
Module 3
Understanding and countering malware’s evasion

and self-defence

https://github.com/hasherezade/malware_training_vol1

https://github.com/hasherezade/malware_training_vol1

Fingerprinting for evasion

Fingerprinting for evasion

• Fingerprinting = gathering information about the environment where the executable
was deployed

• It is used by malware to determine whether it is deployed in a controlled
enviromnent, i.e. sandbox, analysis machine

• Open source projects with rich sets of techniques:
• https://github.com/a0rtega/pafish

• https://github.com/LordNoteworthy/al-khaser

• https://www.aldeid.com/wiki/ScoopyNG

• Presented demos you can find at:

• https://github.com/hasherezade/antianalysis_demos

https://github.com/a0rtega/pafish
https://github.com/LordNoteworthy/al-khaser
https://www.aldeid.com/wiki/ScoopyNG
https://github.com/hasherezade/antianalysis_demos

Fingerprinting for evasion

• PaFish in action:

https://github.com/a0rtega/pafish

https://github.com/a0rtega/pafish

Fingerprinting for evasion

• Al-Khaser in action:

https://github.com/LordNoteworthy/al-khaser

https://github.com/LordNoteworthy/al-khaser

Fingerprinting for evasion

• Most of the malware stop their execution once they observe being analyzed –
that’s how they protect their real mission from being revealed. Common
reactions:
• ExitProcess

• Infinite sleep loop

• Some malware are more tricky, and:
• deploy a decoy (i.e. an old variant of Andromeda)

• corrupt their execution (i.e. Kronos) to crash at further point

http://0xebfe.net/blog/2013/03/30/fooled-by-andromeda/
https://blog.malwarebytes.com/cybercrime/2017/08/inside-kronos-malware/

Classic debugger detection

techniques

Anti-debugger: the classic set

• The fact that the application is being debugged leaves some artefacts in the
execution environment

• Malware tries to pick them up, and terminate or alter execution on such event

• There is a list of classic, well-known techniques, that malware authors keep
using from years, and probably will keep using in the future

• Let’s take a look at them...

Anti-debugger: approaches

• Using flags in internal process structures: EPROCESS, PEB
• Some of those checks can be invoked via APIs

• Breakpoint detection

• Reaction on exceptions

• Time checks

• Searching for the physical presence of the debugger in the system: checking
running processes, windows names/classes, installation artifacts of a
debugger

Detecting debugger: basic API

The most basic method, using: IsDebuggerPresent and/or
CheckRemoteDebuggerPresent

bool is_debugger_api()

{

if (IsDebuggerPresent()) return true;

BOOL has_remote = FALSE;

CheckRemoteDebuggerPresent(GetCurrentProcess(), &has_remote);

return has_remote ? true: false;

}

Detecting debugger: basic API

The most basic method, using: IsDebuggerPresent

IsDebuggerPresent(32-bit ver,)

1. Get TEB

2. Get PEB

3. Get: BeingDebugged Flag

PEB

Anti-debugger: PEB

• PEB contains information about the environment where the process was
executed, and as well contains a lot of information relevant to detecting a
debugger...

• Using it is more stealthy then using API, and also easy to do in pure assembly
(convenient for a shellcode)

Detecting debugger: PEB

The more stealthy variant of the previous method is getting the BeingDebugged
flag via PEB

Related API:

• IsDebuggerPresent

Detecting debugger: PEB

Another flag in PEB related to being debugged is NtGlobalFlag (more recent
addition: NtGlobalFlag2)

NTGlobalFlag is set when the stack of

the application is being watched

Related API:

• RtlGetCurrentPeb()

PEB->NtGlobalFlag

PEB->NtGlobalFlag2

Detecting debugger: PEB

If the process is not being debugged: NtGlobalFlag == 0

Otherwise, the following flags are set (NtGlobalFlag == 0x70):

FLG_HEAP_ENABLE_TAIL_CHECK 0x10

FLG_HEAP_ENABLE_FREE_CHECK 0x20

FLG_HEAP_VALIDATE_PARAMETERS 0x40

Detecting debugger: PEB

PEB.ProcessHeap.Flags:

• If not degugged:
HEAP_GROWABLE (0x2)

• Otherwise:

