] = {
VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR,
VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR,
};
for (int i = 0; i < MP_ARRAY_SIZE(rotModes); i++) {
if (caps.supportedTransforms & rotModes[i]) {
info->preTransform = rotModes[i];
break;
}
}
if (!info->preTransform) {
MP_ERR(vk, "Failed picking surface transform mode (caps: 0x%x)\n",
caps.supportedTransforms);
goto error;
}
// Image count as required
MP_VERBOSE(vk, "Requested image count: %d (min %d max %d)\n",
(int)info->minImageCount, (int)caps.minImageCount,
(int)caps.maxImageCount);
info->minImageCount = MPMAX(info->minImageCount, caps.minImageCount);
if (caps.maxImageCount)
info->minImageCount = MPMIN(info->minImageCount, caps.maxImageCount);
// Check the extent against the allowed parameters
if (caps.currentExtent.width != info->imageExtent.width &&
caps.currentExtent.width != 0xFFFFFFFF)
{
MP_WARN(vk, "Requested width %d does not match current width %d\n",
(int)info->imageExtent.width, (int)caps.currentExtent.width);
info->imageExtent.width = caps.currentExtent.width;
}
if (caps.currentExtent.height != info->imageExtent.height &&
caps.currentExtent.height != 0xFFFFFFFF)
{
MP_WARN(vk, "Requested height %d does not match current height %d\n",
(int)info->imageExtent.height, (int)caps.currentExtent.height);
info->imageExtent.height = caps.currentExtent.height;
}
if (caps.minImageExtent.width > info->imageExtent.width ||
caps.minImageExtent.height > info->imageExtent.height)
{
MP_ERR(vk, "Requested size %dx%d smaller than device minimum %d%d\n",
(int)info->imageExtent.width, (int)info->imageExtent.height,
(int)caps.minImageExtent.width, (int)caps.minImageExtent.height);
goto error;
}
if (caps.maxImageExtent.width < info->imageExtent.width ||
caps.maxImageExtent.height < info->imageExtent.height)
{
MP_ERR(vk, "Requested size %dx%d larger than device maximum %d%d\n",
(int)info->imageExtent.width, (int)info->imageExtent.height,
(int)caps.maxImageExtent.width, (int)caps.maxImageExtent.height);
goto error;
}
// We just request whatever usage we can, and let the ra_vk decide what
// ra_tex_params that translates to. This makes the images as flexible
// as possible.
info->imageUsage = caps.supportedUsageFlags;
return true;
error:
return false;
}
void ra_vk_ctx_uninit(struct ra_ctx *ctx)
{
if (!ctx->swapchain)
return;
struct priv *p = ctx->swapchain->priv;
struct mpvk_ctx *vk = p->vk;
if (ctx->ra) {
struct priv *p = ctx->swapchain->priv;
struct mpvk_ctx *vk = p->vk;
mpvk_flush_commands(vk);
mpvk_poll_commands(vk, UINT64_MAX);
for (int i = 0; i < p->num_images; i++)
ra_tex_free(ctx->ra, &p->images[i]);
for (int i = 0; i < p->num_sems; i++) {
vkDestroySemaphore(vk->dev, p->sems_in[i], MPVK_ALLOCATOR);
vkDestroySemaphore(vk->dev, p->sems_out[i], MPVK_ALLOCATOR);
}
vkDestroySwapchainKHR(vk->dev, p->swapchain, MPVK_ALLOCATOR);
pl_gpu_finish(vk->gpu);
pl_swapchain_destroy(&p->swapchain);
ctx->ra->fns->destroy(ctx->ra);
ctx->ra = NULL;
}
talloc_free(ctx->swapchain);
ctx->swapchain = NULL;
vk->gpu = NULL;
pl_vulkan_destroy(&vk->vulkan);
TA_FREEP(&ctx->swapchain);
}
static const struct ra_swapchain_fns vulkan_swapchain;
bool ra_vk_ctx_init(struct ra_ctx *ctx, struct mpvk_ctx *vk,
VkPresentModeKHR preferred_mode)
{
@ -287,56 +157,36 @@ bool ra_vk_ctx_init(struct ra_ctx *ctx, struct mpvk_ctx *vk,
p->vk = vk;
p->opts = mp_get_config_group(p, ctx->global, &vulkan_conf);
if (!mpvk_find_phys_device(vk, p->opts->device, ctx->opts.allow_sw))
goto error;
if (!spirv_compiler_init(ctx))
goto error;
vk->spirv = ctx->spirv;
if (!mpvk_pick_surface_format(vk))
goto error;
if (!mpvk_device_init(vk, p->opts->dev_opts))
assert(vk->ctx);
assert(vk->vkinst);
vk->vulkan = pl_vulkan_create(vk->ctx, &(struct pl_vulkan_params) {
.instance = vk->vkinst->instance,
.surface = vk->surface,
.async_transfer = p->opts->async_transfer,
.async_compute = p->opts->async_compute,
.queue_count = p->opts->queue_count,
});
if (!vk->vulkan)
goto error;
ctx->ra = ra_create_vk(vk, ctx->log);
vk->gpu = vk->vulkan->gpu;
ctx->ra = ra_create_pl(vk->gpu, ctx->log);
if (!ctx->ra)
goto error;
static const VkPresentModeKHR present_modes[SWAP_COUNT] = {
[SWAP_FIFO] = VK_PRESENT_MODE_FIFO_KHR,
[SWAP_FIFO_RELAXED] = VK_PRESENT_MODE_FIFO_RELAXED_KHR,
[SWAP_MAILBOX] = VK_PRESENT_MODE_MAILBOX_KHR,
[SWAP_IMMEDIATE] = VK_PRESENT_MODE_IMMEDIATE_KHR,
// Create the swapchain
struct pl_vulkan_swapchain_params params = {
.surface = vk->surface,
.present_mode = preferred_mode,
.swapchain_depth = ctx->opts.swapchain_depth,
};
p->protoInfo = (VkSwapchainCreateInfoKHR) {
.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
.surface = vk->surf,
.imageFormat = vk->surf_format.format,
.imageColorSpace = vk->surf_format.colorSpace,
.imageArrayLayers = 1, // non-stereoscopic
.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE,
.minImageCount = ctx->opts.swapchain_depth + 1, // +1 for FB
.presentMode = p->opts->swap_mode ? present_modes[p->opts->swap_mode]
: preferred_mode,
.clipped = true,
};
if (p->opts->swap_mode >= 0) // user override
params.present_mode = p->opts->swap_mode;
// Make sure the swapchain present mode is supported
int num_modes;
VK(vkGetPhysicalDeviceSurfacePresentModesKHR(vk->physd, vk->surf,
&num_modes, NULL));
VkPresentModeKHR *modes = talloc_array(NULL, VkPresentModeKHR, num_modes);
VK(vkGetPhysicalDeviceSurfacePresentModesKHR(vk->physd, vk->surf,
&num_modes, modes));
bool supported = false;
for (int i = 0; i < num_modes; i++)
supported |= (modes[i] == p->protoInfo.presentMode);
talloc_free(modes);
if (!supported) {
MP_ERR(ctx, "Requested swap mode unsupported by this device!\n");
p->swapchain = pl_vulkan_create_swapchain(vk->vulkan, &params);
if (!p->swapchain)
goto error;
}
return true;
@ -345,245 +195,49 @@ error:
return false;
}
static void destroy_swapchain(struct mpvk_ctx *vk, struct priv *p)
bool ra_vk_ctx_resize(struct ra_ctx *ctx, int width, int height)
{
assert(p->old_swapchain);
vkDestroySwapchainKHR(vk->dev, p->old_swapchain, MPVK_ALLOCATOR);
p->old_swapchain = NULL;
}
struct priv *p = ctx->swapchain->priv;
bool ra_vk_ctx_resize(struct ra_swapchain *sw, int w, int h)
{
struct priv *p = sw->priv;
if (w == p->w && h == p->h)
return true;
bool ok = pl_swapchain_resize(p->swapchain, &width, &height);
ctx->vo->dwidth = width;
ctx->vo->dheight = height;
struct ra *ra = sw->ctx->ra;
struct mpvk_ctx *vk = p->vk;
VkImage *vkimages = NULL;
