Vim/src/channel.c

6632 lines
154 KiB
C

/* vi:set ts=8 sts=4 sw=4 noet:
*
* VIM - Vi IMproved by Bram Moolenaar
*
* Do ":help uganda" in Vim to read copying and usage conditions.
* Do ":help credits" in Vim to see a list of people who contributed.
*/
/*
* Implements communication through a socket or any file handle.
*/
#include "vim.h"
#if defined(FEAT_JOB_CHANNEL) || defined(PROTO)
// TRUE when netbeans is running with a GUI.
#ifdef FEAT_GUI
# define CH_HAS_GUI (gui.in_use || gui.starting)
#endif
// Note: when making changes here also adjust configure.ac.
#ifdef MSWIN
// WinSock API is separated from C API, thus we can't use read(), write(),
// errno...
# define SOCK_ERRNO errno = WSAGetLastError()
# undef ECONNREFUSED
# define ECONNREFUSED WSAECONNREFUSED
# undef EWOULDBLOCK
# define EWOULDBLOCK WSAEWOULDBLOCK
# undef EINPROGRESS
# define EINPROGRESS WSAEINPROGRESS
# ifdef EINTR
# undef EINTR
# endif
# define EINTR WSAEINTR
# define sock_write(sd, buf, len) send((SOCKET)sd, buf, len, 0)
# define sock_read(sd, buf, len) recv((SOCKET)sd, buf, len, 0)
# define sock_close(sd) closesocket((SOCKET)sd)
#else
# include <netdb.h>
# include <netinet/in.h>
# include <sys/socket.h>
# ifdef HAVE_LIBGEN_H
# include <libgen.h>
# endif
# define SOCK_ERRNO
# define sock_write(sd, buf, len) write(sd, buf, len)
# define sock_read(sd, buf, len) read(sd, buf, len)
# define sock_close(sd) close(sd)
# define fd_read(fd, buf, len) read(fd, buf, len)
# define fd_write(sd, buf, len) write(sd, buf, len)
# define fd_close(sd) close(sd)
#endif
static void channel_read(channel_T *channel, ch_part_T part, char *func);
static ch_mode_T channel_get_mode(channel_T *channel, ch_part_T part);
static int channel_get_timeout(channel_T *channel, ch_part_T part);
static ch_part_T channel_part_send(channel_T *channel);
static ch_part_T channel_part_read(channel_T *channel);
static void free_job_options(jobopt_T *opt);
// Whether a redraw is needed for appending a line to a buffer.
static int channel_need_redraw = FALSE;
// Whether we are inside channel_parse_messages() or another situation where it
// is safe to invoke callbacks.
static int safe_to_invoke_callback = 0;
static char *part_names[] = {"sock", "out", "err", "in"};
#ifdef MSWIN
static int
fd_read(sock_T fd, char *buf, size_t len)
{
HANDLE h = (HANDLE)fd;
DWORD nread;
if (!ReadFile(h, buf, (DWORD)len, &nread, NULL))
return -1;
return (int)nread;
}
static int
fd_write(sock_T fd, char *buf, size_t len)
{
size_t todo = len;
HANDLE h = (HANDLE)fd;
DWORD nwrite, size, done = 0;
OVERLAPPED ov;
while (todo > 0)
{
if (todo > MAX_NAMED_PIPE_SIZE)
size = MAX_NAMED_PIPE_SIZE;
else
size = (DWORD)todo;
// If the pipe overflows while the job does not read the data,
// WriteFile() will block forever. This abandons the write.
memset(&ov, 0, sizeof(ov));
nwrite = 0;
if (!WriteFile(h, buf + done, size, &nwrite, &ov))
{
DWORD err = GetLastError();
if (err != ERROR_IO_PENDING)
return -1;
if (!GetOverlappedResult(h, &ov, &nwrite, FALSE))
return -1;
FlushFileBuffers(h);
}
else if (nwrite == 0)
// WriteFile() returns TRUE but did not write anything. This causes
// a hang, so bail out.
break;
todo -= nwrite;
done += nwrite;
}
return (int)done;
}
static void
fd_close(sock_T fd)
{
HANDLE h = (HANDLE)fd;
CloseHandle(h);
}
#endif
// Log file opened with ch_logfile().
static FILE *log_fd = NULL;
#ifdef FEAT_RELTIME
static proftime_T log_start;
#endif
void
ch_logfile(char_u *fname, char_u *opt)
{
FILE *file = NULL;
if (log_fd != NULL)
{
if (*fname != NUL)
ch_log(NULL, "closing, opening %s", fname);
else
ch_log(NULL, "closing");
fclose(log_fd);
}
if (*fname != NUL)
{
file = fopen((char *)fname, *opt == 'w' ? "w" : "a");
if (file == NULL)
{
semsg(_(e_notopen), fname);
return;
}
}
log_fd = file;
if (log_fd != NULL)
{
fprintf(log_fd, "==== start log session ====\n");
#ifdef FEAT_RELTIME
profile_start(&log_start);
#endif
}
}
int
ch_log_active(void)
{
return log_fd != NULL;
}
static void
ch_log_lead(const char *what, channel_T *ch, ch_part_T part)
{
if (log_fd != NULL)
{
#ifdef FEAT_RELTIME
proftime_T log_now;
profile_start(&log_now);
profile_sub(&log_now, &log_start);
fprintf(log_fd, "%s ", profile_msg(&log_now));
#endif
if (ch != NULL)
{
if (part < PART_COUNT)
fprintf(log_fd, "%son %d(%s): ",
what, ch->ch_id, part_names[part]);
else
fprintf(log_fd, "%son %d: ", what, ch->ch_id);
}
else
fprintf(log_fd, "%s: ", what);
}
}
#ifndef PROTO // prototype is in proto.h
void
ch_log(channel_T *ch, const char *fmt, ...)
{
if (log_fd != NULL)
{
va_list ap;
ch_log_lead("", ch, PART_COUNT);
va_start(ap, fmt);
vfprintf(log_fd, fmt, ap);
va_end(ap);
fputc('\n', log_fd);
fflush(log_fd);
did_repeated_msg = 0;
}
}
#endif
static void
ch_error(channel_T *ch, const char *fmt, ...)
#ifdef USE_PRINTF_FORMAT_ATTRIBUTE
__attribute__((format(printf, 2, 3)))
#endif
;
static void
ch_error(channel_T *ch, const char *fmt, ...)
{
if (log_fd != NULL)
{
va_list ap;
ch_log_lead("ERR ", ch, PART_COUNT);
va_start(ap, fmt);
vfprintf(log_fd, fmt, ap);
va_end(ap);
fputc('\n', log_fd);
fflush(log_fd);
did_repeated_msg = 0;
}
}
#ifdef MSWIN
# undef PERROR
# define PERROR(msg) (void)semsg("%s: %s", msg, strerror_win32(errno))
static char *
strerror_win32(int eno)
{
static LPVOID msgbuf = NULL;
char_u *ptr;
if (msgbuf)
{
LocalFree(msgbuf);
msgbuf = NULL;
}
FormatMessage(
FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
NULL,
eno,
MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT),
(LPTSTR) &msgbuf,
0,
NULL);
if (msgbuf != NULL)
// chomp \r or \n
for (ptr = (char_u *)msgbuf; *ptr; ptr++)
switch (*ptr)
{
case '\r':
STRMOVE(ptr, ptr + 1);
ptr--;
break;
case '\n':
if (*(ptr + 1) == '\0')
*ptr = '\0';
else
*ptr = ' ';
break;
}
return msgbuf;
}
#endif
/*
* The list of all allocated channels.
*/
static channel_T *first_channel = NULL;
static int next_ch_id = 0;
/*
* Allocate a new channel. The refcount is set to 1.
* The channel isn't actually used until it is opened.
* Returns NULL if out of memory.
*/
channel_T *
add_channel(void)
{
ch_part_T part;
channel_T *channel = ALLOC_CLEAR_ONE(channel_T);
if (channel == NULL)
return NULL;
channel->ch_id = next_ch_id++;
ch_log(channel, "Created channel");
for (part = PART_SOCK; part < PART_COUNT; ++part)
{
channel->ch_part[part].ch_fd = INVALID_FD;
#ifdef FEAT_GUI_X11
channel->ch_part[part].ch_inputHandler = (XtInputId)NULL;
#endif
#ifdef FEAT_GUI_GTK
channel->ch_part[part].ch_inputHandler = 0;
#endif
channel->ch_part[part].ch_timeout = 2000;
}
if (first_channel != NULL)
{
first_channel->ch_prev = channel;
channel->ch_next = first_channel;
}
first_channel = channel;
channel->ch_refcount = 1;
return channel;
}
int
has_any_channel(void)
{
return first_channel != NULL;
}
/*
* Called when the refcount of a channel is zero.
* Return TRUE if "channel" has a callback and the associated job wasn't
* killed.
*/
static int
channel_still_useful(channel_T *channel)
{
int has_sock_msg;
int has_out_msg;
int has_err_msg;
// If the job was killed the channel is not expected to work anymore.
if (channel->ch_job_killed && channel->ch_job == NULL)
return FALSE;
// If there is a close callback it may still need to be invoked.
if (channel->ch_close_cb.cb_name != NULL)
return TRUE;
// If reading from or a buffer it's still useful.
if (channel->ch_part[PART_IN].ch_bufref.br_buf != NULL)
return TRUE;
// If there is no callback then nobody can get readahead. If the fd is
// closed and there is no readahead then the callback won't be called.
has_sock_msg = channel->ch_part[PART_SOCK].ch_fd != INVALID_FD
|| channel->ch_part[PART_SOCK].ch_head.rq_next != NULL
|| channel->ch_part[PART_SOCK].ch_json_head.jq_next != NULL;
has_out_msg = channel->ch_part[PART_OUT].ch_fd != INVALID_FD
|| channel->ch_part[PART_OUT].ch_head.rq_next != NULL
|| channel->ch_part[PART_OUT].ch_json_head.jq_next != NULL;
has_err_msg = channel->ch_part[PART_ERR].ch_fd != INVALID_FD
|| channel->ch_part[PART_ERR].ch_head.rq_next != NULL
|| channel->ch_part[PART_ERR].ch_json_head.jq_next != NULL;
return (channel->ch_callback.cb_name != NULL && (has_sock_msg
|| has_out_msg || has_err_msg))
|| ((channel->ch_part[PART_OUT].ch_callback.cb_name != NULL
|| channel->ch_part[PART_OUT].ch_bufref.br_buf != NULL)
&& has_out_msg)
|| ((channel->ch_part[PART_ERR].ch_callback.cb_name != NULL
|| channel->ch_part[PART_ERR].ch_bufref.br_buf != NULL)
&& has_err_msg);
}
/*
* Return TRUE if "channel" is closeable (i.e. all readable fds are closed).
*/
static int
channel_can_close(channel_T *channel)
{
return channel->ch_to_be_closed == 0;
}
/*
* Close a channel and free all its resources.
*/
static void
channel_free_contents(channel_T *channel)
{
channel_close(channel, TRUE);
channel_clear(channel);
ch_log(channel, "Freeing channel");
}
static void
channel_free_channel(channel_T *channel)
{
if (channel->ch_next != NULL)
channel->ch_next->ch_prev = channel->ch_prev;
if (channel->ch_prev == NULL)
first_channel = channel->ch_next;
else
channel->ch_prev->ch_next = channel->ch_next;
vim_free(channel);
}
static void
channel_free(channel_T *channel)
{
if (!in_free_unref_items)
{
if (safe_to_invoke_callback == 0)
channel->ch_to_be_freed = TRUE;
else
{
channel_free_contents(channel);
channel_free_channel(channel);
}
}
}
/*
* Close a channel and free all its resources if there is no further action
* possible, there is no callback to be invoked or the associated job was
* killed.
* Return TRUE if the channel was freed.
*/
static int
channel_may_free(channel_T *channel)
{
if (!channel_still_useful(channel))
{
channel_free(channel);
return TRUE;
}
return FALSE;
}
/*
* Decrement the reference count on "channel" and maybe free it when it goes
* down to zero. Don't free it if there is a pending action.
* Returns TRUE when the channel is no longer referenced.
*/
int
channel_unref(channel_T *channel)
{
if (channel != NULL && --channel->ch_refcount <= 0)
return channel_may_free(channel);
return FALSE;
}
int
free_unused_channels_contents(int copyID, int mask)
{
int did_free = FALSE;
channel_T *ch;
// This is invoked from the garbage collector, which only runs at a safe
// point.
