
Module 1
A journey from high level languages, through

assembly, to the running process

https://github.com/hasherezade/malware_training_vol1

https://github.com/hasherezade/malware_training_vol1

Basics of PE (Portable

Executable)

Basics of a PE file

• PE (Portable Executable) is a native executable format on Windows

• PE files:

• user mode: EXE, DLL

• kernel mode: driver (.sys), kernel image (ntoskrnl.exe)

• UEFI (run in SMM – System Managemant Mode)

• Also OBJ files have structures similar to PE

Basics of a PE file

•PE (Portable Executable) contains information:
• What to execute: the compiled code

• How to execute: headers with data necessary for loading it

remcos.exe

Basics of a PE file

• PE format is based on a Unix format COFF – that was used in VAX/VMS

• It was introduced as a part of specification Win32

• Throughout many years, the core of the format didn’t change, only some new fields of
some structures have been added

• Since introduction of 64 bit environment, PE needed to be adjusted to it: 64 bit PE was
introduced

• Also, new variants have been introduced, like .NET PE – containing additional structures
with intermediate code and metadata

Basics of a PE file

•PE file structure: the DOS part (legacy) and the Windows Part

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/pe_hdr.h

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/pe_hdr.h

Basics of a PE file

•DOS Header: only e_magic, and e_lfnew must be filled:
typedef struct _IMAGE_DOS_HEADER { // DOS .EXE header

WORD e_magic; // Magic number ---> ‚MZ”

WORD e_cblp; // Bytes on last page of file

WORD e_cp; // Pages in file

WORD e_crlc; // Relocations

WORD e_cparhdr; // Size of header in paragraphs

WORD e_minalloc; // Minimum extra paragraphs needed

WORD e_maxalloc; // Maximum extra paragraphs needed

WORD e_ss; // Initial (relative) SS value

WORD e_sp; // Initial SP value

WORD e_csum; // Checksum

WORD e_ip; // Initial IP value

WORD e_cs; // Initial (relative) CS value

WORD e_lfarlc; // File address of relocation table

WORD e_ovno; // Overlay number

WORD e_res[4]; // Reserved words

WORD e_oemid; // OEM identifier (for e_oeminfo)

WORD e_oeminfo; // OEM information; e_oemid specific

WORD e_res2[10]; // Reserved words

LONG e_lfanew; // File address of new exe header --------> Points to the NT header

} IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/pe_hdr.h

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/pe_hdr.h

Basics of a PE file

• DOS Header: fields to remember

typedef struct _IMAGE_DOS_HEADER {

WORD e_magic; // Magic number  „MZ”

...

LONG e_lfanew; // points to NT header

} IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/pe_hdr.h

typedef struct _IMAGE_NT_HEADERS32/64 {

DWORD Signature;  Magic number „PE\0\0”

IMAGE_FILE_HEADER FileHeader;

IMAGE_OPTIONAL_HEADER32/64 OptionalHeader;

} IMAGE_NT_HEADERS64;

Let’s have a look in PE-bear...

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/pe_hdr.h

Basics of a PE file

• FileHeader: fields to remember

typedef struct _IMAGE_FILE_HEADER {

WORD Machine; // Specifies the architecture

WORD NumberOfSections; // How many sections?

DWORD TimeDateStamp;

DWORD PointerToSymbolTable;

DWORD NumberOfSymbols;

WORD SizeOfOptionalHeader;

WORD Characteristics;

} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/pe_hdr.h

typedef struct _IMAGE_NT_HEADERS32/64 {

DWORD Signature;  „PE\0\0”

IMAGE_FILE_HEADER FileHeader;

IMAGE_OPTIONAL_HEADER32/64 OptionalHeader;

} IMAGE_NT_HEADERS64;

Let’s have a look in PE-bear...

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/pe_hdr.h

Basics of a PE file

• OptionalHeader: fields to remember typedef struct _IMAGE_OPTIONAL_HEADER64 {

WORD Magic; // type: NT32 ? NT64?

BYTE MajorLinkerVersion;

BYTE MinorLinkerVersion;

DWORD SizeOfCode;

DWORD SizeOfInitializedData;

DWORD SizeOfUninitializedData;

DWORD AddressOfEntryPoint; // where the execution starts?