// It's invalid to trigger another swapchain recreation while there's
// more than one swapchain already active, so we need to flush any pending
// asynchronous swapchain release operations that may be ongoing.
while (p->old_swapchain)
mpvk_poll_commands(vk, 100000); // 100μs
VkSwapchainCreateInfoKHR sinfo = p->protoInfo;
sinfo.imageExtent = (VkExtent2D){ w, h };
sinfo.oldSwapchain = p->swapchain;
if (!update_swapchain_info(p, &sinfo))
goto error;
VK(vkCreateSwapchainKHR(vk->dev, &sinfo, MPVK_ALLOCATOR, &p->swapchain));
p->w = w;
p->h = h;
// Freeing the old swapchain while it's still in use is an error, so do
// it asynchronously once the device is idle.
if (sinfo.oldSwapchain) {
p->old_swapchain = sinfo.oldSwapchain;
vk_dev_callback(vk, (vk_cb) destroy_swapchain, vk, p);
}
// Get the new swapchain images
int num;
VK(vkGetSwapchainImagesKHR(vk->dev, p->swapchain, &num, NULL));
vkimages = talloc_array(NULL, VkImage, num);
VK(vkGetSwapchainImagesKHR(vk->dev, p->swapchain, &num, vkimages));
// If needed, allocate some more semaphores
while (num > p->num_sems) {
VkSemaphore sem_in, sem_out;
static const VkSemaphoreCreateInfo seminfo = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
};
VK(vkCreateSemaphore(vk->dev, &seminfo, MPVK_ALLOCATOR, &sem_in));
VK(vkCreateSemaphore(vk->dev, &seminfo, MPVK_ALLOCATOR, &sem_out));
int idx = p->num_sems++;
MP_TARRAY_GROW(p, p->sems_in, idx);
MP_TARRAY_GROW(p, p->sems_out, idx);
p->sems_in[idx] = sem_in;
p->sems_out[idx] = sem_out;
}
// Invalidate the queued texture
p->queued_fbo = (struct ra_fbo) {0};
// Recreate the ra_tex wrappers
for (int i = 0; i < p->num_images; i++)
ra_tex_free(ra, &p->images[i]);
p->num_images = num;
MP_TARRAY_GROW(p, p->images, p->num_images);
for (int i = 0; i < num; i++) {
p->images[i] = ra_vk_wrap_swapchain_img(ra, vkimages[i], sinfo);
if (!p->images[i])
goto error;
}
talloc_free(vkimages);
return true;
error:
talloc_free(vkimages);
vkDestroySwapchainKHR(vk->dev, p->swapchain, MPVK_ALLOCATOR);
p->swapchain = NULL;
return false;
return ok;
}
static int color_depth(struct ra_swapchain *sw)
{
struct priv *p = sw->priv;
int bits = 0;
if (!p->num_images)
return bits;
// The channel with the most bits is probably the most authoritative about
// the actual color information (consider e.g. a2bgr10). Slight downside
// in that it results in rounding r/b for e.g. rgb565, but we don't pick
// surfaces with fewer than 8 bits anyway.
const struct ra_format *fmt = p->images[0]->params.format;
for (int i = 0; i < fmt->num_components; i++) {
int depth = fmt->component_depth[i];
bits = MPMAX(bits, depth ? depth : fmt->component_size[i]);
}
return bits;
return 0; // TODO: implement this somehow?
}
static bool start_frame(struct ra_swapchain *sw, struct ra_fbo *out_fbo)
{
struct priv *p = sw->priv;
struct mpvk_ctx *vk = p->vk;
if (!p->swapchain)
struct pl_swapchain_frame frame;
if (!pl_swapchain_start_frame(p->swapchain, &frame))
return false;
if (!mppl_wrap_tex(sw->ctx->ra, frame.fbo, &p->proxy_tex))
return false;
if (p->queued_fbo.tex) {
assert(out_fbo != &p->queued_fbo);
*out_fbo = p->queued_fbo;
p->queued_fbo = (struct ra_fbo) {0};
return true;
}
*out_fbo = (struct ra_fbo) {
.tex = &p->proxy_tex,
.flip = frame.flipped,
};
VkSemaphore sem_in = p->sems_in[p->idx_sems];
MP_TRACE(vk, "vkAcquireNextImageKHR signals %p\n", (void *)sem_in);
for (int attempts = 0; attempts < 2; attempts++) {
uint32_t imgidx = 0;
VkResult res = vkAcquireNextImageKHR(vk->dev, p->swapchain, UINT64_MAX,
sem_in, NULL, &imgidx);
switch (res) {
case VK_SUCCESS:
p->last_imgidx = imgidx;
*out_fbo = (struct ra_fbo) {
.tex = p->images[imgidx],
.flip = false,
};
ra_tex_vk_external_dep(sw->ctx->ra, out_fbo->tex, sem_in);
return true;
case VK_ERROR_OUT_OF_DATE_KHR: {
// In these cases try recreating the swapchain
int w = p->w, h = p->h;
p->w = p->h = 0; // invalidate the current state
if (!ra_vk_ctx_resize(sw, w, h))
return false;
continue;
}
default:
MP_ERR(vk, "Failed acquiring swapchain image: %s\n", vk_err(res));
return false;
}
}
// If we've exhausted the number of attempts to recreate the swapchain,
// just give up silently.
return false;
}
static void present_cb(struct priv *p, void *arg)
{
p->frames_in_flight--;
return true;
}
static bool submit_frame(struct ra_swapchain *sw, const struct vo_frame *frame)
{
struct priv *p = sw->priv;
struct ra *ra = sw->ctx->ra;
struct mpvk_ctx *vk = p->vk;
if (!p->swapchain)
return false;
struct vk_cmd *cmd = ra_vk_submit(ra, p->images[p->last_imgidx]);
if (!cmd)
return false;
VkSemaphore sem_out = p->sems_out[p->idx_sems++];
p->idx_sems %= p->num_sems;
vk_cmd_sig(cmd, sem_out);
p->frames_in_flight++;
vk_cmd_callback(cmd, (vk_cb) present_cb, p, NULL);
vk_cmd_queue(vk, cmd);
if (!mpvk_flush_commands(vk))
return false;
// Submit to the same queue that we were currently rendering to
struct vk_cmdpool *pool_gfx = vk->pool_graphics;
VkQueue queue = pool_gfx->queues[pool_gfx->idx_queues];
// Rotate the queues to ensure good parallelism across frames
for (int i = 0; i < vk->num_pools; i++) {
struct vk_cmdpool *pool = vk->pools[i];
pool->idx_queues = (pool->idx_queues + 1) % pool->num_queues;
}
VkPresentInfoKHR pinfo = {
.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
.waitSemaphoreCount = 1,
.pWaitSemaphores = &sem_out,
.swapchainCount = 1,
.pSwapchains = &p->swapchain,
.pImageIndices = &p->last_imgidx,
};
MP_TRACE(vk, "vkQueuePresentKHR waits on %p\n", (void *)sem_out);
VkResult res = vkQueuePresentKHR(queue, &pinfo);
switch (res) {
case VK_SUCCESS:
case VK_SUBOPTIMAL_KHR:
return true;
case VK_ERROR_OUT_OF_DATE_KHR:
// We can silently ignore this error, since the next start_frame will
// recreate the swapchain automatically.
return true;
default:
MP_ERR(vk, "Failed presenting to queue %p: %s\n", (void *)queue,
vk_err(res));
return false;
}
return pl_swapchain_submit_frame(p->swapchain);
}
static void swap_buffers(struct ra_swapchain *sw)
{
struct priv *p = sw->priv;
while (p->frames_in_flight >= sw->ctx->opts.swapchain_depth)
mpvk_poll_commands(p->vk, 100000); // 100μs
// Also try and block until the next hardware buffer swap early. this
// prevents start_frame from blocking later, thus slightly improving the
// frame timing stats. (since mpv assumes most blocking will happen in
// swap_buffers)
start_frame(sw, &p->queued_fbo);
pl_swapchain_swap_buffers(p->swapchain);
}
static const struct ra_swapchain_fns vulkan_swapchain = {