++safe_to_invoke_callback;
for (ch = first_channel; ch != NULL; ch = ch->ch_next)
if (!channel_still_useful(ch)
&& (ch->ch_copyID & mask) != (copyID & mask))
{
// Free the channel and ordinary items it contains, but don't
// recurse into Lists, Dictionaries etc.
channel_free_contents(ch);
did_free = TRUE;
}
--safe_to_invoke_callback;
return did_free;
}
void
free_unused_channels(int copyID, int mask)
{
channel_T *ch;
channel_T *ch_next;
for (ch = first_channel; ch != NULL; ch = ch_next)
{
ch_next = ch->ch_next;
if (!channel_still_useful(ch)
&& (ch->ch_copyID & mask) != (copyID & mask))
{
// Free the channel struct itself.
channel_free_channel(ch);
}
}
}
#if defined(FEAT_GUI) || defined(PROTO)
# if defined(FEAT_GUI_X11) || defined(FEAT_GUI_GTK)
/*
* Lookup the channel from the socket. Set "partp" to the fd index.
* Returns NULL when the socket isn't found.
*/
static channel_T *
channel_fd2channel(sock_T fd, ch_part_T *partp)
{
channel_T *channel;
ch_part_T part;
if (fd != INVALID_FD)
for (channel = first_channel; channel != NULL;
channel = channel->ch_next)
{
for (part = PART_SOCK; part < PART_IN; ++part)
if (channel->ch_part[part].ch_fd == fd)
{
*partp = part;
return channel;
}
}
return NULL;
}
static void
channel_read_fd(int fd)
{
channel_T *channel;
ch_part_T part;
channel = channel_fd2channel(fd, &part);
if (channel == NULL)
ch_error(NULL, "Channel for fd %d not found", fd);
else
channel_read(channel, part, "channel_read_fd");
}
# endif
/*
* Read a command from netbeans.
*/
# ifdef FEAT_GUI_X11
static void
messageFromServerX11(XtPointer clientData,
int *unused1 UNUSED,
XtInputId *unused2 UNUSED)
{
channel_read_fd((int)(long)clientData);
}
# endif
# ifdef FEAT_GUI_GTK
# if GTK_CHECK_VERSION(3,0,0)
static gboolean
messageFromServerGtk3(GIOChannel *unused1 UNUSED,
GIOCondition unused2 UNUSED,
gpointer clientData)
{
channel_read_fd(GPOINTER_TO_INT(clientData));
return TRUE; // Return FALSE instead in case the event source is to
// be removed after this function returns.
}
# else
static void
messageFromServerGtk2(gpointer clientData,
gint unused1 UNUSED,
GdkInputCondition unused2 UNUSED)
{
channel_read_fd((int)(long)clientData);
}
# endif
# endif
static void
channel_gui_register_one(channel_T *channel, ch_part_T part UNUSED)
{
if (!CH_HAS_GUI)
return;
// gets stuck in handling events for a not connected channel
if (channel->ch_keep_open)
return;
# ifdef FEAT_GUI_X11
// Tell notifier we are interested in being called when there is input on
// the editor connection socket.
if (channel->ch_part[part].ch_inputHandler == (XtInputId)NULL)
{
ch_log(channel, "Registering part %s with fd %d",
part_names[part], channel->ch_part[part].ch_fd);
channel->ch_part[part].ch_inputHandler = XtAppAddInput(
(XtAppContext)app_context,
channel->ch_part[part].ch_fd,
(XtPointer)(XtInputReadMask + XtInputExceptMask),
messageFromServerX11,
(XtPointer)(long)channel->ch_part[part].ch_fd);
}
# else
# ifdef FEAT_GUI_GTK
// Tell gdk we are interested in being called when there is input on the
// editor connection socket.
if (channel->ch_part[part].ch_inputHandler == 0)
{
ch_log(channel, "Registering part %s with fd %d",
part_names[part], channel->ch_part[part].ch_fd);
# if GTK_CHECK_VERSION(3,0,0)
GIOChannel *chnnl = g_io_channel_unix_new(
(gint)channel->ch_part[part].ch_fd);
channel->ch_part[part].ch_inputHandler = g_io_add_watch(
chnnl,
G_IO_IN|G_IO_HUP|G_IO_ERR|G_IO_PRI,
messageFromServerGtk3,
GINT_TO_POINTER(channel->ch_part[part].ch_fd));
g_io_channel_unref(chnnl);
# else
channel->ch_part[part].ch_inputHandler = gdk_input_add(
(gint)channel->ch_part[part].ch_fd,
(GdkInputCondition)
((int)GDK_INPUT_READ + (int)GDK_INPUT_EXCEPTION),
messageFromServerGtk2,
(gpointer)(long)channel->ch_part[part].ch_fd);
# endif
}
# endif
# endif
}
static void
channel_gui_register(channel_T *channel)
{
if (channel->CH_SOCK_FD != INVALID_FD)
channel_gui_register_one(channel, PART_SOCK);
if (channel->CH_OUT_FD != INVALID_FD
&& channel->CH_OUT_FD != channel->CH_SOCK_FD)
channel_gui_register_one(channel, PART_OUT);
if (channel->CH_ERR_FD != INVALID_FD
&& channel->CH_ERR_FD != channel->CH_SOCK_FD
&& channel->CH_ERR_FD != channel->CH_OUT_FD)
channel_gui_register_one(channel, PART_ERR);
}
/*
* Register any of our file descriptors with the GUI event handling system.
* Called when the GUI has started.
*/
void
channel_gui_register_all(void)
{
channel_T *channel;
for (channel = first_channel; channel != NULL; channel = channel->ch_next)
channel_gui_register(channel);
}
static void
channel_gui_unregister_one(channel_T *channel UNUSED, ch_part_T part UNUSED)
{
# ifdef FEAT_GUI_X11
if (channel->ch_part[part].ch_inputHandler != (XtInputId)NULL)
{
ch_log(channel, "Unregistering part %s", part_names[part]);
XtRemoveInput(channel->ch_part[part].ch_inputHandler);
channel->ch_part[part].ch_inputHandler = (XtInputId)NULL;
}
# else
# ifdef FEAT_GUI_GTK
if (channel->ch_part[part].ch_inputHandler != 0)
{
ch_log(channel, "Unregistering part %s", part_names[part]);
# if GTK_CHECK_VERSION(3,0,0)
g_source_remove(channel->ch_part[part].ch_inputHandler);
# else
gdk_input_remove(channel->ch_part[part].ch_inputHandler);
# endif
channel->ch_part[part].ch_inputHandler = 0;
}
# endif
# endif
}
static void
channel_gui_unregister(channel_T *channel)
{
ch_part_T part;
for (part = PART_SOCK; part < PART_IN; ++part)
channel_gui_unregister_one(channel, part);
}
#endif // FEAT_GUI
static char *e_cannot_connect = N_("E902: Cannot connect to port");
/*
* Open a socket channel to "hostname":"port".
* "waittime" is the time in msec to wait for the connection.
* When negative wait forever.
* Returns the channel for success.
* Returns NULL for failure.
*/
channel_T *
channel_open(
char *hostname,
int port_in,
int waittime,
void (*nb_close_cb)(void))
{
int sd = -1;
struct sockaddr_in server;
struct hostent *host;
#ifdef MSWIN
u_short port = port_in;
u_long val = 1;
#else
int port = port_in;
#endif
channel_T *channel;
int ret;
#ifdef MSWIN
channel_init_winsock();
#endif
channel = add_channel();
if (channel == NULL)
{
ch_error(NULL, "Cannot allocate channel.");
return NULL;
}
// Get the server internet address and put into addr structure
// fill in the socket address structure and connect to server
vim_memset((char *)&server, 0, sizeof(server));
server.sin_family = AF_INET;
server.sin_port = htons(port);
if ((host = gethostbyname(hostname)) == NULL)
{
ch_error(channel, "in gethostbyname() in channel_open()");
PERROR(_("E901: gethostbyname() in channel_open()"));
channel_free(channel);
return NULL;
}
{
char *p;
// When using host->h_addr_list[0] directly ubsan warns for it to not
// be aligned. First copy the pointer to avoid that.
memcpy(&p, &host->h_addr_list[0], sizeof(p));
memcpy((char *)&server.sin_addr, p, host->h_length);
}
// On Mac and Solaris a zero timeout almost never works. At least wait
// one millisecond. Let's do it for all systems, because we don't know why
// this is needed.
if (waittime == 0)
waittime = 1;
/*
* For Unix we need to call connect() again after connect() failed.
* On Win32 one time is sufficient.
*/
while (TRUE)
{
long elapsed_msec = 0;
int waitnow;
if (sd >= 0)
sock_close(sd);
sd = socket(AF_INET, SOCK_STREAM, 0);
if (sd == -1)
{
ch_error(channel, "in socket() in channel_open().");
PERROR(_("E898: socket() in channel_open()"));
channel_free(channel);
return NULL;
}
if (waittime >= 0)
{
// Make connect() non-blocking.
if (
#ifdef MSWIN
ioctlsocket(sd, FIONBIO, &val) < 0
#else
fcntl(sd, F_SETFL, O_NONBLOCK) < 0
#endif
)
{
SOCK_ERRNO;
ch_error(channel,
"channel_open: Connect failed with errno %d", errno);
sock_close(sd);
channel_free(channel);
return NULL;
}
}
// Try connecting to the server.
ch_log(channel, "Connecting to %s port %d", hostname, port);
ret = connect(sd, (struct sockaddr *)&server, sizeof(server));
if (ret == 0)
// The connection could be established.
break;
SOCK_ERRNO;
if (waittime < 0 || (errno != EWOULDBLOCK
&& errno != ECONNREFUSED
#ifdef EINPROGRESS
&& errno != EINPROGRESS
#endif
))
{
ch_error(channel,
"channel_open: Connect failed with errno %d", errno);
PERROR(_(e_cannot_connect));
sock_close(sd);
channel_free(channel);
return NULL;
}
// Limit the waittime to 50 msec. If it doesn't work within this
// time we close the socket and try creating it again.
waitnow = waittime > 50 ? 50 : waittime;
// If connect() didn't finish then try using select() to wait for the
// connection to be made. For Win32 always use select() to wait.
#ifndef MSWIN
if (errno != ECONNREFUSED)
#endif
{
struct timeval tv;
fd_set rfds;
fd_set wfds;
#ifndef MSWIN
int so_error = 0;
socklen_t so_error_len = sizeof(so_error);
struct timeval start_tv;
struct timeval end_tv;
#endif
FD_ZERO(&rfds);
FD_SET(sd, &rfds);
FD_ZERO(&wfds);
FD_SET(sd, &wfds);
tv.tv_sec = waitnow / 1000;
tv.tv_usec = (waitnow % 1000) * 1000;
#ifndef MSWIN
gettimeofday(&start_tv, NULL);
#endif
ch_log(channel,
"Waiting for connection (waiting %d msec)...", waitnow);
ret = select((int)sd + 1, &rfds, &wfds, NULL, &tv);
if (ret < 0)
{
SOCK_ERRNO;
ch_error(channel,
"channel_open: Connect failed with errno %d", errno);
PERROR(_(e_cannot_connect));
sock_close(sd);
channel_free(channel);
return NULL;
}
#ifdef MSWIN
// On Win32: select() is expected to work and wait for up to
// "waitnow" msec for the socket to be open.
if (FD_ISSET(sd, &wfds))
break;
elapsed_msec = waitnow;
if (waittime > 1 && elapsed_msec < waittime)
{
waittime -= elapsed_msec;
continue;
}
#else
// On Linux-like systems: See socket(7) for the behavior
// After putting the socket in non-blocking mode, connect() will
// return EINPROGRESS, select() will not wait (as if writing is
// possible), need to use getsockopt() to check if the socket is
// actually able to connect.
// We detect a failure to connect when either read and write fds
// are set. Use getsockopt() to find out what kind of failure.
if (FD_ISSET(sd, &rfds) || FD_ISSET(sd, &wfds))
{
ret = getsockopt(sd,
SOL_SOCKET, SO_ERROR, &so_error, &so_error_len);
if (ret < 0 || (so_error != 0
&& so_error != EWOULDBLOCK
&& so_error != ECONNREFUSED
# ifdef EINPROGRESS
&& so_error != EINPROGRESS
# endif
))
{
ch_error(channel,
"channel_open: Connect failed with errno %d",
so_error);
PERROR(_(e_cannot_connect));
sock_close(sd);
channel_free(channel);
return NULL;
}
}
if (FD_ISSET(sd, &wfds) && so_error == 0)
// Did not detect an error, connection is established.
break;
gettimeofday(&end_tv, NULL);
elapsed_msec = (end_tv.tv_sec - start_tv.tv_sec) * 1000
+ (end_tv.tv_usec - start_tv.tv_usec) / 1000;
#endif
}
#ifndef MSWIN
if (waittime > 1 && elapsed_msec < waittime)
{
// The port isn't ready but we also didn't get an error.
