
Module 1
A journey from high level languages, through 

assembly, to the running process

https://github.com/hasherezade/malware_training_vol1

https://github.com/hasherezade/malware_training_vol1


Running executables: process



Process: basics



Process

• When we run an EXE file, the system creates a Process



Process

• A process is a container for all the resources that the application needs to run

• A process by itself doesn’t run code: threads execute it

• Each process has its own, private address space, that is independent from other 
processes (different processes may have different memory content at the same 
addreses)

• Has its own access token, defining its security context



Process

• Types of processes on Windows:
• System process

• Subsystem process

• Service

• User processes (our applications)



Processes on Windows

From: „Windows Kernel Programming” by Pavel Yosifovich



Process

• A process is identified by its PID (Process ID)
• unique throughout the system at the time of running

• after the process terminates, its PID may be reused by a new process

• Each process has one or more threads. They are identified by Thread IDs. 
• Thread IDs, same as process IDs, are unique throughout the system

• After the thread terminates, its ID may be reused

• Processes may access each other (via handles), if their security context allows it

HANDLE OpenProcess(
DWORD dwDesiredAccess,

BOOL  bInheritHandle,

DWORD dwProcessId // <- The Process ID

);

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getprocessid?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getcurrentthreadid?redirectedfrom=MSDN


Process

• Process contains:
• Mapped PE images (the main EXE + dependencies: DLLs with needed imports)

• The workingset (all the memory that is used during its execution)

• Threads: at least one (structures for execution of the code)

• Open Handles (managing access to needed objects: i.e. Files, Mutexes, Events)

• Access Tokens (representing security information, and specifying privileges of the process and 
threads)



Process

• Contains PE files in a virtual format

MyApp.exe

MyApp.exe

NTDLL.DLL

Kernel32.DLL

ProcessExecutable file

PE on the disk:

Raw format

PE in memory:

Virtual format

<allocated memory>

<allocated memory>



Process

• Contains thread(s) running the code – example:

MyApp.exe

NTDLL.DLL

Kernel32.DLL

PID = 789

Communication with the C2 

server

Injecting in the running 

processes
TID = 4278

TID = 985

TID = 223

Main thread

(started at Entry Point of 

application)



Process initialization



Process Initialization

• What happens when we create a process?

BOOL CreateProcessA(

LPCSTR                lpApplicationName,

LPSTR                 lpCommandLine,

LPSECURITY_ATTRIBUTES lpProcessAttributes,

LPSECURITY_ATTRIBUTES lpThreadAttributes,

BOOL                  bInheritHandles,

DWORD                 dwCreationFlags,

LPVOID                lpEnvironment,

LPCSTR                lpCurrentDirectory,

LPSTARTUPINFOA        lpStartupInfo,

LPPROCESS_INFORMATION lpProcessInformation

);



Process Initialization

1. Create a new process object and allocation of the memory

2. Map NTDLL.dll and the initial EXE into the memory (MEM_IMAGE)

3. Create a first thread and allocate a space for it

4. Resume the first thread: NTDLL.LdrpInitialize function is called

5. NTDLL.LdprInitialization function:
• Load all imported DLLs -> run each’s DllMain with DLL_PROCESS_ATTACH

• Call Kernel32.BaseProcessStart

6. Kernel32.BaseProcessStart: calls initial EXE’s Entry Point 



Process Initialization

Windows Loader

CreateProcess

- Creates process and 

allocates a virtual 

memory for its use

- Loads the initial EXE 

and NDTLL.DLL

- Creates a first thread 

and the stack for its 

use

Windows Loader

LdrpInitialize

- Called when the first 

thread resumes

- Goes through the Import 

Table, loads all required 

DLLs, and initializes them 

(calls DllMain with 

DLL_PROCESS_ATTACH) 

Windows Loader

BaseProcessStart

- Call Entry Point of the 

original application

The run EXE

Entry Point

- Execute the code at 

the Entry Point



Process Initialization

Windows Loader

CreateProcess

- Creates process and 

allocates a virtual 

memory for its use

- Loads the initial EXE 

and NDTLL.DLL

- Creates a first thread 

and the stack for its 

use

Windows Loader

LdrpInitialize

- Called when the first 

thread resumes

- Goes through the Import 

Table, loads all required 

DLLs, and initializes them 

(calls DllMain with 

DLL_PROCESS_ATTACH) 

Windows Loader

BaseProcessStart

- Call Entry Point of the 

original application

The run EXE

Entry Point

- Execute the code at 

the Entry Point



Process Initialization

A process created in a suspended mode – 64 bit example (viewed by Process Hacker)

Before the first 

thread is run, only: 

• the main EXE

• NTDLL.DLL

are mapped



Process Initialization

• Notice that if we create a process as suspended, only the first part of the initialization 
process was run...

• This is important for Process Hollowing, that we will review in details later...



Threads



Thread

• Thread is an entity responsible for executing the code

Main thread

(started at Entry Point of 

application)

TID = 223

MyApp.exe

MyApp.exe



Thread

• A thread contains: Context (state of the processor), 2 stacks, TLS (Thread Local Storage), 
may also has its own security token

Main thread

(started at Entry Point of 

application)

TID = 223

Kernel Mode stack

User Mode stack

Context 



Thread Management

• Threads are executed by the processor, and managed by the Operating System (kernel 
mode):
• Scheduler: a kernel mode controler, that decides which thread gets to run for how long and 

performing the context switch

• Additionally, Windows (only 64-bit) implements also User Mode Scheduling (UMS). It is it an optimization to make the 
operation of thread switching less resource-consuming. UMS threads differ from classic threads. They can switch context 
between themselves in user mode, while from the kernel perspective, it looks like one thread is running. Due to this, 
concurrent UMS Threads cannot run on multiple processors. 



Thread Context

• Context switching:
• When the processor is switched to another thread, first its context is saved

• The thread context is a state of the processor when it was run the last time before the switch 
(saved snapshot with all the registers)

• stack space is used to save off current state of thread when context switched

• WindowsAPI allows to retrieve the thread context (but first we need to SuspendThread):

BOOL GetThreadContext(

HANDLE    hThread,

LPCONTEXT lpContext

);



Thread Context

• Example

Main thread

(started at Entry Point of 

application)

TID = 223

MyApp.exe

MyApp.exe



EPROCESS, PEB, TEB...



Stuctures for Process Management

• Process is managed by the Operating System

• To manage the process, Windows uses the following structures: 
• EPROCESS, KPROCESS, ETHREAD, KTHREAD, PEB, TEB...



Stuctures for Process Management

• EPROCESS – the basic kernel-mode structure representing a process
• Contains a linklist of all the threads belonging to the process

• Contains a pointer to the PEB (Process Environment Block) that is available from usermode

• ETHREAD - the basic kernel-mode structure representing a thread
• Contains a pointer to KTHREAD

• Links to the TEB (Thread Environment Block) that is available from usermode



Obtaining PEB

Kernel Mode User Mode



Obtaining TEB

Kernel Mode User Mode

Via registers:

FS (32 bit)

GS (64 bit)



PEB and TEB

• We can see PEB and TEB(s) mapped inside the process space (usually towards 
the end of the addresses)



Exercise

• Following the given instructions, walk through the PEB and TEB using WinDbg. 
Familiarize yourself with the fields.