View File

@ -7,7 +7,9 @@
void ra_vk_ctx_uninit(struct ra_ctx *ctx);
bool ra_vk_ctx_init(struct ra_ctx *ctx, struct mpvk_ctx *vk,
VkPresentModeKHR preferred_mode);
bool ra_vk_ctx_resize(struct ra_swapchain *sw, int w, int h);
// Handles a resize request, and updates ctx->vo->dwidth/dheight
bool ra_vk_ctx_resize(struct ra_ctx *ctx, int width, int height);
// May be called on a ra_ctx of any type.
struct mpvk_ctx *ra_vk_ctx_get(struct ra_ctx *ctx);

View File

@ -41,8 +41,7 @@ static bool wayland_vk_init(struct ra_ctx *ctx)
struct mpvk_ctx *vk = &p->vk;
int msgl = ctx->opts.probing ? MSGL_V : MSGL_ERR;
if (!mpvk_instance_init(vk, ctx->log, VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
ctx->opts.debug))
if (!mpvk_init(vk, ctx, VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME))
goto error;
if (!vo_wayland_init(ctx->vo))
@ -54,10 +53,10 @@ static bool wayland_vk_init(struct ra_ctx *ctx)
.surface = ctx->vo->wl->surface,
};
VkResult res = vkCreateWaylandSurfaceKHR(vk->inst, &wlinfo, MPVK_ALLOCATOR,
&vk->surf);
VkInstance inst = vk->vkinst->instance;
VkResult res = vkCreateWaylandSurfaceKHR(inst, &wlinfo, NULL, &vk->surface);
if (res != VK_SUCCESS) {
MP_MSG(ctx, msgl, "Failed creating Wayland surface: %s\n", vk_err(res));
MP_MSG(ctx, msgl, "Failed creating Wayland surface\n");
goto error;
}
@ -77,7 +76,7 @@ error:
return false;
}
static void resize(struct ra_ctx *ctx)
static bool resize(struct ra_ctx *ctx)
{
struct vo_wayland_state *wl = ctx->vo->wl;
@ -87,9 +86,7 @@ static void resize(struct ra_ctx *ctx)
const int32_t height = wl->scaling*mp_rect_h(wl->geometry);
wl_surface_set_buffer_scale(wl->surface, wl->scaling);
wl->vo->dwidth = width;
wl->vo->dheight = height;
return ra_vk_ctx_resize(ctx, width, height);
}
static bool wayland_vk_reconfig(struct ra_ctx *ctx)
@ -104,8 +101,7 @@ static int wayland_vk_control(struct ra_ctx *ctx, int *events, int request, void
{
int ret = vo_wayland_control(ctx->vo, events, request, arg);
if (*events & VO_EVENT_RESIZE) {
resize(ctx);
if (ra_vk_ctx_resize(ctx->swapchain, ctx->vo->dwidth, ctx->vo->dheight))
if (!resize(ctx))
return VO_ERROR;
}
return ret;

View File

@ -1,105 +0,0 @@
/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include "video/out/gpu/context.h"
#include "video/out/w32_common.h"
#include "common.h"
#include "context.h"
#include "utils.h"
EXTERN_C IMAGE_DOS_HEADER __ImageBase;
#define HINST_THISCOMPONENT ((HINSTANCE)&__ImageBase)
struct priv {
struct mpvk_ctx vk;
};
static void win_uninit(struct ra_ctx *ctx)
{
struct priv *p = ctx->priv;
ra_vk_ctx_uninit(ctx);
mpvk_uninit(&p->vk);
vo_w32_uninit(ctx->vo);
}
static bool win_init(struct ra_ctx *ctx)
{
struct priv *p = ctx->priv = talloc_zero(ctx, struct priv);
struct mpvk_ctx *vk = &p->vk;
int msgl = ctx->opts.probing ? MSGL_V : MSGL_ERR;
if (!mpvk_instance_init(vk, ctx->log, VK_KHR_WIN32_SURFACE_EXTENSION_NAME,
ctx->opts.debug))
goto error;
if (!vo_w32_init(ctx->vo))
goto error;
VkWin32SurfaceCreateInfoKHR wininfo = {
.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR,
.hinstance = HINST_THISCOMPONENT,
.hwnd = vo_w32_hwnd(ctx->vo),
};
VkResult res = vkCreateWin32SurfaceKHR(vk->inst, &wininfo, MPVK_ALLOCATOR,
&vk->surf);
if (res != VK_SUCCESS) {
MP_MSG(ctx, msgl, "Failed creating Windows surface: %s\n", vk_err(res));
goto error;
}
if (!ra_vk_ctx_init(ctx, vk, VK_PRESENT_MODE_FIFO_KHR))
goto error;
return true;
error:
win_uninit(ctx);
return false;
}
static bool resize(struct ra_ctx *ctx)
{
return ra_vk_ctx_resize(ctx->swapchain, ctx->vo->dwidth, ctx->vo->dheight);
}
static bool win_reconfig(struct ra_ctx *ctx)
{
vo_w32_config(ctx->vo);
return resize(ctx);
}
static int win_control(struct ra_ctx *ctx, int *events, int request, void *arg)
{
int ret = vo_w32_control(ctx->vo, events, request, arg);
if (*events & VO_EVENT_RESIZE) {
if (!resize(ctx))
return VO_ERROR;
}
return ret;
}
const struct ra_ctx_fns ra_ctx_vulkan_win = {
.type = "vulkan",
.name = "winvk",
.reconfig = win_reconfig,
.control = win_control,
.init = win_init,
.uninit = win_uninit,
};