// This happens when the server didn't open the socket
// yet. Select() may return early, wait until the remaining
// "waitnow" and try again.
waitnow -= elapsed_msec;
waittime -= elapsed_msec;
if (waitnow > 0)
{
mch_delay((long)waitnow, TRUE);
ui_breakcheck();
waittime -= waitnow;
}
if (!got_int)
{
if (waittime <= 0)
// give it one more try
waittime = 1;
continue;
}
// we were interrupted, behave as if timed out
}
#endif
// We timed out.
ch_error(channel, "Connection timed out");
sock_close(sd);
channel_free(channel);
return NULL;
}
ch_log(channel, "Connection made");
if (waittime >= 0)
{
#ifdef MSWIN
val = 0;
ioctlsocket(sd, FIONBIO, &val);
#else
(void)fcntl(sd, F_SETFL, 0);
#endif
}
channel->CH_SOCK_FD = (sock_T)sd;
channel->ch_nb_close_cb = nb_close_cb;
channel->ch_hostname = (char *)vim_strsave((char_u *)hostname);
channel->ch_port = port_in;
channel->ch_to_be_closed |= (1U << PART_SOCK);
#ifdef FEAT_GUI
channel_gui_register_one(channel, PART_SOCK);
#endif
return channel;
}
/*
* Copy callback from "src" to "dest", incrementing the refcounts.
*/
static void
copy_callback(callback_T *dest, callback_T *src)
{
dest->cb_partial = src->cb_partial;
if (dest->cb_partial != NULL)
{
dest->cb_name = src->cb_name;
dest->cb_free_name = FALSE;
++dest->cb_partial->pt_refcount;
}
else
{
dest->cb_name = vim_strsave(src->cb_name);
dest->cb_free_name = TRUE;
func_ref(src->cb_name);
}
}
static void
free_set_callback(callback_T *cbp, callback_T *callback)
{
free_callback(cbp);
if (callback->cb_name != NULL && *callback->cb_name != NUL)
copy_callback(cbp, callback);
else
cbp->cb_name = NULL;
}
/*
* Prepare buffer "buf" for writing channel output to.
*/
static void
prepare_buffer(buf_T *buf)
{
buf_T *save_curbuf = curbuf;
buf_copy_options(buf, BCO_ENTER);
curbuf = buf;
#ifdef FEAT_QUICKFIX
set_option_value((char_u *)"bt", 0L, (char_u *)"nofile", OPT_LOCAL);
set_option_value((char_u *)"bh", 0L, (char_u *)"hide", OPT_LOCAL);
#endif
if (curbuf->b_ml.ml_mfp == NULL)
ml_open(curbuf);
curbuf = save_curbuf;
}
/*
* Find a buffer matching "name" or create a new one.
* Returns NULL if there is something very wrong (error already reported).
*/
static buf_T *
channel_find_buffer(char_u *name, int err, int msg)
{
buf_T *buf = NULL;
buf_T *save_curbuf = curbuf;
if (name != NULL && *name != NUL)
{
buf = buflist_findname(name);
if (buf == NULL)
buf = buflist_findname_exp(name);
}
if (buf == NULL)
{
buf = buflist_new(name == NULL || *name == NUL ? NULL : name,
NULL, (linenr_T)0, BLN_LISTED | BLN_NEW);
if (buf == NULL)
return NULL;
prepare_buffer(buf);
curbuf = buf;
if (msg)
ml_replace(1, (char_u *)(err ? "Reading from channel error..."
: "Reading from channel output..."), TRUE);
changed_bytes(1, 0);
curbuf = save_curbuf;
}
return buf;
}
/*
* Set various properties from an "opt" argument.
*/
static void
channel_set_options(channel_T *channel, jobopt_T *opt)
{
ch_part_T part;
if (opt->jo_set & JO_MODE)
for (part = PART_SOCK; part < PART_COUNT; ++part)
channel->ch_part[part].ch_mode = opt->jo_mode;
if (opt->jo_set & JO_IN_MODE)
channel->ch_part[PART_IN].ch_mode = opt->jo_in_mode;
if (opt->jo_set & JO_OUT_MODE)
channel->ch_part[PART_OUT].ch_mode = opt->jo_out_mode;
if (opt->jo_set & JO_ERR_MODE)
channel->ch_part[PART_ERR].ch_mode = opt->jo_err_mode;
channel->ch_nonblock = opt->jo_noblock;
if (opt->jo_set & JO_TIMEOUT)
for (part = PART_SOCK; part < PART_COUNT; ++part)
channel->ch_part[part].ch_timeout = opt->jo_timeout;
if (opt->jo_set & JO_OUT_TIMEOUT)
channel->ch_part[PART_OUT].ch_timeout = opt->jo_out_timeout;
if (opt->jo_set & JO_ERR_TIMEOUT)
channel->ch_part[PART_ERR].ch_timeout = opt->jo_err_timeout;
if (opt->jo_set & JO_BLOCK_WRITE)
channel->ch_part[PART_IN].ch_block_write = 1;
if (opt->jo_set & JO_CALLBACK)
free_set_callback(&channel->ch_callback, &opt->jo_callback);
if (opt->jo_set & JO_OUT_CALLBACK)
free_set_callback(&channel->ch_part[PART_OUT].ch_callback,
&opt->jo_out_cb);
if (opt->jo_set & JO_ERR_CALLBACK)
free_set_callback(&channel->ch_part[PART_ERR].ch_callback,
&opt->jo_err_cb);
if (opt->jo_set & JO_CLOSE_CALLBACK)
free_set_callback(&channel->ch_close_cb, &opt->jo_close_cb);
channel->ch_drop_never = opt->jo_drop_never;
if ((opt->jo_set & JO_OUT_IO) && opt->jo_io[PART_OUT] == JIO_BUFFER)
{
buf_T *buf;
// writing output to a buffer. Default mode is NL.
if (!(opt->jo_set & JO_OUT_MODE))
channel->ch_part[PART_OUT].ch_mode = MODE_NL;
if (opt->jo_set & JO_OUT_BUF)
{
buf = buflist_findnr(opt->jo_io_buf[PART_OUT]);
if (buf == NULL)
semsg(_(e_nobufnr), (long)opt->jo_io_buf[PART_OUT]);
}
else
{
int msg = TRUE;
if (opt->jo_set2 & JO2_OUT_MSG)
msg = opt->jo_message[PART_OUT];
buf = channel_find_buffer(opt->jo_io_name[PART_OUT], FALSE, msg);
}
if (buf != NULL)
{
if (opt->jo_set & JO_OUT_MODIFIABLE)
channel->ch_part[PART_OUT].ch_nomodifiable =
!opt->jo_modifiable[PART_OUT];
if (!buf->b_p_ma && !channel->ch_part[PART_OUT].ch_nomodifiable)
{
emsg(_(e_modifiable));
}
else
{
ch_log(channel, "writing out to buffer '%s'",
(char *)buf->b_ffname);
set_bufref(&channel->ch_part[PART_OUT].ch_bufref, buf);
// if the buffer was deleted or unloaded resurrect it
if (buf->b_ml.ml_mfp == NULL)
prepare_buffer(buf);
}
}
}
if ((opt->jo_set & JO_ERR_IO) && (opt->jo_io[PART_ERR] == JIO_BUFFER
|| (opt->jo_io[PART_ERR] == JIO_OUT && (opt->jo_set & JO_OUT_IO)
&& opt->jo_io[PART_OUT] == JIO_BUFFER)))
{
buf_T *buf;
// writing err to a buffer. Default mode is NL.
if (!(opt->jo_set & JO_ERR_MODE))
channel->ch_part[PART_ERR].ch_mode = MODE_NL;
if (opt->jo_io[PART_ERR] == JIO_OUT)
buf = channel->ch_part[PART_OUT].ch_bufref.br_buf;
else if (opt->jo_set & JO_ERR_BUF)
{
buf = buflist_findnr(opt->jo_io_buf[PART_ERR]);
if (buf == NULL)
semsg(_(e_nobufnr), (long)opt->jo_io_buf[PART_ERR]);
}
else
{
int msg = TRUE;
if (opt->jo_set2 & JO2_ERR_MSG)
msg = opt->jo_message[PART_ERR];
buf = channel_find_buffer(opt->jo_io_name[PART_ERR], TRUE, msg);
}
if (buf != NULL)
{
if (opt->jo_set & JO_ERR_MODIFIABLE)
channel->ch_part[PART_ERR].ch_nomodifiable =
!opt->jo_modifiable[PART_ERR];
if (!buf->b_p_ma && !channel->ch_part[PART_ERR].ch_nomodifiable)
{
emsg(_(e_modifiable));
}
else
{
ch_log(channel, "writing err to buffer '%s'",
(char *)buf->b_ffname);
set_bufref(&channel->ch_part[PART_ERR].ch_bufref, buf);
// if the buffer was deleted or unloaded resurrect it
if (buf->b_ml.ml_mfp == NULL)
prepare_buffer(buf);
}
}
}
channel->ch_part[PART_OUT].ch_io = opt->jo_io[PART_OUT];
channel->ch_part[PART_ERR].ch_io = opt->jo_io[PART_ERR];
channel->ch_part[PART_IN].ch_io = opt->jo_io[PART_IN];
}
/*
* Implements ch_open().
*/
static channel_T *
channel_open_func(typval_T *argvars)
{
char_u *address;
char_u *p;
char *rest;
int port;
jobopt_T opt;
channel_T *channel = NULL;
address = tv_get_string(&argvars[0]);
if (argvars[1].v_type != VAR_UNKNOWN
&& (argvars[1].v_type != VAR_DICT || argvars[1].vval.v_dict == NULL))
{
emsg(_(e_invarg));
return NULL;
}
// parse address
p = vim_strchr(address, ':');
if (p == NULL)
{
semsg(_(e_invarg2), address);
return NULL;
}
*p++ = NUL;
port = strtol((char *)p, &rest, 10);
if (*address == NUL || port <= 0 || *rest != NUL)
{
p[-1] = ':';
semsg(_(e_invarg2), address);
return NULL;
}
// parse options
clear_job_options(&opt);
opt.jo_mode = MODE_JSON;
opt.jo_timeout = 2000;
if (get_job_options(&argvars[1], &opt,
JO_MODE_ALL + JO_CB_ALL + JO_WAITTIME + JO_TIMEOUT_ALL, 0) == FAIL)
goto theend;
if (opt.jo_timeout < 0)
{
emsg(_(e_invarg));
goto theend;
}
channel = channel_open((char *)address, port, opt.jo_waittime, NULL);
if (channel != NULL)
{
opt.jo_set = JO_ALL;
channel_set_options(channel, &opt);
}
theend:
free_job_options(&opt);
return channel;
}
static void
ch_close_part(channel_T *channel, ch_part_T part)
{
sock_T *fd = &channel->ch_part[part].ch_fd;
if (*fd != INVALID_FD)
{
if (part == PART_SOCK)
sock_close(*fd);
else
{
// When using a pty the same FD is set on multiple parts, only
// close it when the last reference is closed.
if ((part == PART_IN || channel->CH_IN_FD != *fd)
&& (part == PART_OUT || channel->CH_OUT_FD != *fd)
&& (part == PART_ERR || channel->CH_ERR_FD != *fd))
{
#ifdef MSWIN
if (channel->ch_named_pipe)
DisconnectNamedPipe((HANDLE)fd);
#endif
fd_close(*fd);
}
}
*fd = INVALID_FD;
// channel is closed, may want to end the job if it was the last
channel->ch_to_be_closed &= ~(1U << part);
}
}
void
channel_set_pipes(channel_T *channel, sock_T in, sock_T out, sock_T err)
{
if (in != INVALID_FD)
{
ch_close_part(channel, PART_IN);
channel->CH_IN_FD = in;
# if defined(UNIX)
// Do not end the job when all output channels are closed, wait until
// the job ended.
if (mch_isatty(in))
channel->ch_to_be_closed |= (1U << PART_IN);
# endif
}
if (out != INVALID_FD)
{
# if defined(FEAT_GUI)
channel_gui_unregister_one(channel, PART_OUT);
# endif
ch_close_part(channel, PART_OUT);
channel->CH_OUT_FD = out;
channel->ch_to_be_closed |= (1U << PART_OUT);
# if defined(FEAT_GUI)
channel_gui_register_one(channel, PART_OUT);
# endif
}
if (err != INVALID_FD)
{
# if defined(FEAT_GUI)
channel_gui_unregister_one(channel, PART_ERR);
# endif
ch_close_part(channel, PART_ERR);
channel->CH_ERR_FD = err;
channel->ch_to_be_closed |= (1U << PART_ERR);
# if defined(FEAT_GUI)
channel_gui_register_one(channel, PART_ERR);
# endif
}
}
/*
* Sets the job the channel is associated with and associated options.
* This does not keep a refcount, when the job is freed ch_job is cleared.
