
Module 1
A journey from high level languages, through

assembly, to the running process

https://github.com/hasherezade/malware_training_vol1

https://github.com/hasherezade/malware_training_vol1

Wow64: 32 bit PE on 64 bit

Windows

WoW64: basics

• Backward compatibility: running 32 bit applications on 64 bit Windows

• 32 bit application must be isolated from the 64 bit evironment

• WoW64 is a special subsystem that provides the 32 bit environment on Windows 64 bit

WoW64: basics

• SysWow64 contains 32 bit equivalents of the DLLs that can be found in System32:

WoW64: basics

• But Ntoskrnl.exe has only one version – native (64 bit on 64 bit system)

WoW64: basics

• The following 64 bit DLLs are loaded in every 32 bit process runing on Wow64:
• WoW64Cpu.dll – an emulator to run 32 bit code on 64 bit processor

• Wow64.dll – core emulation infrastructure, thunks to Ntoskrnl.exe entry-point functions

• Wow64Win.dll – thunks to Win32k.sys entry-point functions

• Ntdll.dll (64bit version)

WoW64: basics

• Each 32 bit process runing on Wow64 has 2 versions of NTDLL
• 32-bit (from SysWow64) and 64 bit (from System32)

NTDLL.DLL (32 bit version)

NTDLL.DLL (64 bit version)

WoW64: basics

MyApp.exe (32-bit)

Kernel32.dll (32-bit)

Ntdll.dll (32-bit)

Ntdll.dll (64bit)

Wow64Cpu,dll (64-bit)

Wow64Win,dll

(64-bit)

MyApp.exe (64-bit)

Kernel32.dll (64-bit)

NtosKrnl (kernel)

Syscalls

Pass through emulation

32 bit TEB

32 bit PEB

64 bit TEB

64 bit PEB

64 bit TEB

64 bit PEB

Wow64,dll

(64-bit)

Win32k.sys

WoW64: basics

• Try scanning a demo_1.exe with PE-sieve: 64 bit version, and then 32 bit version

• Observe that:
• The 32 bit version can access only the 32 bit modules

• The 64 bit version can access both 32 and 64 bit modules

WoW64

• Wow64 can be compared to a Sandbox

32 bit process

64 bit wrapper process

64 bit process

WoW64

• How to break this isolation?

32 bit process

64 bit wrapper process

64 bit process

?
?

How is the isolation made?

• The 32 bit and 64 bit code execution is accessible via different address of the code
segment
• 32 bit: 0x23

• 64 bit: 0x33

• How to chage the segment?
• Typical return (RET): uses address and implicit (default) segment

• Far return (RETF): uses address and explicit segment

Heaven’s Gate

• A technique described first by Roy G Biv

Heaven’s Gate

• Changing segment allows to use 64 bit registers and use the 64 bit
code

• Still, we need more work:
• Get the handle to the 64 bit version of NTDLL

• How? Using the 64 bit PEB!

• Load other 64 bit DLLs with its help, in order to be able to use the 64 bit
API

Heaven’s Gate in action

• Implemented by Rewolf’s Wow64Ext library
• https://github.com/rwfpl/rewolf-wow64ext/

• Let’s have a look at the real-life example: a miner with a Heaven’s Gate
• https://blog.malwarebytes.com/threat-analysis/2018/01/a-coin-miner-with-a-heavens-gate/

https://github.com/rwfpl/rewolf-wow64ext/
https://blog.malwarebytes.com/threat-analysis/2018/01/a-coin-miner-with-a-heavens-gate/

Further readings...

• WOW64 Subsystem Internals and Hooking Techniques – by Stephen Eckels from FireEye:
• https://www.fireeye.com/blog/threat-research/2020/11/wow64-subsystem-internals-and-

hooking-techniques.html

https://www.fireeye.com/blog/threat-research/2020/11/wow64-subsystem-internals-and-hooking-techniques.html