View File

@ -41,8 +41,7 @@ static bool xlib_init(struct ra_ctx *ctx)
struct mpvk_ctx *vk = &p->vk;
int msgl = ctx->opts.probing ? MSGL_V : MSGL_ERR;
if (!mpvk_instance_init(vk, ctx->log, VK_KHR_XLIB_SURFACE_EXTENSION_NAME,
ctx->opts.debug))
if (!mpvk_init(vk, ctx, VK_KHR_XLIB_SURFACE_EXTENSION_NAME))
goto error;
if (!vo_x11_init(ctx->vo))
@ -57,10 +56,10 @@ static bool xlib_init(struct ra_ctx *ctx)
.window = ctx->vo->x11->window,
};
VkResult res = vkCreateXlibSurfaceKHR(vk->inst, &xinfo, MPVK_ALLOCATOR,
&vk->surf);
VkInstance inst = vk->vkinst->instance;
VkResult res = vkCreateXlibSurfaceKHR(inst, &xinfo, NULL, &vk->surface);
if (res != VK_SUCCESS) {
MP_MSG(ctx, msgl, "Failed creating Xlib surface: %s\n", vk_err(res));
MP_MSG(ctx, msgl, "Failed creating Xlib surface\n");
goto error;
}
@ -76,7 +75,7 @@ error:
static bool resize(struct ra_ctx *ctx)
{
return ra_vk_ctx_resize(ctx->swapchain, ctx->vo->dwidth, ctx->vo->dheight);
return ra_vk_ctx_resize(ctx, ctx->vo->dwidth, ctx->vo->dheight);
}
static bool xlib_reconfig(struct ra_ctx *ctx)

View File

@ -1,55 +0,0 @@
#include "formats.h"
const struct vk_format vk_formats[] = {
// Regular, byte-aligned integer formats
{"r8", VK_FORMAT_R8_UNORM, 1, 1, {8 }, RA_CTYPE_UNORM },
{"rg8", VK_FORMAT_R8G8_UNORM, 2, 2, {8, 8 }, RA_CTYPE_UNORM },
{"rgb8", VK_FORMAT_R8G8B8_UNORM, 3, 3, {8, 8, 8 }, RA_CTYPE_UNORM },
{"rgba8", VK_FORMAT_R8G8B8A8_UNORM, 4, 4, {8, 8, 8, 8 }, RA_CTYPE_UNORM },
{"r16", VK_FORMAT_R16_UNORM, 1, 2, {16 }, RA_CTYPE_UNORM },
{"rg16", VK_FORMAT_R16G16_UNORM, 2, 4, {16, 16 }, RA_CTYPE_UNORM },
{"rgb16", VK_FORMAT_R16G16B16_UNORM, 3, 6, {16, 16, 16 }, RA_CTYPE_UNORM },
{"rgba16", VK_FORMAT_R16G16B16A16_UNORM, 4, 8, {16, 16, 16, 16}, RA_CTYPE_UNORM },
// Special, integer-only formats
{"r32ui", VK_FORMAT_R32_UINT, 1, 4, {32 }, RA_CTYPE_UINT },
{"rg32ui", VK_FORMAT_R32G32_UINT, 2, 8, {32, 32 }, RA_CTYPE_UINT },
{"rgb32ui", VK_FORMAT_R32G32B32_UINT, 3, 12, {32, 32, 32 }, RA_CTYPE_UINT },
{"rgba32ui", VK_FORMAT_R32G32B32A32_UINT, 4, 16, {32, 32, 32, 32}, RA_CTYPE_UINT },
{"r64ui", VK_FORMAT_R64_UINT, 1, 8, {64 }, RA_CTYPE_UINT },
{"rg64ui", VK_FORMAT_R64G64_UINT, 2, 16, {64, 64 }, RA_CTYPE_UINT },
{"rgb64ui", VK_FORMAT_R64G64B64_UINT, 3, 24, {64, 64, 64 }, RA_CTYPE_UINT },
{"rgba64ui", VK_FORMAT_R64G64B64A64_UINT, 4, 32, {64, 64, 64, 64}, RA_CTYPE_UINT },
// Packed integer formats
{"rg4", VK_FORMAT_R4G4_UNORM_PACK8, 2, 1, {4, 4 }, RA_CTYPE_UNORM },
{"rgba4", VK_FORMAT_R4G4B4A4_UNORM_PACK16, 4, 2, {4, 4, 4, 4 }, RA_CTYPE_UNORM },
{"rgb565", VK_FORMAT_R5G6B5_UNORM_PACK16, 3, 2, {5, 6, 5 }, RA_CTYPE_UNORM },
{"rgb5a1", VK_FORMAT_R5G5B5A1_UNORM_PACK16, 4, 2, {5, 5, 5, 1 }, RA_CTYPE_UNORM },
// Float formats (native formats, hf = half float, df = double float)
{"r16hf", VK_FORMAT_R16_SFLOAT, 1, 2, {16 }, RA_CTYPE_FLOAT },
{"rg16hf", VK_FORMAT_R16G16_SFLOAT, 2, 4, {16, 16 }, RA_CTYPE_FLOAT },
{"rgb16hf", VK_FORMAT_R16G16B16_SFLOAT, 3, 6, {16, 16, 16 }, RA_CTYPE_FLOAT },
{"rgba16hf", VK_FORMAT_R16G16B16A16_SFLOAT, 4, 8, {16, 16, 16, 16}, RA_CTYPE_FLOAT },
{"r32f", VK_FORMAT_R32_SFLOAT, 1, 4, {32 }, RA_CTYPE_FLOAT },
{"rg32f", VK_FORMAT_R32G32_SFLOAT, 2, 8, {32, 32 }, RA_CTYPE_FLOAT },
{"rgb32f", VK_FORMAT_R32G32B32_SFLOAT, 3, 12, {32, 32, 32 }, RA_CTYPE_FLOAT },
{"rgba32f", VK_FORMAT_R32G32B32A32_SFLOAT, 4, 16, {32, 32, 32, 32}, RA_CTYPE_FLOAT },
{"r64df", VK_FORMAT_R64_SFLOAT, 1, 8, {64 }, RA_CTYPE_FLOAT },
{"rg64df", VK_FORMAT_R64G64_SFLOAT, 2, 16, {64, 64 }, RA_CTYPE_FLOAT },
{"rgb64df", VK_FORMAT_R64G64B64_SFLOAT, 3, 24, {64, 64, 64 }, RA_CTYPE_FLOAT },
{"rgba64df", VK_FORMAT_R64G64B64A64_SFLOAT, 4, 32, {64, 64, 64, 64}, RA_CTYPE_FLOAT },
// "Swapped" component order images
{"bgr8", VK_FORMAT_B8G8R8_UNORM, 3, 3, {8, 8, 8 }, RA_CTYPE_UNORM, true },
{"bgra8", VK_FORMAT_B8G8R8A8_UNORM, 4, 4, {8, 8, 8, 8 }, RA_CTYPE_UNORM, true },
{"bgra4", VK_FORMAT_B4G4R4A4_UNORM_PACK16, 4, 2, {4, 4, 4, 4 }, RA_CTYPE_UNORM, true },
{"bgr565", VK_FORMAT_B5G6R5_UNORM_PACK16, 3, 2, {5, 6, 5 }, RA_CTYPE_UNORM, true },
{"bgr5a1", VK_FORMAT_B5G5R5A1_UNORM_PACK16, 4, 2, {5, 5, 5, 1 }, RA_CTYPE_UNORM, true },
{"a1rgb5", VK_FORMAT_A1R5G5B5_UNORM_PACK16, 4, 2, {1, 5, 5, 5 }, RA_CTYPE_UNORM, true },
{"a2rgb10", VK_FORMAT_A2R10G10B10_UNORM_PACK32, 4, 4, {2, 10, 10, 10}, RA_CTYPE_UNORM, true },
{"a2bgr10", VK_FORMAT_A2B10G10R10_UNORM_PACK32, 4, 4, {2, 10, 10, 10}, RA_CTYPE_UNORM, true },
{"abgr8", VK_FORMAT_A8B8G8R8_UNORM_PACK32, 4, 4, {8, 8, 8, 8 }, RA_CTYPE_UNORM, true },
{0}
};