*/
void
channel_set_job(channel_T *channel, job_T *job, jobopt_T *options)
{
channel->ch_job = job;
channel_set_options(channel, options);
if (job->jv_in_buf != NULL)
{
chanpart_T *in_part = &channel->ch_part[PART_IN];
set_bufref(&in_part->ch_bufref, job->jv_in_buf);
ch_log(channel, "reading from buffer '%s'",
(char *)in_part->ch_bufref.br_buf->b_ffname);
if (options->jo_set & JO_IN_TOP)
{
if (options->jo_in_top == 0 && !(options->jo_set & JO_IN_BOT))
{
// Special mode: send last-but-one line when appending a line
// to the buffer.
in_part->ch_bufref.br_buf->b_write_to_channel = TRUE;
in_part->ch_buf_append = TRUE;
in_part->ch_buf_top =
in_part->ch_bufref.br_buf->b_ml.ml_line_count + 1;
}
else
in_part->ch_buf_top = options->jo_in_top;
}
else
in_part->ch_buf_top = 1;
if (options->jo_set & JO_IN_BOT)
in_part->ch_buf_bot = options->jo_in_bot;
else
in_part->ch_buf_bot = in_part->ch_bufref.br_buf->b_ml.ml_line_count;
}
}
/*
* Set the callback for "channel"/"part" for the response with "id".
*/
static void
channel_set_req_callback(
channel_T *channel,
ch_part_T part,
callback_T *callback,
int id)
{
cbq_T *head = &channel->ch_part[part].ch_cb_head;
cbq_T *item = ALLOC_ONE(cbq_T);
if (item != NULL)
{
copy_callback(&item->cq_callback, callback);
item->cq_seq_nr = id;
item->cq_prev = head->cq_prev;
head->cq_prev = item;
item->cq_next = NULL;
if (item->cq_prev == NULL)
head->cq_next = item;
else
item->cq_prev->cq_next = item;
}
}
static void
write_buf_line(buf_T *buf, linenr_T lnum, channel_T *channel)
{
char_u *line = ml_get_buf(buf, lnum, FALSE);
int len = (int)STRLEN(line);
char_u *p;
int i;
// Need to make a copy to be able to append a NL.
if ((p = alloc(len + 2)) == NULL)
return;
memcpy((char *)p, (char *)line, len);
if (channel->ch_write_text_mode)
p[len] = CAR;
else
{
for (i = 0; i < len; ++i)
if (p[i] == NL)
p[i] = NUL;
p[len] = NL;
}
p[len + 1] = NUL;
channel_send(channel, PART_IN, p, len + 1, "write_buf_line");
vim_free(p);
}
/*
* Return TRUE if "channel" can be written to.
* Returns FALSE if the input is closed or the write would block.
*/
static int
can_write_buf_line(channel_T *channel)
{
chanpart_T *in_part = &channel->ch_part[PART_IN];
if (in_part->ch_fd == INVALID_FD)
return FALSE; // pipe was closed
// for testing: block every other attempt to write
if (in_part->ch_block_write == 1)
in_part->ch_block_write = -1;
else if (in_part->ch_block_write == -1)
in_part->ch_block_write = 1;
// TODO: Win32 implementation, probably using WaitForMultipleObjects()
#ifndef MSWIN
{
# if defined(HAVE_SELECT)
struct timeval tval;
fd_set wfds;
int ret;
FD_ZERO(&wfds);
FD_SET((int)in_part->ch_fd, &wfds);
tval.tv_sec = 0;
tval.tv_usec = 0;
for (;;)
{
ret = select((int)in_part->ch_fd + 1, NULL, &wfds, NULL, &tval);
# ifdef EINTR
SOCK_ERRNO;
if (ret == -1 && errno == EINTR)
continue;
# endif
if (ret <= 0 || in_part->ch_block_write == 1)
{
if (ret > 0)
ch_log(channel, "FAKED Input not ready for writing");
else
ch_log(channel, "Input not ready for writing");
return FALSE;
}
break;
}
# else
struct pollfd fds;
fds.fd = in_part->ch_fd;
fds.events = POLLOUT;
if (poll(&fds, 1, 0) <= 0)
{
ch_log(channel, "Input not ready for writing");
return FALSE;
}
if (in_part->ch_block_write == 1)
{
ch_log(channel, "FAKED Input not ready for writing");
return FALSE;
}
# endif
}
#endif
return TRUE;
}
/*
* Write any buffer lines to the input channel.
*/
static void
channel_write_in(channel_T *channel)
{
chanpart_T *in_part = &channel->ch_part[PART_IN];
linenr_T lnum;
buf_T *buf = in_part->ch_bufref.br_buf;
int written = 0;
if (buf == NULL || in_part->ch_buf_append)
return; // no buffer or using appending
if (!bufref_valid(&in_part->ch_bufref) || buf->b_ml.ml_mfp == NULL)
{
// buffer was wiped out or unloaded
ch_log(channel, "input buffer has been wiped out");
in_part->ch_bufref.br_buf = NULL;
return;
}
for (lnum = in_part->ch_buf_top; lnum <= in_part->ch_buf_bot
&& lnum <= buf->b_ml.ml_line_count; ++lnum)
{
if (!can_write_buf_line(channel))
break;
write_buf_line(buf, lnum, channel);
++written;
}
if (written == 1)
ch_log(channel, "written line %d to channel", (int)lnum - 1);
else if (written > 1)
ch_log(channel, "written %d lines to channel", written);
in_part->ch_buf_top = lnum;
if (lnum > buf->b_ml.ml_line_count || lnum > in_part->ch_buf_bot)
{
#if defined(FEAT_TERMINAL)
// Send CTRL-D or "eof_chars" to close stdin on MS-Windows.
if (channel->ch_job != NULL)
term_send_eof(channel);
#endif
// Writing is done, no longer need the buffer.
in_part->ch_bufref.br_buf = NULL;
ch_log(channel, "Finished writing all lines to channel");
// Close the pipe/socket, so that the other side gets EOF.
ch_close_part(channel, PART_IN);
}
else
ch_log(channel, "Still %ld more lines to write",
(long)(buf->b_ml.ml_line_count - lnum + 1));
}
/*
* Handle buffer "buf" being freed, remove it from any channels.
*/
void
channel_buffer_free(buf_T *buf)
{
channel_T *channel;
ch_part_T part;
for (channel = first_channel; channel != NULL; channel = channel->ch_next)
for (part = PART_SOCK; part < PART_COUNT; ++part)
{
chanpart_T *ch_part = &channel->ch_part[part];
if (ch_part->ch_bufref.br_buf == buf)
{
ch_log(channel, "%s buffer has been wiped out",
part_names[part]);
ch_part->ch_bufref.br_buf = NULL;
}
}
}
/*
* Write any lines waiting to be written to "channel".
*/
static void
channel_write_input(channel_T *channel)
{
chanpart_T *in_part = &channel->ch_part[PART_IN];
if (in_part->ch_writeque.wq_next != NULL)
channel_send(channel, PART_IN, (char_u *)"", 0, "channel_write_input");
else if (in_part->ch_bufref.br_buf != NULL)
{
if (in_part->ch_buf_append)
channel_write_new_lines(in_part->ch_bufref.br_buf);
else
channel_write_in(channel);
}
}
/*
* Write any lines waiting to be written to a channel.
*/
void
channel_write_any_lines(void)
{
channel_T *channel;
for (channel = first_channel; channel != NULL; channel = channel->ch_next)
channel_write_input(channel);
}
/*
* Write appended lines above the last one in "buf" to the channel.
*/
void
channel_write_new_lines(buf_T *buf)
{
channel_T *channel;
int found_one = FALSE;
// There could be more than one channel for the buffer, loop over all of
// them.
for (channel = first_channel; channel != NULL; channel = channel->ch_next)
{
chanpart_T *in_part = &channel->ch_part[PART_IN];
linenr_T lnum;
int written = 0;
if (in_part->ch_bufref.br_buf == buf && in_part->ch_buf_append)
{
if (in_part->ch_fd == INVALID_FD)
continue; // pipe was closed
found_one = TRUE;
for (lnum = in_part->ch_buf_bot; lnum < buf->b_ml.ml_line_count;
++lnum)
{
if (!can_write_buf_line(channel))
break;
write_buf_line(buf, lnum, channel);
++written;
}
if (written == 1)
ch_log(channel, "written line %d to channel", (int)lnum - 1);
else if (written > 1)
ch_log(channel, "written %d lines to channel", written);
if (lnum < buf->b_ml.ml_line_count)
ch_log(channel, "Still %ld more lines to write",
(long)(buf->b_ml.ml_line_count - lnum));
in_part->ch_buf_bot = lnum;
}
}
if (!found_one)
buf->b_write_to_channel = FALSE;
}
/*
* Invoke the "callback" on channel "channel".
* This does not redraw but sets channel_need_redraw;
*/
static void
invoke_callback(channel_T *channel, callback_T *callback, typval_T *argv)
{
typval_T rettv;
if (safe_to_invoke_callback == 0)
iemsg("INTERNAL: Invoking callback when it is not safe");
argv[0].v_type = VAR_CHANNEL;
argv[0].vval.v_channel = channel;
call_callback(callback, -1, &rettv, 2, argv);
clear_tv(&rettv);
channel_need_redraw = TRUE;
}
/*
* Return the first node from "channel"/"part" without removing it.
* Returns NULL if there is nothing.
*/
readq_T *
channel_peek(channel_T *channel, ch_part_T part)
{
readq_T *head = &channel->ch_part[part].ch_head;
return head->rq_next;
}
/*
* Return a pointer to the first NL in "node".
* Skips over NUL characters.
* Returns NULL if there is no NL.
*/
char_u *
channel_first_nl(readq_T *node)
{
char_u *buffer = node->rq_buffer;
long_u i;
for (i = 0; i < node->rq_buflen; ++i)
if (buffer[i] == NL)
return buffer + i;
return NULL;
}
/*
* Return the first buffer from channel "channel"/"part" and remove it.
* The caller must free it.
* Returns NULL if there is nothing.
*/
char_u *
channel_get(channel_T *channel, ch_part_T part, int *outlen)
{
readq_T *head = &channel->ch_part[part].ch_head;
readq_T *node = head->rq_next;
char_u *p;
if (node == NULL)
return NULL;
if (outlen != NULL)
*outlen += node->rq_buflen;
// dispose of the node but keep the buffer
p = node->rq_buffer;
head->rq_next = node->rq_next;
if (node->rq_next == NULL)
head->rq_prev = NULL;
else
node->rq_next->rq_prev = NULL;
vim_free(node);
return p;
}
/*
* Returns the whole buffer contents concatenated for "channel"/"part".
* Replaces NUL bytes with NL.
*/
static char_u *
channel_get_all(channel_T *channel, ch_part_T part, int *outlen)
{
readq_T *head = &channel->ch_part[part].ch_head;
readq_T *node;
long_u len = 0;
char_u *res;
char_u *p;
// Concatenate everything into one buffer.
for (node = head->rq_next; node != NULL; node = node->rq_next)
len += node->rq_buflen;
res = alloc(len + 1);
if (res == NULL)
return NULL;
p = res;
for (node = head->rq_next; node != NULL; node = node->rq_next)
{
mch_memmove(p, node->rq_buffer, node->rq_buflen);
p += node->rq_buflen;
}
*p = NUL;
// Free all buffers
do
{
p = channel_get(channel, part, NULL);
vim_free(p);
} while (p != NULL);
if (outlen != NULL)
{
// Returning the length, keep NUL characters.
*outlen += len;
return res;
}
// Turn all NUL into NL, so that the result can be used as a string.
p = res;
while (p < res + len)
{
if (*p == NUL)
*p = NL;
#ifdef MSWIN
else if (*p == 0x1b)
{
// crush the escape sequence OSC 0/1/2: ESC ]0;
if (p + 3 < res + len
&& p[1] == ']'
&& (p[2] == '0' || p[2] == '1' || p[2] == '2')
&& p[3] == ';')
{
// '\a' becomes a NL
while (p < res + (len - 1) && *p != '\a')
++p;
// BEL is zero width characters, suppress display mistake
// ConPTY (after 10.0.18317) requires advance checking
if (p[-1] == NUL)
p[-1] = 0x07;
}
}
#endif
++p;
}
return res;
}
/*
* Consume "len" bytes from the head of "node".
* Caller must check these bytes are available.
*/
void
channel_consume(channel_T *channel, ch_part_T part, int len)
{
readq_T *head = &channel->ch_part[part].ch_head;
readq_T *node = head->rq_next;
char_u *buf = node->rq_buffer;
mch_memmove(buf, buf + len, node->rq_buflen - len);
node->rq_buflen -= len;
node->rq_buffer[node->rq_buflen] = NUL;
}
/*
* Collapses the first and second buffer for "channel"/"part".