HEAP_GROWABLE 0x2

HEAP_TAIL_CHECKING_ENABLED 0x20

HEAP_FREE_CHECKING_ENABLED 0x40

HEAP_SKIP_VALIDATION_CHECKS 0x10000000

HEAP_VALIDATE_PARAMETERS_ENABLED 0x40000000

Detecting debugger: PEB

PEB.ProcessHeap.ForceFlags:

• If not degugged: 0

• Otherwise: related to PEB.ProcessHeap.Flags:

PEB.ProcessHeapFlags & 0x6001007D

Detecting debugger: basic API

The most basic method, using: CheckRemoteDebuggerPresent

CheckRemoteDebuggerPresent

EPROCESS

Detecting debugger: API

Some of the mentioned artifacts (and more) can be retrieved using
NtQueryInformationProcess

Relevant parameters:

ProcessDebugPort 0x7 -> EPROCESS.DebugPort

ProcessDebugFlags 0x1F -> !(EPROCESS.NoDebugInherit)

ProcessDebugObjectHandle 0x1E -> returns DebugObject

ProcessBasicInformation 0x0 -> to get the parent process

https://ctf-wiki.github.io/ctf-wiki/reverse/windows/anti-debug/ntqueryinformationprocess/

https://ctf-wiki.github.io/ctf-wiki/reverse/windows/anti-debug/ntqueryinformationprocess/

Reaction on exceptions

If the debugger is present, it will try to handle the exception:

bool exception_is_dbg()

{

__try {

RaiseException(DBG_PRINTEXCEPTION_C, 0, 0, 0);

} __except (EXCEPTION_EXECUTE_HANDLER) {

return false;

}

return true;

}

Hardware breakpoints

• There are 4 Debug registrs that we can use for setting Hardware Breakpoints:
• DR0-DR3

• Once we set the Hardware Breakpoint, the relevant address is filled in one of those
registers. Example:

• DR6 – flags indicating the Debug Register which’s breakpoint got hit

• DR7 – flags indicating which of the Debug Registers are set

Hardware breakpoints

Checking if the Hardware Breakpoints have been set:

bool hardware_bp_is_dbg()

{

CONTEXT ctx = { 0 };

bool is_hardware_bp = false;

HANDLE thread = OpenThread(THREAD_ALL_ACCESS, FALSE, GetCurrentThreadId());

ctx.ContextFlags = CONTEXT_DEBUG_REGISTERS;

if (GetThreadContext(thread, &ctx)) {

is_hardware_bp = (ctx.Dr0 | ctx.Dr1 | ctx.Dr2 | ctx.Dr3) != 0;

}

CloseHandle(thread);

return is_hardware_bp;

}

The Trap Flag: Single Stepping

• The Trap Flag is one of the Flags in the EFLAGS register

• Setting the Trap Flag - allowing to step throught the code via INT 0x1: „Single
Step” after each instruction (generates an exception)

0x346 XOR 0x246 =

0x100 (TF)

The Trap Flag: Single Stepping

We cannot access EFLAGS directly - we need to do it via stack:

If we are single-stepping through the code, the debugger will handle the
generated interrupt. Otherwise, setting of the Trap Flag will generates an
exception.

pushfd ; push all the flags

or dword ptr[esp], 0x100 ; the flags are now in [esp]

; apply the mask to set the bit

; 0x100, that means TF

popfd ; load the flags from the stack again

The time check

• Debugging (also: emulation, or tracing the application by instrumentation
tools) often slows down the execution

• The time check is a simple way to find out that the application may be under
control of analysis tools

• The time check is often implemented with the help or RDTSC (Read Time-
Stamp Counter) instruction

RDTCS -> EDX:EAX = TimeStampCounter

https://c9x.me/x86/html/file_module_x86_id_278.html

https://c9x.me/x86/html/file_module_x86_id_278.html

The time check

The time should be measured at least twice, and compared with a threshold.
Example:

bool antidbg_timer_check()

{

static ULONGLONG time = 0;

if (time == 0) {

time = __rdtsc();

return false;

}

ULONGLONG second_time = __rdtsc();

ULONGLONG diff = (second_time - time) >> 20;

if (diff > 0x100) {

time = second_time;

return true;

}

return false;

}

Defense against anti-debug

• Debugger Plugins, i.e.
• ScyllaHide (using user-mode hooking)