View File

@ -1,16 +0,0 @@
#pragma once
#include "video/out/gpu/ra.h"
#include "common.h"
struct vk_format {
const char *name;
VkFormat iformat; // vulkan format enum
int components; // how many components are there
int bytes; // how many bytes is a texel
int bits[4]; // how many bits per component
enum ra_ctype ctype; // format representation type
bool fucked_order; // used for formats which are not simply rgba
};
extern const struct vk_format vk_formats[];

View File

@ -1,471 +0,0 @@
#include "malloc.h"
#include "utils.h"
#include "osdep/timer.h"
#if HAVE_WIN32_DESKTOP
#include <versionhelpers.h>
#endif
// Controls the multiplication factor for new slab allocations. The new slab
// will always be allocated such that the size of the slab is this factor times
// the previous slab. Higher values make it grow faster.
#define MPVK_HEAP_SLAB_GROWTH_RATE 4
// Controls the minimum slab size, to reduce the frequency at which very small
// slabs would need to get allocated when allocating the first few buffers.
// (Default: 1 MB)
#define MPVK_HEAP_MINIMUM_SLAB_SIZE (1 << 20)
// Controls the maximum slab size, to reduce the effect of unbounded slab
// growth exhausting memory. If the application needs a single allocation
// that's bigger than this value, it will be allocated directly from the
// device. (Default: 512 MB)
#define MPVK_HEAP_MAXIMUM_SLAB_SIZE (1 << 29)
// Controls the minimum free region size, to reduce thrashing the free space
// map with lots of small buffers during uninit. (Default: 1 KB)
#define MPVK_HEAP_MINIMUM_REGION_SIZE (1 << 10)
// Represents a region of available memory
struct vk_region {
size_t start; // first offset in region
size_t end; // first offset *not* in region
};
static inline size_t region_len(struct vk_region r)
{
return r.end - r.start;
}
// A single slab represents a contiguous region of allocated memory. Actual
// allocations are served as slices of this. Slabs are organized into linked
// lists, which represent individual heaps.
struct vk_slab {
VkDeviceMemory mem; // underlying device allocation
size_t size; // total size of `slab`
size_t used; // number of bytes actually in use (for GC accounting)
bool dedicated; // slab is allocated specifically for one object
// free space map: a sorted list of memory regions that are available
struct vk_region *regions;
int num_regions;
// optional, depends on the memory type:
VkBuffer buffer; // buffer spanning the entire slab
void *data; // mapped memory corresponding to `mem`
};
// Represents a single memory heap. We keep track of a vk_heap for each
// combination of buffer type and memory selection parameters. This shouldn't
// actually be that many in practice, because some combinations simply never
// occur, and others will generally be the same for the same objects.
struct vk_heap {
VkBufferUsageFlags usage; // the buffer usage type (or 0)
VkMemoryPropertyFlags flags; // the memory type flags (or 0)
uint32_t typeBits; // the memory type index requirements (or 0)
bool exportable; // whether memory is exportable to other APIs
struct vk_slab **slabs; // array of slabs sorted by size
int num_slabs;
};
// The overall state of the allocator, which keeps track of a vk_heap for each
// memory type.
struct vk_malloc {
VkPhysicalDeviceMemoryProperties props;
struct vk_heap *heaps;
int num_heaps;
};
static void slab_free(struct mpvk_ctx *vk, struct vk_slab *slab)
{
if (!slab)
return;
assert(slab->used == 0);
int64_t start = mp_time_us();
vkDestroyBuffer(vk->dev, slab->buffer, MPVK_ALLOCATOR);
// also implicitly unmaps the memory if needed
vkFreeMemory(vk->dev, slab->mem, MPVK_ALLOCATOR);
int64_t stop = mp_time_us();
MP_VERBOSE(vk, "Freeing slab of size %zu took %lld μs.\n",
slab->size, (long long)(stop - start));
talloc_free(slab);
}
static bool find_best_memtype(struct mpvk_ctx *vk, uint32_t typeBits,
VkMemoryPropertyFlags flags,
VkMemoryType *out_type, int *out_index)
{
struct vk_malloc *ma = vk->alloc;
// The vulkan spec requires memory types to be sorted in the "optimal"
// order, so the first matching type we find will be the best/fastest one.
for (int i = 0; i < ma->props.memoryTypeCount; i++) {
// The memory type flags must include our properties
if ((ma->props.memoryTypes[i].propertyFlags & flags) != flags)
continue;
// The memory type must be supported by the requirements (bitfield)
if (typeBits && !(typeBits & (1 << i)))
continue;
*out_type = ma->props.memoryTypes[i];
*out_index = i;
return true;
}
MP_ERR(vk, "Found no memory type matching property flags 0x%x and type "
"bits 0x%x!\n", (unsigned)flags, (unsigned)typeBits);
return false;
}
static struct vk_slab *slab_alloc(struct mpvk_ctx *vk, struct vk_heap *heap,
size_t size)
{
struct vk_slab *slab = talloc_ptrtype(NULL, slab);
*slab = (struct vk_slab) {
.size = size,
};
MP_TARRAY_APPEND(slab, slab->regions, slab->num_regions, (struct vk_region) {
.start = 0,
.end = slab->size,
});
VkExportMemoryAllocateInfoKHR eminfo = {
.sType = VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR,
#if HAVE_WIN32_DESKTOP
.handleTypes = IsWindows8OrGreater()
? VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR
: VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_KHR,
#else
.handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR,
#endif
};
VkMemoryAllocateInfo minfo = {
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
.pNext = heap->exportable ? &eminfo : NULL,
.allocationSize = slab->size,
};
uint32_t typeBits = heap->typeBits ? heap->typeBits : UINT32_MAX;
if (heap->usage) {
// FIXME: Since we can't keep track of queue family ownership properly,
// and we don't know in advance what types of queue families this buffer
// will belong to, we're forced to share all of our buffers between all
// command pools.
uint32_t qfs[3] = {0};
for (int i = 0; i < vk->num_pools; i++)
qfs[i] = vk->pools[i]->qf;
VkExternalMemoryBufferCreateInfoKHR ebinfo = {
.sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO_KHR,
.handleTypes = eminfo.handleTypes,
};
VkBufferCreateInfo binfo = {
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = heap->exportable ? &ebinfo : NULL,
.size = slab->size,
.usage = heap->usage,
.sharingMode = vk->num_pools > 1 ? VK_SHARING_MODE_CONCURRENT
: VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = vk->num_pools,
.pQueueFamilyIndices = qfs,
};
VK(vkCreateBuffer(vk->dev, &binfo, MPVK_ALLOCATOR, &slab->buffer));
VkMemoryRequirements reqs;
vkGetBufferMemoryRequirements(vk->dev, slab->buffer, &reqs);
minfo.allocationSize = reqs.size; // this can be larger than slab->size
typeBits &= reqs.memoryTypeBits; // this can restrict the types
}
VkMemoryType type;
int index;
if (!find_best_memtype(vk, typeBits, heap->flags, &type, &index))
goto error;
MP_VERBOSE(vk, "Allocating %zu memory of type 0x%x (id %d) in heap %d.\n",
slab->size, (unsigned)type.propertyFlags, index, (int)type.heapIndex);
minfo.memoryTypeIndex = index;
VK(vkAllocateMemory(vk->dev, &minfo, MPVK_ALLOCATOR, &slab->mem));
if (heap->flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)
VK(vkMapMemory(vk->dev, slab->mem, 0, VK_WHOLE_SIZE, 0, &slab->data));
