
Module 2
Typical goals of malware and their

implementations

https://github.com/hasherezade/malware_training_vol1

https://github.com/hasherezade/malware_training_vol1

Dissecting a Banking Trojan

Banking Trojans - families

• Zbots – (a family of various forks of the ZeuS code)

• IcedID

• Tinba

• Gozi (and Gozi-based)

• Kronos

• TrickBot (some of the modules)

• ...and others

Elements of a Banking Trojan

• Classic banking trojans modify the content of selected websites (related to banking
transactions)
• Webinjects

• Webgrabbers

• An important element of a banking trojan is MITB proxy (Man-In-The-Browser)

• MITB proxy is a local proxy via which the traffic is bypassed and modified

• Sometimes to bypass the protections used by banks, the operator needs to remotely
access and use the victim machine (using Hidden VNC)

Elements of a Banking Trojan

Malicious implant

Malware core module

Communicate
with the C2

server

Browser process
A process running malware core

Elements of a Banking Trojan

• Malware can run its own Proxy server to which the browser will connect, whenever it
tries to connect with the target address

• The redirection is implemented by hooking the function responsible for establishing the
connection

• The traffic that bypassed by the malicious proxy is parsed, and may be augmented with
webinjects

Operation of a Banking Trojan

• Instead of connecting directly to the remote server, the browser connects to the local
proxy, run by the malware’s core module

infected

Operation of a Banking Trojan

• The requested page is first processed by the malicious proxy...

original

Operation of a Banking Trojan

• The proxy uses a special template to know where to implant the webinjects

• When the pattern is found, the malicious code is implanted

infected

MiTB Proxy - implementation

• Run a local proxy able to parse HTTP/HTTPS traffic
• Requires generating your own certificate

• Redirect all the HTTP/HTTPS traffic via the local proxy:
• Hook functions in the browser:

• 1) the functions responsible for establishing the connection

• 2) the functions responsible for accepting the certificate

• Parse and augment the traffic

MiTB Proxy – hooks example

• The functions responsible for establishing connection:

• The functions responsible for accepting the certificate

Ws2_32.connect

Nss32.SSL_AuthCertificateHook

Example: Iced ID (Firefox)

MiTB Proxy – hooks example

• The functions responsible for establishing connection:

• The functions responsible for accepting the certificate

Ws2_32.connect

mswsock.dll + RVA:0x7852

Crypt32.CertGetCertificateChain

Crypt32.CertVerifyCertificateChainPolicy

Example: Iced ID (IExplore)

MiTB Proxy – hooks example

• The functions responsible for establishing connection:

• The functions responsible for accepting the certificate

Ntdll.NtDeviceIoControlFile -> args: AFD_CONNECT, AFD_X32_CONNECT

Crypt32.CertGetCertificateChain

Crypt32.CertVerifyCertificateChainPolicy

Example: SilentNight Zbot

(IExplore)

MiTB Proxy – hooks example

• The functions responsible for establishing connection:

• Instead of API hooking, the certificate is installed by Certutil

Ntdll.NtDeviceIoControlFile -> args: AFD_CONNECT, AFD_X32_CONNECT

Example: SilentNight Zbot

(Firefox)

Traffic redirection–examples

• We are given a dump of the implants found in the browser process by PE-sieve. Analyze
what hooks have been installed and how do they implement the traffic redirection

Case-study time...

Webinjects – implementation

• The definitions of Webinjects following the ZeuS standard:

set_url https://* G

data_before

<title>

data_end

data_after

</title>

data_end

data_inject

INJECT

data_end

P - run on POST request.

G - run on GET request.

L - if this symbol is specified, then the

launch occurs as an HTTP grabber, if not

specified, then as an HTTP injection.

H - complements the "L" character, saves

content without HTML tag clipping. In normal

mode, all HTML tags are deleted, and some are

converted to the newline or space

character.

I - compare the case-sensitive url parameter

(for the English alphabet only).

C - compare case insensitive (for the English

alphabet only).

B - block execution of the injection.

Webinjects – implementation

• The webinjects are installed following a configuration file, that is usually downloaded from
the C2 server

Example:Silent Night Zbot (Internet Explorer)

Webinjects – implemantation

• After decrypting the traffic we can see the familiar patterns:

Example:Silent Night Zbot (Internet Explorer)

Webinjects - implementation

• The definitions of Webinjects in the malware configuration file:

https://gist.github.com/hashereware/07b9c2a8624498030a942fccf277bbdb#file-webinjects1-txt-L80

https://gist.github.com/hashereware/07b9c2a8624498030a942fccf277bbdb#file-webinjects1-txt-L80

Webinjects - implementation

• This is where the observed script came from...

Hidden VNC – the idea

• In order to perform some banking operations, the attackers need to use a VNC on the
victim machine

• In a normal case, the victim could see the attacker’s movements on their desktop

• In order to hide it, the attackers use the feature of alternative desktops
• this feature is well-known to Linux users, but not common – yet feasible - on Windows

• You can create an alternative Desktop on Windows, and switch some applications to be
displayed there

• Example: https://github.com/MalwareTech/CreateDesktop/

https://github.com/MalwareTech/CreateDesktop/

Hidden VNC – overwiew

Send screenshots

Clicks, movements

Send screenshots

HiddenVNC module The malware operator

Create the Hidden Desktop

Perform the actions on the Hidden

Desktop

Get updated state

Render a local view

Perform the actions on the local view

Update the local view

Hidden VNC - rendering

• Windows renders only the elements for the currently active desktop – so, using the
alternative desktop simultaneously is not easy: requires manual implementation of the
rendering

• EnumDesktopWindows – get list of all Windows running on the Desktop

• PrintWindow – render the window to a bitmap

• messages: WM_PRINT, WM_PRINTCLIENT

• Some applications don’t handle those messages: so, the malware has to hook them, and
provide its own implementations
• It can be implemented i.e. by hooking user32.dll, or window subclassing

(SetWindowLong , SetWindowLongPtr)

Hidden VNC – user input

• The messages about the user input (keyboard, mouse, etc) will be send only the active
Desktop

• The Hidden VNC module has to implement emulation of a virtual keyboard and mouse

• It requires keeping track of every window on the Hidden Desktop, each locations, and on
which of them the mouse cursor is

• Sending PostMessage to the active window to emulate the user input

Hidden VNC – examples

• Many Banking trojans use Hidden VNC as a separate module

• IcedID („helpdesk” module)
• 2959091ac9e2a544407a2ecc60ba941b – helpdesk.dll

• Silent Night Zbot (hvnc32.dll/hvnc64.dll)
• 7ee0fd4e617d98748fbf07d54925dc12 – hvcn32.dll

Case-study time: open the provided Hidden VNC sample in IDA

Further readings...

• The “Silent Night” Zloader/Zbot:
• https://resources.malwarebytes.com/files/2020/05/The-Silent-Night-Zloader-Zbot_Final.pdf

https://resources.malwarebytes.com/files/2020/05/The-Silent-Night-Zloader-Zbot_Final.pdf

