Module 1 ‘

A journey from high level languages. through @ L
assembly. to the running process

https://github.com/hasherezade/malware_training_vol1

Creating shellcodes

oooooooooooooooooooooo

Shellcode: advantages

« Self-sufficient; easy to inject into other applications
« dmall: can fit into a tiny space i.e. section caves

* May be used as a |oader: first code injected into an application, that follows to load other
modules

« dometimes (but less often) the full malicious functionality can be implemented as
shellcode (i.e. Fobber malware)

* This type of code was popular in the past, virus era; where malware code was added to
existing PE files (rather than injected into processes)

Creating shellcode

e |n case of PE format we just write a code and don't have to worry how it is [oaded:
Windows Loader will do it

e |t is different when we write shellcode

* We cannot rely on the conviniences provided by PE format and Windows Loader:
* No sections
* No Data Directories (imports, relocations)
e [nly code to provide everything we need...

Creating shellcode

Loading

Compaosition

Relocation to the |oad base

Access to system AP
(Impaorts loading)

e via Windows Loader

* running new EXE triggers creation of

d NEW Process

Sections with specific access rights,

carrying various elements (code, data,

resources, etc)

Defined by relocation table, applied by
Windows Loader

Defined by import table, applied by
Windows Loader

o [ustom, simplified

e must parasite on existing process
(i.e. via code injection + thread
injection)

Usually all in one memary area

(read.write.execute)

Custom; position-independent code

Custom: retrieving imports via PEB
lookup; no [AT, or simplified

Position-independent code

e |n order to create a position-independent code, we must take care that all the addresses
that we use are relative to the current instruction pointer address

e A short jump, long jump, call to a local funcion are relative -> we can use them!

EHEQ) A JMP SHORT 0X413BAR
ESEEQ00000D A CALL 0X413BFA

e Any address that needs to be relocated (i.e. using of the data from ditferent PE section)
the position independence:

FFE1540414100 b CALT. DWORD PTR [0X414140] [EERENEL3Z _DLI.] .GetStartupInfol

391050A14100 CME DWOERD PTE [0X412130], EBX

Retrieving the Imports

* |n order to retrieve the imported functions, we will take advantage of the linklist pointed

by PEB

Image from:

http://blog.malcom.pl/2017/shellcode-peb-i-adres-bazowy-modulu-kernel32-dll.html

Retrieving the Imports

* |n order to retrieve the imported functions, we will take advantage of the linklist pointed

by PEB

L Iﬂﬁerir'dﬁddressc'

TLONG
TLONG
TLOHG] ™y :
TLOHG] ed:
typedef =t B ULONG reBi H
L= BVOID
PVOID : :
FPEE LDR D o 5 d [rderModulelist;
— LIST ENTRY InMemory yrderModulelist;
_FL5 CALLBACE INFC * FlsCallback: LIST ENTRY InInitializationOrderModulelist
LIS T ENTRY FlsListHea d: P”CID EntryInProgress;
P”EID Fl=Bitmap:
ULONG FlsBitm : : } PEE_LDR DATR, *PPFEE LDE DATA;
ULONG Fl=E
PVOID Wer
PVOID Wer5S:
} PEE, *PPEE:

=i

m
W W W W W W

i

BVOID
BVOID
BVOID

i

i

Retrieving the Imports

 We will process each entry, searching for the DLL that we need...

 ro=00d Ir e e e TET T - Next
JLEAN Initialized: = - :

MDLE SsHandle: 20 InInitializationOr - _LIST_ENTRY LDR_DATA_TABLE_ENTRY

| InLoadCrderModulelLi=st;
LIST_EHTRT InMemoryOrderModulelist !

X

LIST ENTRY InInitializationOrderModulelistc: / r 110 % — CTE TR
EVOID EntryInProgress’ 5 : _IIK STRING

} PEE LDR DATA, *FPFEE LDE DATA;

typedef struct UNICODE STRING {
USHCORT Length; n "
USHCRT Maximuml.ength; L NtdILd"
PWSTRE Buffer;

} UNICODE STRING, *PUNICODE STRING:

Retrieving the Imports

. Get the PERB address
2. ViaPEB->Ldr->InMemory0OrderModulelList, find:

« kernel32.d11 (loaded in majority of the processes after initialization)
eorntdl1l.dl1 (if wewant touse low-level equivalents of Import loading functions)

3. Walk through exports table to find addresses of:
* LoadLibraryA/W (eventuallntdll.-LdrLoadD11)
* GetProcAddress (eventuglly: ntdll.LdrGetProcedureAddress)

4. lse LoadLibraryA/UW toload other needed DLLs
9. Use GetProcAddress toretrieve functions

Creating shellcode: assembly

 We can use YASM for shellcodes written in pure assembly:

yasm -f bin demo-.asm

 We will not use a linker, which means:
o we need to fill imports by ourselves
« we need to take care of relocations - or make the code position-independent

Creating shellcode: (

 We can use a b compiler to generate assembly:

Cl /c /FA <file_name>.cpp

o ..that we will refactor to our shellcode, and compile by masm:

ml <file_name>.asm

« it will generate a PE: we will cut out the code section, that is our shellcode
e The key is the refactoring! We need to follow all the principles of building shellcodes...

Creating shellcode: (

e lIse the given template, and refactor the application in U into a valid shellcode, by
following the steps...

Exercise time- ..

Further readings...

e from a C project, through assembly, to shellcode:

https://vxug.fakedoma.in/papers/VXUG/Exclusive/FromaCprojectthroughassemblytoshellcodeHasherezade.pdf