* Returns FAIL if that is not possible.
* When "want_nl" is TRUE collapse more buffers until a NL is found.
*/
int
channel_collapse(channel_T *channel, ch_part_T part, int want_nl)
{
readq_T *head = &channel->ch_part[part].ch_head;
readq_T *node = head->rq_next;
readq_T *last_node;
readq_T *n;
char_u *newbuf;
char_u *p;
long_u len;
if (node == NULL || node->rq_next == NULL)
return FAIL;
last_node = node->rq_next;
len = node->rq_buflen + last_node->rq_buflen;
if (want_nl)
while (last_node->rq_next != NULL
&& channel_first_nl(last_node) == NULL)
{
last_node = last_node->rq_next;
len += last_node->rq_buflen;
}
p = newbuf = alloc(len + 1);
if (newbuf == NULL)
return FAIL; // out of memory
mch_memmove(p, node->rq_buffer, node->rq_buflen);
p += node->rq_buflen;
vim_free(node->rq_buffer);
node->rq_buffer = newbuf;
for (n = node; n != last_node; )
{
n = n->rq_next;
mch_memmove(p, n->rq_buffer, n->rq_buflen);
p += n->rq_buflen;
vim_free(n->rq_buffer);
}
*p = NUL;
node->rq_buflen = (long_u)(p - newbuf);
// dispose of the collapsed nodes and their buffers
for (n = node->rq_next; n != last_node; )
{
n = n->rq_next;
vim_free(n->rq_prev);
}
node->rq_next = last_node->rq_next;
if (last_node->rq_next == NULL)
head->rq_prev = node;
else
last_node->rq_next->rq_prev = node;
vim_free(last_node);
return OK;
}
/*
* Store "buf[len]" on "channel"/"part".
* When "prepend" is TRUE put in front, otherwise append at the end.
* Returns OK or FAIL.
*/
static int
channel_save(channel_T *channel, ch_part_T part, char_u *buf, int len,
int prepend, char *lead)
{
readq_T *node;
readq_T *head = &channel->ch_part[part].ch_head;
char_u *p;
int i;
node = ALLOC_ONE(readq_T);
if (node == NULL)
return FAIL; // out of memory
// A NUL is added at the end, because netbeans code expects that.
// Otherwise a NUL may appear inside the text.
node->rq_buffer = alloc(len + 1);
if (node->rq_buffer == NULL)
{
vim_free(node);
return FAIL; // out of memory
}
if (channel->ch_part[part].ch_mode == MODE_NL)
{
// Drop any CR before a NL.
p = node->rq_buffer;
for (i = 0; i < len; ++i)
if (buf[i] != CAR || i + 1 >= len || buf[i + 1] != NL)
*p++ = buf[i];
*p = NUL;
node->rq_buflen = (long_u)(p - node->rq_buffer);
}
else
{
mch_memmove(node->rq_buffer, buf, len);
node->rq_buffer[len] = NUL;
node->rq_buflen = (long_u)len;
}
if (prepend)
{
// prepend node to the head of the queue
node->rq_next = head->rq_next;
node->rq_prev = NULL;
if (head->rq_next == NULL)
head->rq_prev = node;
else
head->rq_next->rq_prev = node;
head->rq_next = node;
}
else
{
// append node to the tail of the queue
node->rq_next = NULL;
node->rq_prev = head->rq_prev;
if (head->rq_prev == NULL)
head->rq_next = node;
else
head->rq_prev->rq_next = node;
head->rq_prev = node;
}
if (ch_log_active() && lead != NULL)
{
ch_log_lead(lead, channel, part);
fprintf(log_fd, "'");
vim_ignored = (int)fwrite(buf, len, 1, log_fd);
fprintf(log_fd, "'\n");
}
return OK;
}
/*
* Try to fill the buffer of "reader".
* Returns FALSE when nothing was added.
*/
static int
channel_fill(js_read_T *reader)
{
channel_T *channel = (channel_T *)reader->js_cookie;
ch_part_T part = reader->js_cookie_arg;
char_u *next = channel_get(channel, part, NULL);
int keeplen;
int addlen;
char_u *p;
if (next == NULL)
return FALSE;
keeplen = reader->js_end - reader->js_buf;
if (keeplen > 0)
{
// Prepend unused text.
addlen = (int)STRLEN(next);
p = alloc(keeplen + addlen + 1);
if (p == NULL)
{
vim_free(next);
return FALSE;
}
mch_memmove(p, reader->js_buf, keeplen);
mch_memmove(p + keeplen, next, addlen + 1);
vim_free(next);
next = p;
}
vim_free(reader->js_buf);
reader->js_buf = next;
return TRUE;
}
/*
* Use the read buffer of "channel"/"part" and parse a JSON message that is
* complete. The messages are added to the queue.
* Return TRUE if there is more to read.
*/
static int
channel_parse_json(channel_T *channel, ch_part_T part)
{
js_read_T reader;
typval_T listtv;
jsonq_T *item;
chanpart_T *chanpart = &channel->ch_part[part];
jsonq_T *head = &chanpart->ch_json_head;
int status;
int ret;
if (channel_peek(channel, part) == NULL)
return FALSE;
reader.js_buf = channel_get(channel, part, NULL);
reader.js_used = 0;
reader.js_fill = channel_fill;
reader.js_cookie = channel;
reader.js_cookie_arg = part;
// When a message is incomplete we wait for a short while for more to
// arrive. After the delay drop the input, otherwise a truncated string
// or list will make us hang.
// Do not generate error messages, they will be written in a channel log.
++emsg_silent;
status = json_decode(&reader, &listtv,
chanpart->ch_mode == MODE_JS ? JSON_JS : 0);
--emsg_silent;
if (status == OK)
{
// Only accept the response when it is a list with at least two
// items.
if (listtv.v_type != VAR_LIST || listtv.vval.v_list->lv_len < 2)
{
if (listtv.v_type != VAR_LIST)
ch_error(channel, "Did not receive a list, discarding");
else
ch_error(channel, "Expected list with two items, got %d",
listtv.vval.v_list->lv_len);
clear_tv(&listtv);
}
else
{
item = ALLOC_ONE(jsonq_T);
if (item == NULL)
clear_tv(&listtv);
else
{
item->jq_no_callback = FALSE;
item->jq_value = alloc_tv();
if (item->jq_value == NULL)
{
vim_free(item);
clear_tv(&listtv);
}
else
{
*item->jq_value = listtv;
item->jq_prev = head->jq_prev;
head->jq_prev = item;
item->jq_next = NULL;
if (item->jq_prev == NULL)
head->jq_next = item;
else
item->jq_prev->jq_next = item;
}
}
}
}
if (status == OK)
chanpart->ch_wait_len = 0;
else if (status == MAYBE)
{
size_t buflen = STRLEN(reader.js_buf);
if (chanpart->ch_wait_len < buflen)
{
// First time encountering incomplete message or after receiving
// more (but still incomplete): set a deadline of 100 msec.
ch_log(channel,
"Incomplete message (%d bytes) - wait 100 msec for more",
(int)buflen);
reader.js_used = 0;
chanpart->ch_wait_len = buflen;
#ifdef MSWIN
chanpart->ch_deadline = GetTickCount() + 100L;
#else
gettimeofday(&chanpart->ch_deadline, NULL);
chanpart->ch_deadline.tv_usec += 100 * 1000;
if (chanpart->ch_deadline.tv_usec > 1000 * 1000)
{
chanpart->ch_deadline.tv_usec -= 1000 * 1000;
++chanpart->ch_deadline.tv_sec;
}
#endif
}
else
{
int timeout;
#ifdef MSWIN
timeout = GetTickCount() > chanpart->ch_deadline;
#else
{
struct timeval now_tv;
gettimeofday(&now_tv, NULL);
timeout = now_tv.tv_sec > chanpart->ch_deadline.tv_sec
|| (now_tv.tv_sec == chanpart->ch_deadline.tv_sec
&& now_tv.tv_usec > chanpart->ch_deadline.tv_usec);
}
#endif
if (timeout)
{
status = FAIL;
chanpart->ch_wait_len = 0;
ch_log(channel, "timed out");
}
else
{
reader.js_used = 0;
ch_log(channel, "still waiting on incomplete message");
}
}
}
if (status == FAIL)
{
ch_error(channel, "Decoding failed - discarding input");
ret = FALSE;
chanpart->ch_wait_len = 0;
}
else if (reader.js_buf[reader.js_used] != NUL)
{
// Put the unread part back into the channel.
channel_save(channel, part, reader.js_buf + reader.js_used,
(int)(reader.js_end - reader.js_buf) - reader.js_used,
TRUE, NULL);
ret = status == MAYBE ? FALSE: TRUE;
}
else
ret = FALSE;
vim_free(reader.js_buf);
return ret;
}
/*
* Remove "node" from the queue that it is in. Does not free it.
*/
static void
remove_cb_node(cbq_T *head, cbq_T *node)
{
if (node->cq_prev == NULL)
head->cq_next = node->cq_next;
else
node->cq_prev->cq_next = node->cq_next;
if (node->cq_next == NULL)
head->cq_prev = node->cq_prev;
else
node->cq_next->cq_prev = node->cq_prev;
}
/*
* Remove "node" from the queue that it is in and free it.
* Caller should have freed or used node->jq_value.
*/
static void
remove_json_node(jsonq_T *head, jsonq_T *node)
{
if (node->jq_prev == NULL)
head->jq_next = node->jq_next;
else
node->jq_prev->jq_next = node->jq_next;
if (node->jq_next == NULL)
head->jq_prev = node->jq_prev;
else
node->jq_next->jq_prev = node->jq_prev;
vim_free(node);
}
/*
* Add "id" to the list of JSON message IDs we are waiting on.
*/
static void
channel_add_block_id(chanpart_T *chanpart, int id)
{
garray_T *gap = &chanpart->ch_block_ids;
if (gap->ga_growsize == 0)
ga_init2(gap, (int)sizeof(int), 10);
if (ga_grow(gap, 1) == OK)
{
((int *)gap->ga_data)[gap->ga_len] = id;
++gap->ga_len;
}
}
/*
* Remove "id" from the list of JSON message IDs we are waiting on.
*/
static void
channel_remove_block_id(chanpart_T *chanpart, int id)
{
garray_T *gap = &chanpart->ch_block_ids;
int i;
for (i = 0; i < gap->ga_len; ++i)
if (((int *)gap->ga_data)[i] == id)
{
--gap->ga_len;
if (i < gap->ga_len)
{
int *p = ((int *)gap->ga_data) + i;
mch_memmove(p, p + 1, (gap->ga_len - i) * sizeof(int));
}
return;
}
siemsg("INTERNAL: channel_remove_block_id: cannot find id %d", id);
}
/*
* Return TRUE if "id" is in the list of JSON message IDs we are waiting on.
*/
static int
channel_has_block_id(chanpart_T *chanpart, int id)
{
garray_T *gap = &chanpart->ch_block_ids;
int i;
for (i = 0; i < gap->ga_len; ++i)
if (((int *)gap->ga_data)[i] == id)
return TRUE;
return FALSE;
}
/*
* Get a message from the JSON queue for channel "channel".
* When "id" is positive it must match the first number in the list.
* When "id" is zero or negative jut get the first message. But not one
* in the ch_block_ids list.
* When "without_callback" is TRUE also get messages that were pushed back.
* Return OK when found and return the value in "rettv".
* Return FAIL otherwise.
*/
static int
channel_get_json(
channel_T *channel,
ch_part_T part,
int id,
int without_callback,
typval_T **rettv)
{
jsonq_T *head = &channel->ch_part[part].ch_json_head;
jsonq_T *item = head->jq_next;
while (item != NULL)
{
list_T *l = item->jq_value->vval.v_list;
typval_T *tv;
range_list_materialize(l);
tv = &l->lv_first->li_tv;
if ((without_callback || !item->jq_no_callback)
&& ((id > 0 && tv->v_type == VAR_NUMBER && tv->vval.v_number == id)
|| (id <= 0 && (tv->v_type != VAR_NUMBER
|| tv->vval.v_number == 0
|| !channel_has_block_id(
&channel->ch_part[part], tv->vval.v_number)))))
{
*rettv = item->jq_value;
if (tv->v_type == VAR_NUMBER)
ch_log(channel, "Getting JSON message %ld",
(long)tv->vval.v_number);
remove_json_node(head, item);
return OK;
}
item = item->jq_next;
}
return FAIL;
}
/*
* Put back "rettv" into the JSON queue, there was no callback for it.
* Takes over the values in "rettv".
