
Module 1
A journey from high level languages, through 

assembly, to the running process

https://github.com/hasherezade/malware_training_vol1

https://github.com/hasherezade/malware_training_vol1


Creating shellcodes



Shellcode: advantages

• Self-sufficient: easy to inject into other applications

• Small: can fit into a tiny space i.e. section caves

• May be used as a loader: first code injected into an application, that follows to load other 
modules

• Sometimes (but less often) the full malicious functionality can be implemented as 
shellcode (i.e. Fobber malware)

• This type of code was popular in the past, virus era: where malware code was added to 
existing PE files (rather than injected into processes)



Creating shellcode

• In case of PE format we just write a code and don’t have to worry how it is loaded: 
Windows Loader will do it

• It is different when we write shellcode

• We cannot rely on the conviniences provided by PE format and Windows Loader:
• No sections

• No Data Directories (imports, relocations)

• Only code to provide everything we need...



Creating shellcode

Feature PE file shellcode

Loading • via Windows Loader

• running new EXE triggers creation of 

a new process

• Custom, simplified

• must parasite on existing process 

(i.e. via code injection + thread 

injection)

Composition Sections with specific access rights, 

carrying various elements (code, data, 

resources, etc)

Usually all in one memory area 

(read,write,execute)

Relocation to the load base Defined by relocation table, applied by 

Windows Loader 

Custom; position-independent code

Access to system API

(Imports loading)

Defined by import table, applied by 

Windows Loader 

Custom: retrieving imports via PEB 

lookup; no IAT, or simplified



Position-independent code

• In order to create a position-independent code, we must take care that all the addresses 
that we use are relative to the current instruction pointer address

• A short jump, long jump, call to a local funcion are relative -> we can use them!

• Any address that needs to be relocated (i.e. using of the data from different PE section) 
breaks the position independence:



Retrieving the Imports

• In order to retrieve the imported functions, we will take advantage of the linklist pointed 
by PEB

Image from:

http://blog.malcom.pl/2017/shellcode-peb-i-adres-bazowy-

modulu-kernel32-dll.html

http://blog.malcom.pl/2017/shellcode-peb-i-adres-bazowy-modulu-kernel32-dll.html


Retrieving the Imports

• In order to retrieve the imported functions, we will take advantage of the linklist pointed 
by PEB



Retrieving the Imports

• We will process each entry, searching for the DLL that we need...

L”Ntdll.dll”

Next 

LDR_DATA_TABLE_ENTRY



Retrieving the Imports

1. Get the PEB address

2. Via PEB->Ldr->InMemoryOrderModuleList, find:
• kernel32.dll (loaded in majority of the processes after initialization) 

• or ntdll.dll (if we want to use low-level equivalents of Import loading functions)

3. Walk through exports table to find addresses of: 
• LoadLibraryA/W (eventually: ntdll.LdrLoadDll)

• GetProcAddress (eventually: ntdll.LdrGetProcedureAddress)

4. Use LoadLibraryA/W to load other needed DLLs

5. Use GetProcAddress to retrieve functions



Creating shellcode: assembly

• We can use YASM for shellcodes written in pure assembly:

• We will not use a linker, which means:
• we need to fill imports by ourselves

• we need to take care of relocations – or make the code position-independent

yasm –f bin demo.asm 



Creating shellcode: C

• We can use a C compiler to generate assembly:

• ...that we will refactor to our shellcode, and compile by masm:

• it will generate a PE: we will cut out the code section, that is our shellcode

• The key is the refactoring! We need to follow all the principles of building shellcodes...

Cl /c /FA <file_name>.cpp

ml <file_name>.asm



Creating shellcode: C

• Use the given template, and refactor the application in C into a valid shellcode, by 
following the steps...

Exercise time...



Further readings...

• From a C project, through assembly, to shellcode:
• https://vxug.fakedoma.in/papers/VXUG/Exclusive/FromaCprojectthroughassemblytoshellcodeHas

herezade.pdf

https://vxug.fakedoma.in/papers/VXUG/Exclusive/FromaCprojectthroughassemblytoshellcodeHasherezade.pdf