if (slab->buffer)
VK(vkBindBufferMemory(vk->dev, slab->buffer, slab->mem, 0));
return slab;
error:
slab_free(vk, slab);
return NULL;
}
static void insert_region(struct vk_slab *slab, struct vk_region region)
{
if (region.start == region.end)
return;
bool big_enough = region_len(region) >= MPVK_HEAP_MINIMUM_REGION_SIZE;
// Find the index of the first region that comes after this
for (int i = 0; i < slab->num_regions; i++) {
struct vk_region *r = &slab->regions[i];
// Check for a few special cases which can be coalesced
if (r->end == region.start) {
// The new region is at the tail of this region. In addition to
// modifying this region, we also need to coalesce all the following
// regions for as long as possible
r->end = region.end;
struct vk_region *next = &slab->regions[i+1];
while (i+1 < slab->num_regions && r->end == next->start) {
r->end = next->end;
MP_TARRAY_REMOVE_AT(slab->regions, slab->num_regions, i+1);
}
return;
}
if (r->start == region.end) {
// The new region is at the head of this region. We don't need to
// do anything special here - because if this could be further
// coalesced backwards, the previous loop iteration would already
// have caught it.
r->start = region.start;
return;
}
if (r->start > region.start) {
// The new region comes somewhere before this region, so insert
// it into this index in the array.
if (big_enough) {
MP_TARRAY_INSERT_AT(slab, slab->regions, slab->num_regions,
i, region);
}
return;
}
}
// If we've reached the end of this loop, then all of the regions
// come before the new region, and are disconnected - so append it
if (big_enough)
MP_TARRAY_APPEND(slab, slab->regions, slab->num_regions, region);
}
static void heap_uninit(struct mpvk_ctx *vk, struct vk_heap *heap)
{
for (int i = 0; i < heap->num_slabs; i++)
slab_free(vk, heap->slabs[i]);
talloc_free(heap->slabs);
*heap = (struct vk_heap){0};
}
void vk_malloc_init(struct mpvk_ctx *vk)
{
assert(vk->physd);
vk->alloc = talloc_zero(NULL, struct vk_malloc);
vkGetPhysicalDeviceMemoryProperties(vk->physd, &vk->alloc->props);
}
void vk_malloc_uninit(struct mpvk_ctx *vk)
{
struct vk_malloc *ma = vk->alloc;
if (!ma)
return;
for (int i = 0; i < ma->num_heaps; i++)
heap_uninit(vk, &ma->heaps[i]);
talloc_free(ma);
vk->alloc = NULL;
}
void vk_free_memslice(struct mpvk_ctx *vk, struct vk_memslice slice)
{
struct vk_slab *slab = slice.priv;
if (!slab)
return;
assert(slab->used >= slice.size);
slab->used -= slice.size;
MP_DBG(vk, "Freeing slice %zu + %zu from slab with size %zu\n",
slice.offset, slice.size, slab->size);
if (slab->dedicated) {
// If the slab was purpose-allocated for this memslice, we can just
// free it here
slab_free(vk, slab);
} else {
// Return the allocation to the free space map
insert_region(slab, (struct vk_region) {
.start = slice.offset,
.end = slice.offset + slice.size,
});
}
}
// reqs: can be NULL
static struct vk_heap *find_heap(struct mpvk_ctx *vk, VkBufferUsageFlags usage,
VkMemoryPropertyFlags flags,
VkMemoryRequirements *reqs,
bool exportable)
{
struct vk_malloc *ma = vk->alloc;
int typeBits = reqs ? reqs->memoryTypeBits : 0;
for (int i = 0; i < ma->num_heaps; i++) {
if (ma->heaps[i].usage != usage)
continue;
if (ma->heaps[i].flags != flags)
continue;
if (ma->heaps[i].typeBits != typeBits)
continue;
if (ma->heaps[i].exportable != exportable)
continue;
return &ma->heaps[i];
}
// Not found => add it
MP_TARRAY_GROW(ma, ma->heaps, ma->num_heaps + 1);
struct vk_heap *heap = &ma->heaps[ma->num_heaps++];
*heap = (struct vk_heap) {
.usage = usage,
.flags = flags,
.typeBits = typeBits,
.exportable = exportable,
};
return heap;
}
static inline bool region_fits(struct vk_region r, size_t size, size_t align)
{
return MP_ALIGN_UP(r.start, align) + size <= r.end;
}
// Finds the best-fitting region in a heap. If the heap is too small or too
// fragmented, a new slab will be allocated under the hood.
static bool heap_get_region(struct mpvk_ctx *vk, struct vk_heap *heap,
size_t size, size_t align,
struct vk_slab **out_slab, int *out_index)
{
struct vk_slab *slab = NULL;
// If the allocation is very big, serve it directly instead of bothering
// with the heap
if (size > MPVK_HEAP_MAXIMUM_SLAB_SIZE) {
slab = slab_alloc(vk, heap, size);
*out_slab = slab;
*out_index = 0;
return !!slab;
}
for (int i = 0; i < heap->num_slabs; i++) {
slab = heap->slabs[i];
if (slab->size < size)
continue;
// Attempt a best fit search
int best = -1;
for (int n = 0; n < slab->num_regions; n++) {
struct vk_region r = slab->regions[n];
if (!region_fits(r, size, align))
continue;
if (best >= 0 && region_len(r) > region_len(slab->regions[best]))
continue;
best = n;
}
if (best >= 0) {
*out_slab = slab;
*out_index = best;
return true;
}
}
// Otherwise, allocate a new vk_slab and append it to the list.
size_t cur_size = MPMAX(size, slab ? slab->size : 0);
size_t slab_size = MPVK_HEAP_SLAB_GROWTH_RATE * cur_size;
slab_size = MPMAX(MPVK_HEAP_MINIMUM_SLAB_SIZE, slab_size);
slab_size = MPMIN(MPVK_HEAP_MAXIMUM_SLAB_SIZE, slab_size);
assert(slab_size >= size);
slab = slab_alloc(vk, heap, slab_size);
if (!slab)
return false;
MP_TARRAY_APPEND(NULL, heap->slabs, heap->num_slabs, slab);
// Return the only region there is in a newly allocated slab
assert(slab->num_regions == 1);
*out_slab = slab;
*out_index = 0;
return true;
}
static bool slice_heap(struct mpvk_ctx *vk, struct vk_heap *heap, size_t size,
size_t alignment, struct vk_memslice *out)
{
struct vk_slab *slab;
int index;
alignment = MP_ALIGN_UP(alignment, vk->limits.bufferImageGranularity);
if (!heap_get_region(vk, heap, size, alignment, &slab, &index))
return false;
struct vk_region reg = slab->regions[index];
MP_TARRAY_REMOVE_AT(slab->regions, slab->num_regions, index);
*out = (struct vk_memslice) {
.vkmem = slab->mem,
.offset = MP_ALIGN_UP(reg.start, alignment),
.size = size,
.slab_size = slab->size,
.priv = slab,
};
MP_DBG(vk, "Sub-allocating slice %zu + %zu from slab with size %zu\n",
out->offset, out->size, slab->size);
size_t out_end = out->offset + out->size;
insert_region(slab, (struct vk_region) { reg.start, out->offset });
insert_region(slab, (struct vk_region) { out_end, reg.end });
slab->used += size;
return true;
}
bool vk_malloc_generic(struct mpvk_ctx *vk, VkMemoryRequirements reqs,
VkMemoryPropertyFlags flags, struct vk_memslice *out)
{
struct vk_heap *heap = find_heap(vk, 0, flags, &reqs, false);
return slice_heap(vk, heap, reqs.size, reqs.alignment, out);
}
bool vk_malloc_buffer(struct mpvk_ctx *vk, VkBufferUsageFlags bufFlags,
VkMemoryPropertyFlags memFlags, VkDeviceSize size,
VkDeviceSize alignment, bool exportable,
struct vk_bufslice *out)
{
if (exportable) {
if (!vk->has_ext_external_memory_export) {
MP_ERR(vk, "Exportable memory requires the %s extension\n",
MP_VK_EXTERNAL_MEMORY_EXPORT_EXTENSION_NAME);
return false;
}
}
struct vk_heap *heap = find_heap(vk, bufFlags, memFlags, NULL, exportable);
if (!slice_heap(vk, heap, size, alignment, &out->mem))
return false;
struct vk_slab *slab = out->mem.priv;
out->buf = slab->buffer;
if (slab->data)
out->data = (void *)((uintptr_t)slab->data + (ptrdiff_t)out->mem.offset);
return true;
}