*/
static void
channel_push_json(channel_T *channel, ch_part_T part, typval_T *rettv)
{
jsonq_T *head = &channel->ch_part[part].ch_json_head;
jsonq_T *item = head->jq_next;
jsonq_T *newitem;
if (head->jq_prev != NULL && head->jq_prev->jq_no_callback)
// last item was pushed back, append to the end
item = NULL;
else while (item != NULL && item->jq_no_callback)
// append after the last item that was pushed back
item = item->jq_next;
newitem = ALLOC_ONE(jsonq_T);
if (newitem == NULL)
clear_tv(rettv);
else
{
newitem->jq_value = alloc_tv();
if (newitem->jq_value == NULL)
{
vim_free(newitem);
clear_tv(rettv);
}
else
{
newitem->jq_no_callback = FALSE;
*newitem->jq_value = *rettv;
if (item == NULL)
{
// append to the end
newitem->jq_prev = head->jq_prev;
head->jq_prev = newitem;
newitem->jq_next = NULL;
if (newitem->jq_prev == NULL)
head->jq_next = newitem;
else
newitem->jq_prev->jq_next = newitem;
}
else
{
// append after "item"
newitem->jq_prev = item;
newitem->jq_next = item->jq_next;
item->jq_next = newitem;
if (newitem->jq_next == NULL)
head->jq_prev = newitem;
else
newitem->jq_next->jq_prev = newitem;
}
}
}
}
#define CH_JSON_MAX_ARGS 4
/*
* Execute a command received over "channel"/"part"
* "argv[0]" is the command string.
* "argv[1]" etc. have further arguments, type is VAR_UNKNOWN if missing.
*/
static void
channel_exe_cmd(channel_T *channel, ch_part_T part, typval_T *argv)
{
char_u *cmd = argv[0].vval.v_string;
char_u *arg;
int options = channel->ch_part[part].ch_mode == MODE_JS ? JSON_JS : 0;
if (argv[1].v_type != VAR_STRING)
{
ch_error(channel, "received command with non-string argument");
if (p_verbose > 2)
emsg(_("E903: received command with non-string argument"));
return;
}
arg = argv[1].vval.v_string;
if (arg == NULL)
arg = (char_u *)"";
if (STRCMP(cmd, "ex") == 0)
{
int called_emsg_before = called_emsg;
ch_log(channel, "Executing ex command '%s'", (char *)arg);
++emsg_silent;
do_cmdline_cmd(arg);
--emsg_silent;
if (called_emsg > called_emsg_before)
ch_log(channel, "Ex command error: '%s'",
(char *)get_vim_var_str(VV_ERRMSG));
}
else if (STRCMP(cmd, "normal") == 0)
{
exarg_T ea;
ch_log(channel, "Executing normal command '%s'", (char *)arg);
vim_memset(&ea, 0, sizeof(ea));
ea.arg = arg;
ea.addr_count = 0;
ea.forceit = TRUE; // no mapping
ex_normal(&ea);
}
else if (STRCMP(cmd, "redraw") == 0)
{
exarg_T ea;
ch_log(channel, "redraw");
vim_memset(&ea, 0, sizeof(ea));
ea.forceit = *arg != NUL;
ex_redraw(&ea);
showruler(FALSE);
setcursor();
out_flush_cursor(TRUE, FALSE);
}
else if (STRCMP(cmd, "expr") == 0 || STRCMP(cmd, "call") == 0)
{
int is_call = cmd[0] == 'c';
int id_idx = is_call ? 3 : 2;
if (argv[id_idx].v_type != VAR_UNKNOWN
&& argv[id_idx].v_type != VAR_NUMBER)
{
ch_error(channel, "last argument for expr/call must be a number");
if (p_verbose > 2)
emsg(_("E904: last argument for expr/call must be a number"));
}
else if (is_call && argv[2].v_type != VAR_LIST)
{
ch_error(channel, "third argument for call must be a list");
if (p_verbose > 2)
emsg(_("E904: third argument for call must be a list"));
}
else
{
typval_T *tv = NULL;
typval_T res_tv;
typval_T err_tv;
char_u *json = NULL;
// Don't pollute the display with errors.
++emsg_skip;
if (!is_call)
{
ch_log(channel, "Evaluating expression '%s'", (char *)arg);
tv = eval_expr(arg, NULL);
}
else
{
ch_log(channel, "Calling '%s'", (char *)arg);
if (func_call(arg, &argv[2], NULL, NULL, &res_tv) == OK)
tv = &res_tv;
}
if (argv[id_idx].v_type == VAR_NUMBER)
{
int id = argv[id_idx].vval.v_number;
if (tv != NULL)
json = json_encode_nr_expr(id, tv, options | JSON_NL);
if (tv == NULL || (json != NULL && *json == NUL))
{
// If evaluation failed or the result can't be encoded
// then return the string "ERROR".
vim_free(json);
err_tv.v_type = VAR_STRING;
err_tv.vval.v_string = (char_u *)"ERROR";
json = json_encode_nr_expr(id, &err_tv, options | JSON_NL);
}
if (json != NULL)
{
channel_send(channel,
part == PART_SOCK ? PART_SOCK : PART_IN,
json, (int)STRLEN(json), (char *)cmd);
vim_free(json);
}
}
--emsg_skip;
if (tv == &res_tv)
clear_tv(tv);
else
free_tv(tv);
}
}
else if (p_verbose > 2)
{
ch_error(channel, "Received unknown command: %s", (char *)cmd);
semsg(_("E905: received unknown command: %s"), cmd);
}
}
/*
* Invoke the callback at "cbhead".
* Does not redraw but sets channel_need_redraw.
*/
static void
invoke_one_time_callback(
channel_T *channel,
cbq_T *cbhead,
cbq_T *item,
typval_T *argv)
{
ch_log(channel, "Invoking one-time callback %s",
(char *)item->cq_callback.cb_name);
// Remove the item from the list first, if the callback
// invokes ch_close() the list will be cleared.
remove_cb_node(cbhead, item);
invoke_callback(channel, &item->cq_callback, argv);
free_callback(&item->cq_callback);
vim_free(item);
}
static void
append_to_buffer(buf_T *buffer, char_u *msg, channel_T *channel, ch_part_T part)
{
bufref_T save_curbuf = {NULL, 0, 0};
win_T *save_curwin = NULL;
tabpage_T *save_curtab = NULL;
linenr_T lnum = buffer->b_ml.ml_line_count;
int save_write_to = buffer->b_write_to_channel;
chanpart_T *ch_part = &channel->ch_part[part];
int save_p_ma = buffer->b_p_ma;
int empty = (buffer->b_ml.ml_flags & ML_EMPTY) ? 1 : 0;
if (!buffer->b_p_ma && !ch_part->ch_nomodifiable)
{
if (!ch_part->ch_nomod_error)
{
ch_error(channel, "Buffer is not modifiable, cannot append");
ch_part->ch_nomod_error = TRUE;
}
return;
}
// If the buffer is also used as input insert above the last
// line. Don't write these lines.
if (save_write_to)
{
--lnum;
buffer->b_write_to_channel = FALSE;
}
// Append to the buffer
ch_log(channel, "appending line %d to buffer", (int)lnum + 1 - empty);
buffer->b_p_ma = TRUE;
// Save curbuf/curwin/curtab and make "buffer" the current buffer.
switch_to_win_for_buf(buffer, &save_curwin, &save_curtab, &save_curbuf);
u_sync(TRUE);
// ignore undo failure, undo is not very useful here
vim_ignored = u_save(lnum - empty, lnum + 1);
if (empty)
{
// The buffer is empty, replace the first (dummy) line.
ml_replace(lnum, msg, TRUE);
lnum = 0;
}
else
ml_append(lnum, msg, 0, FALSE);
appended_lines_mark(lnum, 1L);
// Restore curbuf/curwin/curtab
restore_win_for_buf(save_curwin, save_curtab, &save_curbuf);
if (ch_part->ch_nomodifiable)
buffer->b_p_ma = FALSE;
else
buffer->b_p_ma = save_p_ma;
if (buffer->b_nwindows > 0)
{
win_T *wp;
FOR_ALL_WINDOWS(wp)
{
if (wp->w_buffer == buffer)
{
int move_cursor = save_write_to
? wp->w_cursor.lnum == lnum + 1
: (wp->w_cursor.lnum == lnum
&& wp->w_cursor.col == 0);
// If the cursor is at or above the new line, move it one line
// down. If the topline is outdated update it now.
if (move_cursor || wp->w_topline > buffer->b_ml.ml_line_count)
{
if (move_cursor)
++wp->w_cursor.lnum;
save_curwin = curwin;
curwin = wp;
curbuf = curwin->w_buffer;
scroll_cursor_bot(0, FALSE);
curwin = save_curwin;
curbuf = curwin->w_buffer;
}
}
}
redraw_buf_and_status_later(buffer, VALID);
channel_need_redraw = TRUE;
}
if (save_write_to)
{
channel_T *ch;
// Find channels reading from this buffer and adjust their
// next-to-read line number.
buffer->b_write_to_channel = TRUE;
for (ch = first_channel; ch != NULL; ch = ch->ch_next)
{
chanpart_T *in_part = &ch->ch_part[PART_IN];
if (in_part->ch_bufref.br_buf == buffer)
in_part->ch_buf_bot = buffer->b_ml.ml_line_count;
}
}
}
static void
drop_messages(channel_T *channel, ch_part_T part)
{
char_u *msg;
while ((msg = channel_get(channel, part, NULL)) != NULL)
{
ch_log(channel, "Dropping message '%s'", (char *)msg);
vim_free(msg);
}
}
/*
* Invoke a callback for "channel"/"part" if needed.
* This does not redraw but sets channel_need_redraw when redraw is needed.
* Return TRUE when a message was handled, there might be another one.
*/
static int
may_invoke_callback(channel_T *channel, ch_part_T part)
{
char_u *msg = NULL;
typval_T *listtv = NULL;
typval_T argv[CH_JSON_MAX_ARGS];
int seq_nr = -1;
chanpart_T *ch_part = &channel->ch_part[part];
ch_mode_T ch_mode = ch_part->ch_mode;
cbq_T *cbhead = &ch_part->ch_cb_head;
cbq_T *cbitem;
callback_T *callback = NULL;
buf_T *buffer = NULL;
char_u *p;
if (channel->ch_nb_close_cb != NULL)
// this channel is handled elsewhere (netbeans)
return FALSE;
// Use a message-specific callback, part callback or channel callback
for (cbitem = cbhead->cq_next; cbitem != NULL; cbitem = cbitem->cq_next)
if (cbitem->cq_seq_nr == 0)
break;
if (cbitem != NULL)
callback = &cbitem->cq_callback;
else if (ch_part->ch_callback.cb_name != NULL)
callback = &ch_part->ch_callback;
else if (channel->ch_callback.cb_name != NULL)
callback = &channel->ch_callback;
buffer = ch_part->ch_bufref.br_buf;
if (buffer != NULL && (!bufref_valid(&ch_part->ch_bufref)
|| buffer->b_ml.ml_mfp == NULL))
{
// buffer was wiped out or unloaded
ch_log(channel, "%s buffer has been wiped out", part_names[part]);
ch_part->ch_bufref.br_buf = NULL;
buffer = NULL;
}
if (ch_mode == MODE_JSON || ch_mode == MODE_JS)
{
listitem_T *item;
int argc = 0;
// Get any json message in the queue.
if (channel_get_json(channel, part, -1, FALSE, &listtv) == FAIL)
{
// Parse readahead, return when there is still no message.
channel_parse_json(channel, part);
if (channel_get_json(channel, part, -1, FALSE, &listtv) == FAIL)
return FALSE;
}
for (item = listtv->vval.v_list->lv_first;
item != NULL && argc < CH_JSON_MAX_ARGS;
item = item->li_next)
argv[argc++] = item->li_tv;
while (argc < CH_JSON_MAX_ARGS)
argv[argc++].v_type = VAR_UNKNOWN;
if (argv[0].v_type == VAR_STRING)
{
// ["cmd", arg] or ["cmd", arg, arg] or ["cmd", arg, arg, arg]
channel_exe_cmd(channel, part, argv);
free_tv(listtv);
return TRUE;
}
if (argv[0].v_type != VAR_NUMBER)
{
ch_error(channel,
"Dropping message with invalid sequence number type");
free_tv(listtv);
return FALSE;
}
seq_nr = argv[0].vval.v_number;
}
else if (channel_peek(channel, part) == NULL)
{
// nothing to read on RAW or NL channel
return FALSE;
}
else
{
// If there is no callback or buffer drop the message.
if (callback == NULL && buffer == NULL)
{
// If there is a close callback it may use ch_read() to get the
// messages.
if (channel->ch_close_cb.cb_name == NULL && !channel->ch_drop_never)
drop_messages(channel, part);
return FALSE;
}
if (ch_mode == MODE_NL)
{
char_u *nl = NULL;
char_u *buf;
readq_T *node;
// See if we have a message ending in NL in the first buffer. If
// not try to concatenate the first and the second buffer.
while (TRUE)
{
node = channel_peek(channel, part);
nl = channel_first_nl(node);
if (nl != NULL)
break;
if (channel_collapse(channel, part, TRUE) == FAIL)
{
if (ch_part->ch_fd == INVALID_FD && node->rq_buflen > 0)
break;
return FALSE; // incomplete message
}
}
buf = node->rq_buffer;
// Convert NUL to NL, the internal representation.
for (p = buf; (nl == NULL || p < nl)
&& p < buf + node->rq_buflen; ++p)
if (*p == NUL)
*p = NL;
if (nl == NULL)
{
// get the whole buffer, drop the NL
msg = channel_get(channel, part, NULL);
}
else if (nl + 1 == buf + node->rq_buflen)
{
// get the whole buffer
msg = channel_get(channel, part, NULL);
*nl = NUL;
}
else
{
// Copy the message into allocated memory (excluding the NL)
// and remove it from the buffer (including the NL).
msg = vim_strnsave(buf, (int)(nl - buf));
channel_consume(channel, part, (int)(nl - buf) + 1);
}
}
else
{
// For a raw channel we don't know where the message ends, just
// get everything we have.