DWORD BaseOfCode;

ULONGLONG ImageBase; //default load base

DWORD SectionAlignment; //unit in memory

DWORD FileAlignment; //unit on disk

WORD MajorOperatingSystemVersion;

WORD MinorOperatingSystemVersion;

WORD MajorImageVersion;

WORD MinorImageVersion;

WORD MajorSubsystemVersion;

WORD MinorSubsystemVersion;

DWORD Win32VersionValue;

DWORD SizeOfImage; //size of the loaded PE

DWORD SizeOfHeaders; //size of all the headers to map

DWORD CheckSum;

WORD Subsystem; // is it a console app? a driver? etc.

WORD DllCharacteristics; // features enabled

ULONGLONG SizeOfStackReserve;

ULONGLONG SizeOfStackCommit;

ULONGLONG SizeOfHeapReserve;

ULONGLONG SizeOfHeapCommit;

DWORD LoaderFlags;

DWORD NumberOfRvaAndSizes;

IMAGE_DATA_DIRECTORY DataDirectory[DIRECTORY_ENTRIES_NUM];

} IMAGE_OPTIONAL_HEADER64;

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/pe_hdr.h

typedef struct _IMAGE_NT_HEADERS32/64 {

DWORD Signature;  „PE\0\0”

IMAGE_FILE_HEADER FileHeader;

IMAGE_OPTIONAL_HEADER32/64 OptionalHeader;

} IMAGE_NT_HEADERS64;

Let’s have a look in PE-bear...

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/pe_hdr.h

Basics of a PE file: sections

• PE is divided into sections with different permissions

• Sections introduce a logical layout of the binary, that compilers/linkers can
follow

• Dividing PE on section improves security: the code is isolated from the data

• HOWEVER:

• if DEP (Data Execution Prevention) is disabled, a page without execution
permission can still be executed

Basics of a PE file: sections

•PE sections are defined by sections header

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/remap.h

#define IMAGE_FIRST_SECTION(ntheader) ((PIMAGE_SECTION_HEADER) \

((ULONG_PTR)(ntheader) + \

FIELD_OFFSET(IMAGE_NT_HEADERS, OptionalHeader) + \

((ntheader))->FileHeader.SizeOfOptionalHeader \

))

A macro in

winnt.h

pointing the first

section

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/remap.h

Basics of a PE file: sections

• on the disk PE is stored in a raw format (the unit is defined by File Alignment)

• In memory PE is mapped to its virtual format (the unit is defined by Section Alignment) –
usually of the granularity of one page (0x1000)

Basics of a PE file: sections

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/remap.h

Raw

(file on the disk)

Virtual

(mapped in the process

memory)

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/remap.h

Basics of a PE file: caves

• The space reserved for a section is always rounded up to some unit (FileAlignment in a
raw format, SectionAlignment in virtual)

• The size of the actual section content may be smaller

• The additional space is unused, and filled with padding. It is called a section cave. A cave
in an executable section is often referenced as code cave.

• Caves may be virtual or raw

• Sometimes they may be used for installing code implants

Basics of a PE file: addresses

• Raw addresses (in file) usually correspond to virtual addresses (in memory) and vice versa

Raw 0x400 = RVA 0x1000

RVA 0x2000 = raw 0x600

RVA 0x5015 = raw 0xC15

• RVA : Relative

Virtual Address

(without Image

Base)

• VA: absolute

Virtual Address

(with Image

Base)

Basics of a PE file: addresses

• Raw addresses (in file) usually correspond to virtual addresses (in memory) and vice versa

Raw 0x700 = RVA 0x2100

RVA 0x2400 -> invalid raw

• RVA : Relative

Virtual Address

(without Image

Base)

• VA: absolute

Virtual Address

(with Image

Base)

Basics of a PE file: addresses

• Raw addresses (in file) usually correspond to virtual addresses (in memory) and vice versa
• However:

• Some sections can be unpacked in memory and not filled in the file

• Some addresses may not be mapped (present in the file, but not in the memory image)

Basics of a PE file: addresses

• Let’s open one of our sample PEs in PE-bear and see the section table

• Try converting various addresses from Raw format to Virtual, follow and
observe

Exercise time...

Basics of a PE file

•The most information lies in data directories

Basics of a PE file: Relocation

•Relocation Table

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/relocate.h

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/relocate.h

Basics of a PE file: Relocation

1. PE comes with some default base address in the header

2. All the absolute addresses inside the PE assume that it was loaded
at this base

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/relocate.h

Base Address = 400000

46E040 = 400000 + 6E040

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/relocate.h

Basics of a PE file: Relocation

• In the past EXEs were usually loaded at their default base (only DLLs didn’t
have to)

• Nowadays most PEs load at a dynamic base (due to ASLR)

• A flag in the header determines if a dynamic base will be used

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/relocate.h

DLL Characteristics: DLL can move

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/relocate.h

Basics of a PE file: Relocation

• If the PE was loaded at a different base than the one defined in the header, all
its fields using absolute addresses must be recalculated (rebased)

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/relocate.h

46E040 = 400000 + 6E040

32E040 = 2C0000 + 6E040

Load base = 2C0000

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/relocate.h

Basics of a PE file: Relocation

•How does PE know where are the fields that needs to be
rebased?

