
Module 1
A journey from high level languages, through 

assembly, to the running process

https://github.com/hasherezade/malware_training_vol1

https://github.com/hasherezade/malware_training_vol1


Creating Executables



Compiling, linking, etc

• The code of the application must be executed by a processor

• Depending on the programming language that we choose, the application may 
contain a native code, or an intermediate code



Compiling, linking, etc

• Native languages – compiled to the code that is native to the CPU

MyApp.exe

Native code



Compiling, linking, etc

• Interpreted languages – require to be translated to the native code by an 
interpreter

MyApp.exe

Intermediate 
code

interpreter



Compiling, linking, etc

• Programming languages:

• compiled to native code (processor-specific), i.e. C/C++, assembly

• with intermediate code (bytecode, p-code): i.e. C# (compiled to Common 
Intermediate Language: CIL –previously known as MSIL), Java

• interpreted i.e. Python, Ruby



Compiling, linking, etc

• PowerShell scripts

• Python, Ruby

• Java

• C#, Visual Basic

• C/C++, Rust

• assembly

High level

Low level

abstraction



Compiling, linking, etc

• From an assembly code to a native application:
• Preprocessing

• Assembling

• Linking

MyApp.asm

MyApp.inc

preprocess assemble

MyApp.obj

link

Used_library.lib

MyApp.exe

Native code



Compiling, linking, etc

• From an assembly code to a native application: demo in assembly

• MASM – Microsoft Macro Asembler
• Windows-only

• YASM – independent Assembler built upon NASM (after development of NASM was 
suspended)
• Multiplatform

• YASM has one advantage over MASM: allows to generate binary files (good for writing 
shellcodes in pure assembly)



Compiling, linking, etc

• Using YASM to create PE files
• YASM will be used to create object file

• LINK (from MSVC) will be used for linking

yasm –f win64 demo.asm

link demo.obj /entry:main /subsystem:console /defaultlib:kernel32.lib 

/defaultlib:user32.lib



Compiling, linking, etc

• Using MASM to create PE files
• MASM will be used to create object file

• LINK (from MSVC) will be used for linking

ml /c demo.asm

link demo.obj /entry:main /subsystem:console /defaultlib:kernel32.lib 

/defaultlib:user32.lib



Compiling, linking, etc

• What you write is what you get: the compiled/decompiled code is identical to the 
assembly code that you wrote

• Assembly language is very powerful for writing shellcodes, or binary patches

• Generated binaries are much smaller than binaries generated by other languages



Compiling, linking, etc

• From a C/C++ code to a native application:
• Preprocessing

• Compilation

• Assembly

• Linking

MyApp.cpp

MyApp.h

preprocess

compile assemble

MyApp.obj

link

Used_library.lib

MyApp.exe

Native code



Compiling, linking, etc

• Preprocess C++ file:

• Using MSVC to create PE files
• MSVC compiler: preprocess + compile: create object file

• LINK (from MSVC) used for linking: create exe file

CL /c demo.cpp

LINK demo.obj /defaultlib:user32.lib

CL /P /C demo.cpp



Compiling, linking, etc

• It is possible to supply custom linker, applying executable compression or obfuscation

• Example: Crinkler (crinkler.net)

crinkler.exe demo.obj kernel32.lib user32.lib msvcrt.lib /ENTRY:main



Compiling, linking, etc

• In higher level languages the generated code depends on the compiler and its settings

• The same C/C++ code can be compiled to a differently-looking binary by different 
compilers

• Decompiler generated code is a reconstruction of the C/C++ code, but it can never be 
identical to the original one (the original code is irreversibly lost in the process of 
compilation)



Compiling, linking, etc

• Intermediate languages (.NET)
• Preprocessing

• Compilation to the intermediate code (CIL)

MyApp.cs

Module2.cs

preprocess

compile

MyApp.exe

CIL

At process runtime

Native codeJIT



.NET framework

• In case of .NET part of the compilation is done once the executable is run (JIT – Just-In-
Time)

• CLR (Common Language Runtime) 
• contains: JIT compiler (translating CIL instructions to machine code), garbage collector, etc

• FCL (Framework Class Library)
• a collection of types implementing functionallity

https://www.geeksforgeeks.org/net-framework-class-library-fcl/

https://www.geeksforgeeks.org/net-framework-class-library-fcl/


.NET framework

Windows kernel Kernel mode

Native code

CLR (implemented as a COM DLL server)

DLL libraries of Windows

MyApp.exe (.NET)

FCL components (DLL libraries)

Managed code

Based on: „Windows Internals Part 1 (7th Edition)”



Exercise

• Compile supplied examples from a commandline, with steps divided (separate compiling 
and linking). 
• In case of C files, see the generated assembly

• In case of assembly and C, see the OBJ files

• See the final executables under dedicated tools:
• PE-bear

• dnSpy

• Notice, that files written in assembly are much smaller, and contain exactly the code that 
we wrote


