Module 1 |

A journey from high level languages. through ry«
assembly. to the running process

https://github.com/hasherezade/malware_training_vol1

Running executables: process

oooooooooooooooooooooo

Process: basics

oooooooooooooooooooooo

Process

 When we run an EXE file, the system creates a Process

Addre

00010000

|

Info Content Protection | Initial

Executable code
-only initialized data
alized data

I
I
I
I
I
T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-

sample.exe

FFFBOO00D
FFFD&
FFFDF
7FFECQ

Process

e A process is a container for all the resources that the application needs to run
e A process by itself doesn't run code: threads execute it

e tach process has its own, private address space, that is independent from other
processes (different processes may have different memory content at the same
addreses)

e Has its own access token, defining its security context

Process

* Types of processes on Windows:
« System process
e Subsystem process
* SErVice
* User processes (our applications)

oooooooooooo

Processes on Windows

Subsystem
Process

(CSRSS.exe) Processes

I Subsystem DLLs

NTDLL.DLL

System
¥ User Processes

User Mode

Executive
Win32k.Sys

Hardware Abstraction Layer (HAL)

Hyper-V Hypervisor Kernel Mode
(hypervisor context)

From: ,Windows Kernel Programming” by Pavel Yosifovich

Process

e A process is identified by its PID
* unique throughout the system at the time of running
« after the process terminates, its PID may be reused by a new process

e tach process has one or more threads. They are identified by
e Thread [Ds, same as process 10s, are unique throughout the system
o After the thread terminates, its [D may be reused

* Processes may access each other (via handles), if their security context allows it

HANDLE OpenProcess(
DWORD dwDesiredAccessn
BOOL bInheritHandle-
DWORD dwProcessId // <- The Process ID

) 5

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getprocessid?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getcurrentthreadid?redirectedfrom=MSDN

Process

* Process contains:
. Mapped PE images (the main EXE + dependencies: DLLs with needed imports)
e The workingset (all the memary that is used during its execution)
e Threads: at least one (structures for execution of the code)
« [Ipen Handles (managing access to needed objects: i.e. Files, Mutexes, Events)

Access Tokens (representing security information, and specifying privileges of the process and
threads)

Process

e Contains PE files in a virtual format

: - S
PE in memory: allocated memory
Virtual format

PE on the disk: NTDLL.DLL

Raw format

Kernel32.DLL

<allocated memory>

HELLHe i I, Froc:s:

Process

o Contains thread(s) running the code - example:

Main thread
(started at Entry Point of
application)

L ——

Kernel32.DLL

PID = 783

Communication with the G2
SErVEr

Injecting in the running
Processes

5
.
TID = 223
TID = 382
4
TID = 4278

—— n 4
e

- Sesssssnen

sERRsERRREw T

Process 1nitialization

oooooooooooooooooooooo

Process Initialization

e What happens when we create a process?

BOOL CreateProcessA(

LPCSTR

LPSTR
LPSECURITY_ATTRIBUTES
LPSECURITY_ATTRIBUTES
BOOL

DWORD

LPVOID

LPCSTR

LPSTARTUPINFOA
LPPROCESS_INFORMATION

lpApplicationName-
lpCommandLine-
lpProcessAttributes-
lpThreadAttributesa-
bInheritHandles-
dwCreationFlags-
lpEnvironment-
lpCurrentDirectorya
lpStartupInfoa
lpProcessInformation

- Sesssssnen

Process Initialization

Create a new process object and allocation of the memary

Map NTDLL.dIl and the initial EXE into the memory (MEM IMAGE)

Lreate a first thread and allocate a space for it

Resume the first thread: NTDLL . LdrpInitialize functionis called

NTDLL.Ldprlnitialization function:

o Load all imported DLLs -> run each'’s DlIMain with DLL_PROCESS ATTACH

Lall Kernel32.BaseProcessStart

Kernel32.BaseProcessStart:callsinitial EXE's Entry Point

Process Initialization

Windows Loader
CreateProcess Windows Loader
LdrpInitialize

Windows Loader
BaseProcessStart

Creates process and
allocates a virtual - [alled when the first
memary for its use thread resumes

Call Entry Point of the
original application

Loads the initial EXE - boes through the Import
and NOTLL.DLL Table, loads all required The run EXE
Creates a first thread DLLs, and initializes them Entry Point
and the stack for its (calls DIIMain with
USE DLL_PROCESS ATTACH) - Execute the code at

the Entry Point

Process Initialization

Windows Loader
CreateProcess Windows Loader
LdrpInitialize

Windows Loader
BaseProcessStart

Creates process and
allocates a virtual - [alled when the first
memary for its use thread resumes

Call Entry Point of the
original application

Loads the initial EXE - boes through the Import
and NOTLL.DLL Table, loads all required The run EXE
Creates a first thread DLLs, and initializes them Entry Point
and the stack for its (calls DIIMain with
USE DLL_PROCESS ATTACH) - Execute the code at

the Entry Point

Process Initialization

B=| dermo_cpp.ex 2 Properties
General Statistics Performance Threads
Hide free reqgions

Base address

Mapped
Mapped
Private
Mapped
Mapped
Image
Image

Token

Modules Memory

Proteck...