• TitanHide (using kernel-mode hooking)

• SharpOD

• OllyDbg plugins (older, classics):
• OllyAdvanced

• Phantom

• StrongOD

https://github.com/fr0gger/awesome-ida-x64-olly-plugin

https://github.com/x64dbg/ScyllaHide
https://github.com/mrexodia/TitanHide
https://github.com/fr0gger/awesome-ida-x64-olly-plugin

Classic anti-VM techniques

Anti-VM fingerprinting

• Virutal Machine emulates the real one to big extend, but still there are some
artifacts in the environment that makes it distinguishable

• Depending which hypervisor do we use, those artifacts will differ

• It is quite common among malware to look for some of those artifacts in
order to detect the Virtual Machine

• Some checks base on the presence of some particular names, related to the
hypervisor, other – on some loosely related features (i.e. relatively weak
parameters, one processor, etc)

Anti-VM: approaches

• Using presence/absence of some intstructions

• Identifiers returned by CPUID

• Memory-specific („The Red Pill” – IDT checking; GDT, LDT checks)

• Time checks

• Weaker hardware parameters (comparing to most modern physical machines)

• Searching for the physical presence of the VM-related artifacts: checking
running processes, windows names/classes, registry keys, etc.

CPUID (1)

• One of the low-level anti-vm techniques, is a check using CPUID instruction

• Check for processof features:

https://c9x.me/x86/html/file_module_x86_id_45.html

mov is_bit_set, 0

mov eax, 1 ; the parameter given to CPUID

cpuid

bt ecx, 0x1f; bit 31

jnc finish

mov is_bit_set, 1 ; if the bit is set, it is a VM

finish:

https://c9x.me/x86/html/file_module_x86_id_45.html

CPUID (0x40000000)

• One of the low-level anti-vm techniques, is a check using CPUID instruction

• Check for the hypervisor brand:

https://c9x.me/x86/html/file_module_x86_id_45.html

mov eax, 0x40000000; the parameter given to CPUID

cpuid

mov brand_id_0, ebx

mov brand_id_1, ecx

mov brand_id_2, edx

https://c9x.me/x86/html/file_module_x86_id_45.html

CPUID (0x40000000)

• One of the low-level anti-vm techniques, is a check using CPUID instruction

https://github.com/a0rtega/pafish/blob/master/pafish/cpu.c

"KVMKVMKVM\0\0\0"; // KVM

"Microsoft Hv"; // MS Hyper-V or Virtual PC

"VMwareVMware"; // VMware

"XenVMMXenVMM"; // Xen

"prl hyperv "; // Parallels

"VBoxVBoxVBox"; // VirtualBox

https://github.com/a0rtega/pafish/blob/master/pafish/cpu.c

CPUID - defense

• Fortunately, we often can overwrite the values returned by CPUID by our own

• Appropriate settings may force the VM to supply our custom values instead of
the hardcodes ones...

https://www.vmray.com/cyber-security-blog/a-pafish-primer/

https://www.vmray.com/cyber-security-blog/a-pafish-primer/

CPUID - defense

• In VMWare: settings can be changed in the .vmx file

• Anti bit-check - CPUID (1)

• Anti brand-check (0x40000000)

https://rayanfam.com/topics/defeating-malware-anti-vm-techniques-cpuid-based-instructions/

cpuid.1.ecx="0---:----:----:----:----:----:----:----"

cpuid.40000000.ecx="0000:0000:0000:0000:0000:0000:0000:0000"

cpuid.40000000.edx="0000:0000:0000:0000:0000:0000:0000:0000"

https://rayanfam.com/topics/defeating-malware-anti-vm-techniques-cpuid-based-instructions/

VMWare I/O port

• Trying to read the special I/O port, used by VMware to communicate with host,
with the help of IN instruction

• On a physical machine, the exception will occur

https://blog.malwarebytes.com/threat-analysis/2014/09/five-anti-debugging-tricks-that-sometimes-fool-
analysts/

mov eax, ‘VMXh’

mov ebx,0

mov ecx, 10

Mov edx, ‘VX’

in eax, dx

cmp ebx,’VMXh’

https://blog.malwarebytes.com/threat-analysis/2014/09/five-anti-debugging-tricks-that-sometimes-fool-analysts/

TODO...

• To be continued

