
Module 3
Understanding and countering malware’s evasion

and self-defence

https://github.com/hasherezade/malware_training_vol1

https://github.com/hasherezade/malware_training_vol1

Introduction
Malware: Evasion and self-defense

Malware:

Evasion and self-defense

• In order to carry on its mission, malware must remain undetected

• Malware needs to defend itself from:

• Antimalware products (on the victim machine)

• Analysis tools and sandboxes (on a researcher’s machine)

Malware:

Evasion and self-defense

• Approaches:

• Passive:

• obfuscation (at the level of: code, control flow, strings, used APIs)

• Active:

• environment fingerprinting, detection of the analysis tools and:
• interference in them (i.e. uninstalling AV products, unhooking hooks)

• altering own behavior (deploying a decoy, or terminating execution)

The passive approach:

obfuscation

• Related with the way code is designed: i.e. using exception handlers to switch
between various code blocks, using dynamically loaded functions, string
obfuscation, polymorphic code, etc

• Added at the compilation level: i.e. adding junk instructions, complicating
control flow (example: movfuscator)

• Added at linking level: atypical PE header, atypical sections alignment

• Post-compilation: using protectors

• Depending on the degree with the obfuscation, may be difficult to defeat

Deobfuscation

• Approaches:

• Dynamic:
• Code intrumentation, tracing: allows to quickly find out what the code does,

without reconstructing all details of the implementation – quick and generic, but
we may miss the parts that haven’t been executed during the test runs

• Static:
• analysis of the code and cleaning/resolving the obfuscated parts, reconstruction

of the control flow – may be more accurate, but laborious, and requires different
approach depending on a particular case

The active approach:

fingerprinting

• Mostly related with the way code is designed: additional functions doing
enviromnent fingerpriting to find artefacts indicating analysis

• Post-compilation: using protectors with added antidebug/anti-VM layer,
underground crypters specialized in AV/sandbox evasion

• Most of the used methods are well-known, and the fact of using them can be
relatively easily detected

Anti-evasion

• Approaches:

• Sample-oriented:
• Patching: finding the checks and removing them

• Enviromnent oriented:
• VM hardening: changing default settings, strings, that are commonly checked to

identify VM

• Using plugins for debuggers, specialized in hiding its presence (i.e. by overwriting
values in PEB), changing default windows names

• Using tools that are less often targeted by the checks: i.e. Intel Pin