// Convert NUL to NL, the internal representation.
msg = channel_get_all(channel, part, NULL);
}
if (msg == NULL)
return FALSE; // out of memory (and avoids Coverity warning)
argv[1].v_type = VAR_STRING;
argv[1].vval.v_string = msg;
}
if (seq_nr > 0)
{
int done = FALSE;
// JSON or JS mode: invoke the one-time callback with the matching nr
for (cbitem = cbhead->cq_next; cbitem != NULL; cbitem = cbitem->cq_next)
if (cbitem->cq_seq_nr == seq_nr)
{
invoke_one_time_callback(channel, cbhead, cbitem, argv);
done = TRUE;
break;
}
if (!done)
{
if (channel->ch_drop_never)
{
// message must be read with ch_read()
channel_push_json(channel, part, listtv);
listtv = NULL;
}
else
ch_log(channel, "Dropping message %d without callback",
seq_nr);
}
}
else if (callback != NULL || buffer != NULL)
{
if (buffer != NULL)
{
if (msg == NULL)
// JSON or JS mode: re-encode the message.
msg = json_encode(listtv, ch_mode);
if (msg != NULL)
{
#ifdef FEAT_TERMINAL
if (buffer->b_term != NULL)
write_to_term(buffer, msg, channel);
else
#endif
append_to_buffer(buffer, msg, channel, part);
}
}
if (callback != NULL)
{
if (cbitem != NULL)
invoke_one_time_callback(channel, cbhead, cbitem, argv);
else
{
// invoke the channel callback
ch_log(channel, "Invoking channel callback %s",
(char *)callback->cb_name);
invoke_callback(channel, callback, argv);
}
}
}
else
ch_log(channel, "Dropping message %d", seq_nr);
if (listtv != NULL)
free_tv(listtv);
vim_free(msg);
return TRUE;
}
#if defined(FEAT_NETBEANS_INTG) || defined(PROTO)
/*
* Return TRUE when channel "channel" is open for writing to.
* Also returns FALSE or invalid "channel".
*/
int
channel_can_write_to(channel_T *channel)
{
return channel != NULL && (channel->CH_SOCK_FD != INVALID_FD
|| channel->CH_IN_FD != INVALID_FD);
}
#endif
/*
* Return TRUE when channel "channel" is open for reading or writing.
* Also returns FALSE for invalid "channel".
*/
int
channel_is_open(channel_T *channel)
{
return channel != NULL && (channel->CH_SOCK_FD != INVALID_FD
|| channel->CH_IN_FD != INVALID_FD
|| channel->CH_OUT_FD != INVALID_FD
|| channel->CH_ERR_FD != INVALID_FD);
}
/*
* Return TRUE if "channel" has JSON or other typeahead.
*/
static int
channel_has_readahead(channel_T *channel, ch_part_T part)
{
ch_mode_T ch_mode = channel->ch_part[part].ch_mode;
if (ch_mode == MODE_JSON || ch_mode == MODE_JS)
{
jsonq_T *head = &channel->ch_part[part].ch_json_head;
if (head->jq_next == NULL)
// Parse json from readahead, there might be a complete message to
// process.
channel_parse_json(channel, part);
return head->jq_next != NULL;
}
return channel_peek(channel, part) != NULL;
}
/*
* Return a string indicating the status of the channel.
* If "req_part" is not negative check that part.
*/
char *
channel_status(channel_T *channel, int req_part)
{
ch_part_T part;
int has_readahead = FALSE;
if (channel == NULL)
return "fail";
if (req_part == PART_OUT)
{
if (channel->CH_OUT_FD != INVALID_FD)
return "open";
if (channel_has_readahead(channel, PART_OUT))
has_readahead = TRUE;
}
else if (req_part == PART_ERR)
{
if (channel->CH_ERR_FD != INVALID_FD)
return "open";
if (channel_has_readahead(channel, PART_ERR))
has_readahead = TRUE;
}
else
{
if (channel_is_open(channel))
return "open";
for (part = PART_SOCK; part < PART_IN; ++part)
if (channel_has_readahead(channel, part))
{
has_readahead = TRUE;
break;
}
}
if (has_readahead)
return "buffered";
return "closed";
}
static void
channel_part_info(channel_T *channel, dict_T *dict, char *name, ch_part_T part)
{
chanpart_T *chanpart = &channel->ch_part[part];
char namebuf[20]; // longest is "sock_timeout"
size_t tail;
char *status;
char *s = "";
vim_strncpy((char_u *)namebuf, (char_u *)name, 4);
STRCAT(namebuf, "_");
tail = STRLEN(namebuf);
STRCPY(namebuf + tail, "status");
if (chanpart->ch_fd != INVALID_FD)
status = "open";
else if (channel_has_readahead(channel, part))
status = "buffered";
else
status = "closed";
dict_add_string(dict, namebuf, (char_u *)status);
STRCPY(namebuf + tail, "mode");
switch (chanpart->ch_mode)
{
case MODE_NL: s = "NL"; break;
case MODE_RAW: s = "RAW"; break;
case MODE_JSON: s = "JSON"; break;
case MODE_JS: s = "JS"; break;
}
dict_add_string(dict, namebuf, (char_u *)s);
STRCPY(namebuf + tail, "io");
if (part == PART_SOCK)
s = "socket";
else switch (chanpart->ch_io)
{
case JIO_NULL: s = "null"; break;
case JIO_PIPE: s = "pipe"; break;
case JIO_FILE: s = "file"; break;
case JIO_BUFFER: s = "buffer"; break;
case JIO_OUT: s = "out"; break;
}
dict_add_string(dict, namebuf, (char_u *)s);
STRCPY(namebuf + tail, "timeout");
dict_add_number(dict, namebuf, chanpart->ch_timeout);
}
static void
channel_info(channel_T *channel, dict_T *dict)
{
dict_add_number(dict, "id", channel->ch_id);
dict_add_string(dict, "status", (char_u *)channel_status(channel, -1));
if (channel->ch_hostname != NULL)
{
dict_add_string(dict, "hostname", (char_u *)channel->ch_hostname);
dict_add_number(dict, "port", channel->ch_port);
channel_part_info(channel, dict, "sock", PART_SOCK);
}
else
{
channel_part_info(channel, dict, "out", PART_OUT);
channel_part_info(channel, dict, "err", PART_ERR);
channel_part_info(channel, dict, "in", PART_IN);
}
}
/*
* Close channel "channel".
* Trigger the close callback if "invoke_close_cb" is TRUE.
* Does not clear the buffers.
*/
void
channel_close(channel_T *channel, int invoke_close_cb)
{
ch_log(channel, "Closing channel");
#ifdef FEAT_GUI
channel_gui_unregister(channel);
#endif
ch_close_part(channel, PART_SOCK);
ch_close_part(channel, PART_IN);
ch_close_part(channel, PART_OUT);
ch_close_part(channel, PART_ERR);
if (invoke_close_cb)
{
ch_part_T part;
// Invoke callbacks and flush buffers before the close callback.
if (channel->ch_close_cb.cb_name != NULL)
ch_log(channel,
"Invoking callbacks and flushing buffers before closing");
for (part = PART_SOCK; part < PART_IN; ++part)
{
if (channel->ch_close_cb.cb_name != NULL
|| channel->ch_part[part].ch_bufref.br_buf != NULL)
{
// Increment the refcount to avoid the channel being freed
// halfway.
++channel->ch_refcount;
if (channel->ch_close_cb.cb_name == NULL)
ch_log(channel, "flushing %s buffers before closing",
part_names[part]);
while (may_invoke_callback(channel, part))
;
--channel->ch_refcount;
}
}
if (channel->ch_close_cb.cb_name != NULL)
{
typval_T argv[1];
typval_T rettv;
// Increment the refcount to avoid the channel being freed
// halfway.
++channel->ch_refcount;
ch_log(channel, "Invoking close callback %s",
(char *)channel->ch_close_cb.cb_name);
argv[0].v_type = VAR_CHANNEL;
argv[0].vval.v_channel = channel;
call_callback(&channel->ch_close_cb, -1, &rettv, 1, argv);
clear_tv(&rettv);
channel_need_redraw = TRUE;
// the callback is only called once
free_callback(&channel->ch_close_cb);
if (channel_need_redraw)
{
channel_need_redraw = FALSE;
redraw_after_callback(TRUE);
}
if (!channel->ch_drop_never)
// any remaining messages are useless now
for (part = PART_SOCK; part < PART_IN; ++part)
drop_messages(channel, part);
--channel->ch_refcount;
}
}
channel->ch_nb_close_cb = NULL;
#ifdef FEAT_TERMINAL
term_channel_closed(channel);
#endif
}
/*
* Close the "in" part channel "channel".
*/
static void
channel_close_in(channel_T *channel)
{
ch_close_part(channel, PART_IN);
}
static void
remove_from_writeque(writeq_T *wq, writeq_T *entry)
{
ga_clear(&entry->wq_ga);
wq->wq_next = entry->wq_next;
if (wq->wq_next == NULL)
wq->wq_prev = NULL;
else
wq->wq_next->wq_prev = NULL;
vim_free(entry);
}
/*
* Clear the read buffer on "channel"/"part".
*/
static void
channel_clear_one(channel_T *channel, ch_part_T part)
{
chanpart_T *ch_part = &channel->ch_part[part];
jsonq_T *json_head = &ch_part->ch_json_head;
cbq_T *cb_head = &ch_part->ch_cb_head;
while (channel_peek(channel, part) != NULL)
vim_free(channel_get(channel, part, NULL));
while (cb_head->cq_next != NULL)
{
cbq_T *node = cb_head->cq_next;
remove_cb_node(cb_head, node);
free_callback(&node->cq_callback);
vim_free(node);
}
while (json_head->jq_next != NULL)
{
free_tv(json_head->jq_next->jq_value);
remove_json_node(json_head, json_head->jq_next);
}
free_callback(&ch_part->ch_callback);
ga_clear(&ch_part->ch_block_ids);
while (ch_part->ch_writeque.wq_next != NULL)
remove_from_writeque(&ch_part->ch_writeque,
ch_part->ch_writeque.wq_next);
}
/*
* Clear all the read buffers on "channel".
*/
void
channel_clear(channel_T *channel)
{
ch_log(channel, "Clearing channel");
VIM_CLEAR(channel->ch_hostname);
channel_clear_one(channel, PART_SOCK);
channel_clear_one(channel, PART_OUT);
channel_clear_one(channel, PART_ERR);
channel_clear_one(channel, PART_IN);
free_callback(&channel->ch_callback);
free_callback(&channel->ch_close_cb);
}
#if defined(EXITFREE) || defined(PROTO)
void
channel_free_all(void)
{
channel_T *channel;
ch_log(NULL, "channel_free_all()");
for (channel = first_channel; channel != NULL; channel = channel->ch_next)
channel_clear(channel);
}
#endif
// Sent when the netbeans channel is found closed when reading.
#define DETACH_MSG_RAW "DETACH\n"
// Buffer size for reading incoming messages.
#define MAXMSGSIZE 4096
#if defined(HAVE_SELECT)
/*
* Add write fds where we are waiting for writing to be possible.
*/
static int
channel_fill_wfds(int maxfd_arg, fd_set *wfds)
{
int maxfd = maxfd_arg;
channel_T *ch;
for (ch = first_channel; ch != NULL; ch = ch->ch_next)
{
chanpart_T *in_part = &ch->ch_part[PART_IN];
if (in_part->ch_fd != INVALID_FD
&& (in_part->ch_bufref.br_buf != NULL
|| in_part->ch_writeque.wq_next != NULL))
{
FD_SET((int)in_part->ch_fd, wfds);
if ((int)in_part->ch_fd >= maxfd)
maxfd = (int)in_part->ch_fd + 1;
}
}
return maxfd;
}
#else
/*
* Add write fds where we are waiting for writing to be possible.