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/relocate.h

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/relocate.h

Basics of a PE file: Relocation

•How does PE know where are the fields that needs to be
rebased?

•They are listed in the Relocation Table!

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/relocate.h

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/relocate.h

Basics of a PE file: Relocation

•Let’s open one of our sample PEs in PE-bear and see the
relocation table

•Check the code snippet to see how the relocation table is
processed

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/relocate.h

Exercise time...

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/relocate.h

Basics of a PE file:
Imports & Exports

Most executables use some functions exported by other modules (external
libraries)

1. If we use a static library, the linker will automatically add the external
code into our PE

2. If we use a dynamic library (DLL), the used functions will be listed in the
Import Table of our PE, and dynamic linking will be done when the PE is
loaded

3. Alternatively, we can load a DLL by ourselves using LoadLibrary and
fetch the exported function via GetProcessAddress

Basics of a PE file: Exports

•Export Table

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets
/export_lookup.h

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/export_lookup.h

Basics of a PE file: Exports

1. DLLs are libraries of functions for other PEs to use

2. An Export Table is a catalogue allowing to find and use a particular
function

Basics of a PE file: Exports

...and the execution is redirected to

the exported function

We call a function from a DLL...

Basics of a PE file: Exports

1. Functions can be exported by a name or by ordinal (a number)

2. Some exports can be forwarded (pointing to other functions, in
other DLLs)

Basics of a PE file: Exports

• Forwarded functions

Basics of a PE file: Imports

• Import Table

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets
/imports_load.h

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/imports_load.h

Basics of a PE file: Imports

• Dynamic linking is done when a PE is loaded

• The loader walks through the Import Table of the PE
• loads needed DLLs

• searches the imported functions in the export table of the DLL

• fills the thunks via which the PE is going to make calls to the exported
functions with appropriate addresses

Basics of a PE file: Imports

We call a function from a DLL...

...via thunk that was filled with the

address of the exported function

Basics of a PE file: Imports

...and the execution is redirected to

the exported function

We call a function from a DLL...

Basics of a PE file: Imports

• Raw: before filling imports

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets
/imports_load.h

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/imports_load.h

Basics of a PE file: Imports

• Loaded: after filling imports – thunks are filled with addresses of exported functions

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets
/imports_load.h

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/imports_load.h

Basics of a PE file: Imports

DLL Base + Function RVA

Example:

768A0000 + 496FB =

768E96FB

Basics of a PE file: Imports

• Import Table: structure

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets
/imports_load.h

https://github.com/hasherezade/malware_training_vol1/blob/main/exercises/module1/lesson2_pe/pe_snippets/imports_load.h

Basics of a PE file: Imports

•Let’s open one of our sample PEs in PE-bear and see the
import table. Find the corresponding DLLs and their exports.

•Check the code snippets to see how the import and export
tables are processed

Exercise time...

Exercise

•Compile the given code of a custom PE loader and get familiar
with it
• https://github.com/hasherezade/malware_training_vol1/tree/ma

in/exercises/module1/lesson2_pe

https://github.com/hasherezade/malware_training_vol1/tree/main/exercises/module1/lesson2_pe

Further readings...

• MSDN documentation:
• https://docs.microsoft.com/en-us/windows/win32/debug/pe-format

• Classic articles about PE by Matt Pietrek:
• https://bytepointer.com/resources/pietrek_in_depth_look_into_pe_format_pt1.htm -

• https://bytepointer.com/resources/pietrek_in_depth_look_into_pe_format_pt2.htm

• https://docs.microsoft.com/en-us/previous-
versions/ms809762(v=msdn.10)?redirectedfrom=MSDN

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://bytepointer.com/resources/pietrek_in_depth_look_into_pe_format_pt1.htm
https://bytepointer.com/resources/pietrek_in_depth_look_into_pe_format_pt2.htm
https://docs.microsoft.com/en-us/previous-versions/ms809762(v=msdn.10)?redirectedfrom=MSDN