View File

@ -1,37 +0,0 @@
#pragma once
#include "common.h"
void vk_malloc_init(struct mpvk_ctx *vk);
void vk_malloc_uninit(struct mpvk_ctx *vk);
// Represents a single "slice" of generic (non-buffer) memory, plus some
// metadata for accounting. This struct is essentially read-only.
struct vk_memslice {
VkDeviceMemory vkmem;
size_t offset;
size_t size;
size_t slab_size;
void *priv;
};
void vk_free_memslice(struct mpvk_ctx *vk, struct vk_memslice slice);
bool vk_malloc_generic(struct mpvk_ctx *vk, VkMemoryRequirements reqs,
VkMemoryPropertyFlags flags, struct vk_memslice *out);
// Represents a single "slice" of a larger buffer
struct vk_bufslice {
struct vk_memslice mem; // must be freed by the user when done
VkBuffer buf; // the buffer this memory was sliced from
// For persistently mapped buffers, this points to the first usable byte of
// this slice.
void *data;
};
// Allocate a buffer slice. This is more efficient than vk_malloc_generic for
// when the user needs lots of buffers, since it doesn't require
// creating/destroying lots of (little) VkBuffers.
bool vk_malloc_buffer(struct mpvk_ctx *vk, VkBufferUsageFlags bufFlags,
VkMemoryPropertyFlags memFlags, VkDeviceSize size,
VkDeviceSize alignment, bool exportable,
struct vk_bufslice *out);

File diff suppressed because it is too large Load Diff

View File

@ -1,51 +0,0 @@
#pragma once
#include "video/out/gpu/ra.h"
#include "common.h"
#include "utils.h"
struct ra *ra_create_vk(struct mpvk_ctx *vk, struct mp_log *log);
// Access to the VkDevice is needed for swapchain creation
VkDevice ra_vk_get_dev(struct ra *ra);
// Allocates a ra_tex that wraps a swapchain image. The contents of the image
// will be invalidated, and access to it will only be internally synchronized.
// So the calling could should not do anything else with the VkImage.
struct ra_tex *ra_vk_wrap_swapchain_img(struct ra *ra, VkImage vkimg,
VkSwapchainCreateInfoKHR info);
// Associates an external semaphore (dependency) with a ra_tex, such that this
// ra_tex will not be used by the ra_vk until the external semaphore fires.
void ra_tex_vk_external_dep(struct ra *ra, struct ra_tex *tex, VkSemaphore dep);
// This function finalizes rendering, transitions `tex` (which must be a
// wrapped swapchain image) into a format suitable for presentation, and returns
// the resulting command buffer (or NULL on error). The caller may add their
// own semaphores to this command buffer, and must submit it afterwards.
struct vk_cmd *ra_vk_submit(struct ra *ra, struct ra_tex *tex);
// May be called on a struct ra of any type. Returns NULL if the ra is not
// a vulkan ra.
struct mpvk_ctx *ra_vk_get(struct ra *ra);
struct vk_external_mem {
#if HAVE_WIN32_DESKTOP
HANDLE mem_handle;
#else
int mem_fd;
#endif
size_t mem_size;
size_t size;
size_t offset;
};
// Export an ra_buf for importing by another api.
bool ra_vk_buf_get_external_info(struct ra *ra, struct ra_buf *buf, struct vk_external_mem *ret);
// Set the buffer user data
void ra_vk_buf_set_user_data(struct ra_buf *buf, void *priv);
// Get the buffer user data
void *ra_vk_buf_get_user_data(struct ra_buf *buf);