Environment Handles GPU omrmenk

Strings. .. Refresh
Use Total WS Privake W3 Sh:
USER_SHARED_DATA
4 kB
4 kB
12 kB
g kB
4 kB
4 kB
g kB
4 kB

Before the first

et Dckbontbiniderms con.oxe @ thread is run, only:
e IrF.Itl-j;:.r:j;l':mu_l-pp'm: | e the main EXE

e NTDLL.DLL

A process created in a suspended mode - B4 bit example (viewed by Process Hacker) are mapped

- srssasnnen srsssnnnene

Process Initialization

* Notice that if we create a process as suspended, only the first part of the initialization
Process was run..

e This is important for Process Hollowing, that we will review in details later...

Threads

ooooooooooooooooooooo

Thread

e Thread is an entity responsible for executing the code

Main thread

(started at Entry Point of

application)

TID = 223

.

FFD 400 EI

<kernel32.BaseThreadIni tThunk=

<" emcCos . EntryPo ints

EFLAGS
ZF 1 PF 1 AF D
OF 0 SF O DF O
CFo TF

00413AE1 G tr ds: [<&_ set_app_typex>]
pop
ar dw e ds: (4181447,

- srssasnnen srsssnnnene -

Thread

e A thread contains: Context (state of the processor), Z stacks, TLS (Thread Local Storage),
may also has its own security token

<kernelzz.easeThreadInitThunk:>

User Mode stack e R

<t emcos. ENtryPoint=

ZF 1 PF 1 AF O
OF O 5F O DF O
CF O TF O IF 1

Maln threa d —| LastError EIIEIIEIIEIIEIIEIE:EI :EEiﬁ:gﬁgi&:g?EE:T_-:L._.g;_1E_;....:|T_F.:||__;..,|:;.'_:.
(started at Entry Point of
application)

TID = 223

Thread Management

e Threads are executed by the processor, and managed by the Uperating System (kernel
mode):

e Scheduler: a kernel mode controler, that decides which thread gets to run for how long and
performing the context switch

o Additionally, Windows (only B4-bit) implements also User Mode Scheduling (UMS). It is it an optimization to make the
operation of thread switching less resource-consuming. UMS threads differ from classic threads. They can switch context
between themselves in user mode, while from the kernel perspective, it looks like one thread is running. Due to this,
concurrent UMS Threads cannot run on multiple processars.

Thread Context

e Lontext switching;
* When the processor is switched to another thread, first its context is saved

e The thread context is a state of the processor when it was run the last time before the switch
(saved snapshot with all the registers)

e stack space is used to save off current state of thread when context switched
e WindowsAPI allows to retrieve the thread context (but first we need to SuspendThread):

BOOL GetThread(Context (
HANDLE hThread-
LPCONTEXT lpContext

)3

Thread Context
e Example

BaseThreadIni tThunk=

DO413AE84

<" emcos . EntryPo int>

EFLAGS
ZF 1 PF 1 AF O
OF 0 SF 0 DF O | dword ptr ss
—| CFO TF O IF 1 Wor
MEIII'I thPEEd Il:i:‘ff_:_rauglrl: 0000 ._ e JAME_NOT_FOUND) 00413AB1
(started at Entry Paint of
application)

TID = 223

- srssasnnen srsssnnnene -

EPROCENS- PEB- TEB. ..

oooooooooooooooooooooo

Stuctures for Process Management

e Process is managed by the Operating System

e [o manage the process, Windows uses the following structures:
o EPROCESS, KPROCESS, ETHREAD, KTHREAD, PEB, TER..

Stuctures for Process Management

. - the basic kernel-mode structure representing a process

« [ontains a linklist of all the threads belonging to the process
« [ontains a pointer to the PEB (Process Environment Block) that is available from usermode

. - the basic kernel-mode structure representing a thread
« [ontains a pointer to KTHREAD

e links tothe TEB (Thread Environment Block) that is available from usermode

Obtaining PEB

typedef =t T] typedef

-1

Kernel Mode

- srssasnnen srsssnnnene -

Obtaining TEB

Via registers:
THRE LD FS (32 bit)
der | .: :_: SPATCHER_HEADER GS (LY

Void

Void - : rod : nmentBlock;

inationPort
perLink
edilaitValues
imerListLoc

1 iveTimerListHead @ _ T ENTEY
L _CLIENT ID
Eeye itSem : AP HOF,
ji! h i

: KTIMER
coN TaitEloc : [4] _KWAIT BLOCK

itohes

Kernel Mode

- srssasnnen srsssnnnene -

PEB and TEB

 We can see PEB and TEB(s) mapped inside the process space (usually towards
the end of the addresses)

Base relocations

Executable code
Initialized data
Resources

Ease relocations

M R
M R
M R
M R
M R
M R
M R
MA R

Fxercise

* Following the given instructions, walk through the PEB and TEE using WinDbg.
Familiarize yourself with the fields.

oooooooooooooooooooooo

