Module 1 ‘

A journey from high level languages. through @ L
assembly. to the running process



https://github.com/hasherezade/malware_training_vol1

Creating Executables

oooooooooooooooooooooo



Compiling- linkinga etc

e The code of the application must be executed by a processor

* Depending on the programming language that we choose, the application may
contain a native code, or an intermediate code

oooooooooooooooooooooo



Complilinga

e Native languages - compiled to the code that is native to the CPU

MyApp.exe

Native code

linking-

A

etcC



Compiling- linkinga etc

* [nterpreted languages - require to be translated to the native code by an

Interpreter g
O,
MyApp.exe ' 5 ,_] e
Intermediate IS i_., =
code - G




Compiling- linkinga etc

e Programming languages:
e compiled to native code (processor-specific), i.e. C/C++, assembly

e with intermediate code (bytecode, p-code): i.e. C# (compiled to Commaon
Intermediate Language: CIL -previously known as MalL), Java

« interpreted i.e. Python, Ruby

oooooooooooooooooooooo



Complilinga

e Powershell scripts
e Python, Ruby

e Java

o [# Visual Basic

o [/0++ Rust

e assembly

linking-

etcC

abstraction

High [evel



Complilinga

linking-

e From an assembly code to a native application:

* Preprocessing

e Assembling
* Linking
MyApp.asm
—.

MyApp.inc

MyApp.obj

preprocess

etcC

Used_library.lib

/N @

assemble

link

MyApp.exe

Native code




Compiling- linkinga etc

e From an assembly code to a native application; demo in assembly

o MASM - Microsoft Macro Asembler

e Windows-only

 YASM - independent Assembler built upon NASM (after development of NASM was
suspended)

o Multiplatform

 YASM has one advantage over MASM: allows to generate binary files (good for writing
shellcodes in pure assembly)



Compiling- linkinga etc

e lsing YASM to create PE files

 YASM will be used to create object file
o LINK (from MSVE) will be used for linking

yasm -f wink4 demo.asm

link demo-.obj /entry:main /subsystem:console /defaultlib:kernel32-.lib
/defaultlib:user3dg.lib



Compiling- linkinga etc

e [sing MASM tao create PE files

« MASM will be used to create object file
o LINK (from MSVE) will be used for linking

ml /c demo-.asm

link demo-.obj /entry:main /subsystem:console /defaultlib:kernel32-.lib
/defaultlib:user3dg.lib



Compiling- linkinga etc

e What you write is what you get: the compiled/decompiled code is identical to the
assembly code that you wrote

e Assembly language is very powerful for writing shellcodes, or binary patches
e [ienerated binaries are much smaller than binaries generated by other languages



Complilinga

linking-

e from a C/C++ code to a native application:
* Preprocessing

MyApp.obj

o Lompilation
* Assembly
* Linking
MyApp.h
N preprocess

compile

etcC

Used_library.lib

AN

assemble

link

MyApp.exe

Native code




Compililinga linkinga

Preprocess L++ file:

CL /P /C demo-cpp

Using MaVL to create PE files

 MSVC compiler: preprocess + compile: create object file

o LINK (from MSVE) used for linking: create exe file

CL /c demo.cpp
LINK demo.obj /defaultlib:user3dg-.lib

etcC



Compiling- linkinga etc

e |t is possible to supply custom linker, applying executable compression or obfuscation
e Example: Crinkler (crinkler.net)

crinkler.exe demo-obj kernel3d2.1lib user32.1lib msvcrt.lib /ENTRY:main



Compiling- linkinga etc

* |n higher level languages the generated code depends on the compiler and its settings

e The same L/C++ code can be compiled to a differently-looking binary by different
compilers

e Decompiler generated code is a reconstruction of the C/C++ code, but it can never be
identical to the original one (the original code is irreversibly lost in the process of
compilation)



Compililinga linkinga

e [ntermediate languages (NET)
* Preprocessing

o Compilation to the intermediate code (CIL)

Module2.cs

|

— preprocess

|

MyApp.cs

compile =

MyApp.exe

CIL

L @ S

etcC




-NET framework

e |n case of NET part of the compilation is done once the executable is run (JIT - Just-In-

Time)

e CLR (Commaon Language Runtime)
« contains: JIT compiler (translating CIL instructions to machine code), garbage collector, etc

e FCL (Framework Class Library)

* a collection of types implementing functionallity

eeks.org/net-framework-class-library-


https://www.geeksforgeeks.org/net-framework-class-library-fcl/

-NET framework

MyApp.exe (.NET)
FCL components (DLL libraries)
CLR (implemented as a COM DLL server)

Managed code

Native code

DLL libraries of Windows
Windows kernel Kernel mode

Based on: ,Windows Internals Part | (7th Edition)”




Fxercise

e Lompile supplied examples from a commandline, with steps divided (separate compiling
and linking).
* Incase of C files, see the generated assembly
* Incase of assembly and L, see the 0Bd files

e See the final executables under dedicated tools:
e PE-bear
e dndpy

* Notice, that files written in assembly are much smaller, and contain exactly the code that
we wrote