File diff suppressed because it is too large Load Diff

View File

@ -1,192 +1,6 @@
#pragma once
#include "video/out/vo.h"
#include "video/out/gpu/context.h"
#include "video/mp_image.h"
#include "common.h"
#include "formats.h"
#include "video/out/gpu/context.h"
#define VK_LOAD_PFN(name) PFN_##name pfn_##name = (PFN_##name) \
vkGetInstanceProcAddr(vk->inst, #name);
#if HAVE_WIN32_DESKTOP
#define MP_VK_EXTERNAL_MEMORY_EXPORT_EXTENSION_NAME VK_KHR_EXTERNAL_MEMORY_WIN32_EXTENSION_NAME
#else
#define MP_VK_EXTERNAL_MEMORY_EXPORT_EXTENSION_NAME VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME
#endif
// Return a human-readable name for various struct mpvk_ctx enums
const char* vk_err(VkResult res);
// Convenience macros to simplify a lot of common boilerplate
#define VK_ASSERT(res, str) \
do { \
if (res != VK_SUCCESS) { \
MP_ERR(vk, str ": %s\n", vk_err(res)); \
goto error; \
} \
} while (0)
#define VK(cmd) \
do { \
MP_TRACE(vk, #cmd "\n"); \
VkResult res ## __LINE__ = (cmd); \
VK_ASSERT(res ## __LINE__, #cmd); \
} while (0)
// Uninits everything in the correct order
bool mpvk_init(struct mpvk_ctx *vk, struct ra_ctx *ctx, const char *surface_ext);
void mpvk_uninit(struct mpvk_ctx *vk);
// Initialization functions: As a rule of thumb, these need to be called in
// this order, followed by vk_malloc_init, followed by RA initialization, and
// finally followed by vk_swchain initialization.
// Create a vulkan instance. Returns VK_NULL_HANDLE on failure
bool mpvk_instance_init(struct mpvk_ctx *vk, struct mp_log *log,
const char *surf_ext_name, bool debug);
// Generate a VkSurfaceKHR usable for video output. Returns VK_NULL_HANDLE on
// failure. Must be called after mpvk_instance_init.
bool mpvk_surface_init(struct vo *vo, struct mpvk_ctx *vk);
// Find a suitable physical device for use with rendering and which supports
// the surface.
// name: only match a device with this name
// sw: also allow software/virtual devices
bool mpvk_find_phys_device(struct mpvk_ctx *vk, const char *name, bool sw);
// Get the UUID for the selected physical device
bool mpvk_get_phys_device_uuid(struct mpvk_ctx *vk, uint8_t uuid_out[VK_UUID_SIZE]);
// Pick a suitable surface format that's supported by this physical device.
bool mpvk_pick_surface_format(struct mpvk_ctx *vk);
struct mpvk_device_opts {
int queue_count; // number of queues to use
int async_transfer; // enable async transfer
int async_compute; // enable async compute
};
// Create a logical device and initialize the vk_cmdpools
bool mpvk_device_init(struct mpvk_ctx *vk, struct mpvk_device_opts opts);
// Wait for all currently pending commands to have completed. This is the only
// function that actually processes the callbacks. Will wait at most `timeout`
// nanoseconds for the completion of each command. Using it with a value of
// UINT64_MAX effectively means waiting until the pool/device is idle. The
// timeout may also be passed as 0, in which case this function will not block,
// but only poll for completed commands.
void mpvk_poll_commands(struct mpvk_ctx *vk, uint64_t timeout);
// Flush all currently queued commands. Call this once per frame, after
// submitting all of the command buffers for that frame. Calling this more
// often than that is possible but bad for performance.
// Returns whether successful. Failed commands will be implicitly dropped.
bool mpvk_flush_commands(struct mpvk_ctx *vk);
// Since lots of vulkan operations need to be done lazily once the affected
// resources are no longer in use, provide an abstraction for tracking these.
// In practice, these are only checked and run when submitting new commands, so
// the actual execution may be delayed by a frame.
typedef void (*vk_cb)(void *priv, void *arg);
struct vk_callback {
vk_cb run;
void *priv;
void *arg; // as a convenience, you also get to pass an arg for "free"
};
// Associate a callback with the completion of all currently pending commands.
// This will essentially run once the device is completely idle.
void vk_dev_callback(struct mpvk_ctx *vk, vk_cb callback, void *p, void *arg);
// Helper wrapper around command buffers that also track dependencies,
// callbacks and synchronization primitives
struct vk_cmd {
struct vk_cmdpool *pool; // pool it was allocated from
VkQueue queue; // the submission queue (for recording/pending)
VkCommandBuffer buf; // the command buffer itself
VkFence fence; // the fence guards cmd buffer reuse
// The semaphores represent dependencies that need to complete before
// this command can be executed. These are *not* owned by the vk_cmd
VkSemaphore *deps;
VkPipelineStageFlags *depstages;
int num_deps;
// The signals represent semaphores that fire once the command finishes
// executing. These are also not owned by the vk_cmd
VkSemaphore *sigs;
int num_sigs;
// Since VkFences are useless, we have to manually track "callbacks"
// to fire once the VkFence completes. These are used for multiple purposes,
// ranging from garbage collection (resource deallocation) to fencing.
struct vk_callback *callbacks;
int num_callbacks;
};
// Associate a callback with the completion of the current command. This
// bool will be set to `true` once the command completes, or shortly thereafter.
void vk_cmd_callback(struct vk_cmd *cmd, vk_cb callback, void *p, void *arg);
// Associate a raw dependency for the current command. This semaphore must
// signal by the corresponding stage before the command may execute.
void vk_cmd_dep(struct vk_cmd *cmd, VkSemaphore dep, VkPipelineStageFlags stage);
// Associate a raw signal with the current command. This semaphore will signal
// after the command completes.
void vk_cmd_sig(struct vk_cmd *cmd, VkSemaphore sig);
// Signal abstraction: represents an abstract synchronization mechanism.
// Internally, this may either resolve as a semaphore or an event depending
// on whether the appropriate conditions are met.
struct vk_signal {
VkSemaphore semaphore;
VkEvent event;
VkQueue event_source;
};
// Generates a signal after the execution of all previous commands matching the
// given the pipeline stage. The signal is owned by the caller, and must be
// consumed eith vk_cmd_wait or released with vk_signal_cancel in order to
// free the resources.
struct vk_signal *vk_cmd_signal(struct mpvk_ctx *vk, struct vk_cmd *cmd,
VkPipelineStageFlags stage);
// Consumes a previously generated signal. This signal must fire by the
// indicated stage before the command can run. If *event is not NULL, then it
// MAY be set to a VkEvent which the caller MUST manually wait on in the most
// appropriate way. This function takes over ownership of the signal (and the
// signal will be released/reused automatically)
void vk_cmd_wait(struct mpvk_ctx *vk, struct vk_cmd *cmd,
struct vk_signal **sigptr, VkPipelineStageFlags stage,
VkEvent *out_event);
// Destroys a currently pending signal, for example if the resource is no
// longer relevant.
void vk_signal_destroy(struct mpvk_ctx *vk, struct vk_signal **sig);
// Command pool / queue family hybrid abstraction
struct vk_cmdpool {
VkQueueFamilyProperties props;
int qf; // queue family index
VkCommandPool pool;
VkQueue *queues;
int num_queues;
int idx_queues;
// Command buffers associated with this queue. These are available for
// re-recording
struct vk_cmd **cmds;
int num_cmds;
};
// Fetch a command buffer from a command pool and begin recording to it.
// Returns NULL on failure.
struct vk_cmd *vk_cmd_begin(struct mpvk_ctx *vk, struct vk_cmdpool *pool);
// Finish recording a command buffer and queue it for execution. This function
// takes over ownership of *cmd, i.e. the caller should not touch it again.
void vk_cmd_queue(struct mpvk_ctx *vk, struct vk_cmd *cmd);
// Predefined structs for a simple non-layered, non-mipped image
extern const VkImageSubresourceRange vk_range;
extern const VkImageSubresourceLayers vk_layers;

11
wscript
View File

@ -804,12 +804,15 @@ video_output_features = [
'fmsg': "No OpenGL video output found or enabled. " +
"Aborting. If you really mean to compile without OpenGL " +
"video outputs use --disable-gl.",
}, {
'name': '--libplacebo',
'desc': 'libplacebo support',
'func': check_pkg_config('libplacebo >= 1.18.0'),
}, {
'name': '--vulkan',
'desc': 'Vulkan context support',
'deps': 'shaderc',
# Lowest version tested, Ubuntu 16.04's
'func': check_pkg_config('vulkan >= 1.0.61'),
'desc': 'Vulkan context support',
'deps': 'libplacebo',
'func': check_pkg_config('vulkan'),
}, {
'name': 'egl-helpers',
'desc': 'EGL helper functions',

View File

@ -445,6 +445,8 @@ def build(ctx):
( "video/out/gpu/utils.c" ),
( "video/out/gpu/video.c" ),
( "video/out/gpu/video_shaders.c" ),
( "video/out/placebo/ra_pl.c", "libplacebo" ),
( "video/out/placebo/utils.c", "libplacebo" ),
( "video/out/opengl/angle_dynamic.c", "egl-angle" ),
( "video/out/opengl/common.c", "gl" ),
( "video/out/opengl/context.c", "gl" ),
@ -495,11 +497,8 @@ def build(ctx):
( "video/out/vo_xv.c", "xv" ),
( "video/out/vulkan/context.c", "vulkan" ),
( "video/out/vulkan/context_wayland.c", "vulkan && wayland" ),
( "video/out/vulkan/context_win.c", "vulkan && win32-desktop" ),
#( "video/out/vulkan/context_win.c", "vulkan && win32-desktop" ),
( "video/out/vulkan/context_xlib.c", "vulkan && x11" ),
( "video/out/vulkan/formats.c", "vulkan" ),
( "video/out/vulkan/malloc.c", "vulkan" ),
( "video/out/vulkan/ra_vk.c", "vulkan" ),
( "video/out/vulkan/utils.c", "vulkan" ),
( "video/out/w32_common.c", "win32-desktop" ),
( "video/out/wayland/idle-inhibit-v1.c", "wayland" ),