*/
static int
channel_fill_poll_write(int nfd_in, struct pollfd *fds)
{
int nfd = nfd_in;
channel_T *ch;
for (ch = first_channel; ch != NULL; ch = ch->ch_next)
{
chanpart_T *in_part = &ch->ch_part[PART_IN];
if (in_part->ch_fd != INVALID_FD
&& (in_part->ch_bufref.br_buf != NULL
|| in_part->ch_writeque.wq_next != NULL))
{
in_part->ch_poll_idx = nfd;
fds[nfd].fd = in_part->ch_fd;
fds[nfd].events = POLLOUT;
++nfd;
}
else
in_part->ch_poll_idx = -1;
}
return nfd;
}
#endif
typedef enum {
CW_READY,
CW_NOT_READY,
CW_ERROR
} channel_wait_result;
/*
* Check for reading from "fd" with "timeout" msec.
* Return CW_READY when there is something to read.
* Return CW_NOT_READY when there is nothing to read.
* Return CW_ERROR when there is an error.
*/
static channel_wait_result
channel_wait(channel_T *channel, sock_T fd, int timeout)
{
if (timeout > 0)
ch_log(channel, "Waiting for up to %d msec", timeout);
# ifdef MSWIN
if (fd != channel->CH_SOCK_FD)
{
DWORD nread;
int sleep_time;
DWORD deadline = GetTickCount() + timeout;
int delay = 1;
// reading from a pipe, not a socket
while (TRUE)
{
int r = PeekNamedPipe((HANDLE)fd, NULL, 0, NULL, &nread, NULL);
if (r && nread > 0)
return CW_READY;
if (channel->ch_named_pipe)
{
DisconnectNamedPipe((HANDLE)fd);
ConnectNamedPipe((HANDLE)fd, NULL);
}
else if (r == 0)
return CW_ERROR;
// perhaps write some buffer lines
channel_write_any_lines();
sleep_time = deadline - GetTickCount();
if (sleep_time <= 0)
break;
// Wait for a little while. Very short at first, up to 10 msec
// after looping a few times.
if (sleep_time > delay)
sleep_time = delay;
Sleep(sleep_time);
delay = delay * 2;
if (delay > 10)
delay = 10;
}
}
else
#endif
{
#if defined(HAVE_SELECT)
struct timeval tval;
fd_set rfds;
fd_set wfds;
int ret;
int maxfd;
tval.tv_sec = timeout / 1000;
tval.tv_usec = (timeout % 1000) * 1000;
for (;;)
{
FD_ZERO(&rfds);
FD_SET((int)fd, &rfds);
// Write lines to a pipe when a pipe can be written to. Need to
// set this every time, some buffers may be done.
maxfd = (int)fd + 1;
FD_ZERO(&wfds);
maxfd = channel_fill_wfds(maxfd, &wfds);
ret = select(maxfd, &rfds, &wfds, NULL, &tval);
# ifdef EINTR
SOCK_ERRNO;
if (ret == -1 && errno == EINTR)
continue;
# endif
if (ret > 0)
{
if (FD_ISSET(fd, &rfds))
return CW_READY;
channel_write_any_lines();
continue;
}
break;
}
#else
for (;;)
{
struct pollfd fds[MAX_OPEN_CHANNELS + 1];
int nfd = 1;
fds[0].fd = fd;
fds[0].events = POLLIN;
nfd = channel_fill_poll_write(nfd, fds);
if (poll(fds, nfd, timeout) > 0)
{
if (fds[0].revents & POLLIN)
return CW_READY;
channel_write_any_lines();
continue;
}
break;
}
#endif
}
return CW_NOT_READY;
}
static void
ch_close_part_on_error(
channel_T *channel, ch_part_T part, int is_err, char *func)
{
char msg[] = "%s(): Read %s from ch_part[%d], closing";
if (is_err)
// Do not call emsg(), most likely the other end just exited.
ch_error(channel, msg, func, "error", part);
else
ch_log(channel, msg, func, "EOF", part);
// Queue a "DETACH" netbeans message in the command queue in order to
// terminate the netbeans session later. Do not end the session here
// directly as we may be running in the context of a call to
// netbeans_parse_messages():
// netbeans_parse_messages
// -> autocmd triggered while processing the netbeans cmd
// -> ui_breakcheck
// -> gui event loop or select loop
// -> channel_read()
// Only send "DETACH" for a netbeans channel.
if (channel->ch_nb_close_cb != NULL)
channel_save(channel, PART_SOCK, (char_u *)DETACH_MSG_RAW,
(int)STRLEN(DETACH_MSG_RAW), FALSE, "PUT ");
// When reading is not possible close this part of the channel. Don't
// close the channel yet, there may be something to read on another part.
// When stdout and stderr use the same FD we get the error only on one of
// them, also close the other.
if (part == PART_OUT || part == PART_ERR)
{
ch_part_T other = part == PART_OUT ? PART_ERR : PART_OUT;
if (channel->ch_part[part].ch_fd == channel->ch_part[other].ch_fd)
ch_close_part(channel, other);
}
ch_close_part(channel, part);
#ifdef FEAT_GUI
// Stop listening to GUI events right away.
channel_gui_unregister_one(channel, part);
#endif
}
static void
channel_close_now(channel_T *channel)
{
ch_log(channel, "Closing channel because all readable fds are closed");
if (channel->ch_nb_close_cb != NULL)
(*channel->ch_nb_close_cb)();
channel_close(channel, TRUE);
}
/*
* Read from channel "channel" for as long as there is something to read.
* "part" is PART_SOCK, PART_OUT or PART_ERR.
* The data is put in the read queue. No callbacks are invoked here.
*/
static void
channel_read(channel_T *channel, ch_part_T part, char *func)
{
static char_u *buf = NULL;
int len = 0;
int readlen = 0;
sock_T fd;
int use_socket = FALSE;
fd = channel->ch_part[part].ch_fd;
if (fd == INVALID_FD)
{
ch_error(channel, "channel_read() called while %s part is closed",
part_names[part]);
return;
}
use_socket = fd == channel->CH_SOCK_FD;
// Allocate a buffer to read into.
if (buf == NULL)
{
buf = alloc(MAXMSGSIZE);
if (buf == NULL)
return; // out of memory!
}
// Keep on reading for as long as there is something to read.
// Use select() or poll() to avoid blocking on a message that is exactly
// MAXMSGSIZE long.
for (;;)
{
if (channel_wait(channel, fd, 0) != CW_READY)
break;
if (use_socket)
len = sock_read(fd, (char *)buf, MAXMSGSIZE);
else
len = fd_read(fd, (char *)buf, MAXMSGSIZE);
if (len <= 0)
break; // error or nothing more to read
// Store the read message in the queue.
channel_save(channel, part, buf, len, FALSE, "RECV ");
readlen += len;
if (len < MAXMSGSIZE)
break; // did read everything that's available
}
// Reading a disconnection (readlen == 0), or an error.
if (readlen <= 0)
{
if (!channel->ch_keep_open)
ch_close_part_on_error(channel, part, (len < 0), func);
}
#if defined(CH_HAS_GUI) && defined(FEAT_GUI_GTK)
else if (CH_HAS_GUI && gtk_main_level() > 0)
// signal the main loop that there is something to read
gtk_main_quit();
#endif
}
/*
* Read from RAW or NL "channel"/"part". Blocks until there is something to
* read or the timeout expires.
* When "raw" is TRUE don't block waiting on a NL.
* Does not trigger timers or handle messages.
* Returns what was read in allocated memory.
* Returns NULL in case of error or timeout.
*/
static char_u *
channel_read_block(
channel_T *channel, ch_part_T part, int timeout, int raw, int *outlen)
{
char_u *buf;
char_u *msg;
ch_mode_T mode = channel->ch_part[part].ch_mode;
sock_T fd = channel->ch_part[part].ch_fd;
char_u *nl;
readq_T *node;
ch_log(channel, "Blocking %s read, timeout: %d msec",
mode == MODE_RAW ? "RAW" : "NL", timeout);
while (TRUE)
{
node = channel_peek(channel, part);
if (node != NULL)
{
if (mode == MODE_RAW || (mode == MODE_NL
&& channel_first_nl(node) != NULL))
// got a complete message
break;
if (channel_collapse(channel, part, mode == MODE_NL) == OK)
continue;
// If not blocking or nothing more is coming then return what we
// have.
if (raw || fd == INVALID_FD)
break;
}
// Wait for up to the channel timeout.
if (fd == INVALID_FD)
return NULL;
if (channel_wait(channel, fd, timeout) != CW_READY)
{
ch_log(channel, "Timed out");
return NULL;
}
channel_read(channel, part, "channel_read_block");
}
// We have a complete message now.
if (mode == MODE_RAW || outlen != NULL)
{
msg = channel_get_all(channel, part, outlen);
}
else
{
char_u *p;
buf = node->rq_buffer;
nl = channel_first_nl(node);
// Convert NUL to NL, the internal representation.
for (p = buf; (nl == NULL || p < nl) && p < buf + node->rq_buflen; ++p)
if (*p == NUL)
*p = NL;
if (nl == NULL)
{
// must be a closed channel with missing NL
msg = channel_get(channel, part, NULL);
}
else if (nl + 1 == buf + node->rq_buflen)
{
// get the whole buffer
msg = channel_get(channel, part, NULL);
*nl = NUL;
}
else
{
// Copy the message into allocated memory and remove it from the
// buffer.
msg = vim_strnsave(buf, (int)(nl - buf));
channel_consume(channel, part, (int)(nl - buf) + 1);
}
}
if (ch_log_active())
ch_log(channel, "Returning %d bytes", (int)STRLEN(msg));
return msg;
}
static int channel_blocking_wait = 0;
/*
* Return TRUE if in a blocking wait that might trigger callbacks.
*/
int
channel_in_blocking_wait(void)
{
return channel_blocking_wait > 0;
}
/*
* Read one JSON message with ID "id" from "channel"/"part" and store the
* result in "rettv".
* When "id" is -1 accept any message;
* Blocks until the message is received or the timeout is reached.
* In corner cases this can be called recursively, that is why ch_block_ids is
* a list.
*/
static int
channel_read_json_block(
channel_T *channel,
ch_part_T part,
int timeout_arg,
int id,
typval_T **rettv)
{
int more;
sock_T fd;
int timeout;
chanpart_T *chanpart = &channel->ch_part[part];
int retval = FAIL;
ch_log(channel, "Blocking read JSON for id %d", id);
++channel_blocking_wait;
if (id >= 0)
channel_add_block_id(chanpart, id);
for (;;)
{
more = channel_parse_json(channel, part);
// search for message "id"
if (channel_get_json(channel, part, id, TRUE, rettv) == OK)
{
ch_log(channel, "Received JSON for id %d", id);
retval = OK;
break;
}
if (!more)
{
// Handle any other messages in the queue. If done some more
// messages may have arrived.
if (channel_parse_messages())
continue;
// Wait for up to the timeout. If there was an incomplete message
// use the deadline for that.
timeout = timeout_arg;
if (chanpart->ch_wait_len > 0)
{
#ifdef MSWIN
timeout = chanpart->ch_deadline - GetTickCount() + 1;
#else
{
struct timeval now_tv;
gettimeofday(&now_tv, NULL);
timeout = (chanpart->ch_deadline.tv_sec
- now_tv.tv_sec) * 1000
+ (chanpart->ch_deadline.tv_usec
- now_tv.tv_usec) / 1000
+ 1;
}
#endif
if (timeout < 0)
{
// Something went wrong, channel_parse_json() didn't
// discard message. Cancel waiting.
chanpart->ch_wait_len = 0;
timeout = timeout_arg;
}
else if (timeout > timeout_arg)
timeout = timeout_arg;
}
fd = chanpart->ch_fd;
if (fd == INVALID_FD
|| channel_wait(channel, fd, timeout) != CW_READY)
{
if (timeout == timeout_arg)
{
if (fd != INVALID_FD)
ch_log(channel, "Timed out on id %d", id);
break;
}
}
else
channel_read(channel, part, "channel_read_json_block");
}
}
if (id >= 0)
channel_remove_block_id(chanpart, id);
--channel_blocking_wait;
return retval;
}
/*
* Get the channel from the argument.
* Returns NULL if the handle is invalid.
* When "check_open" is TRUE check that the channel can be used.
* When "reading" is TRUE "check_open" considers typeahead useful.
* "part" is used to check typeahead, when PART_COUNT use the default part.
*/
static channel_T *
get_channel_arg(typval_T *tv, int check_open, int reading, ch_part_T part)
{
channel_T *channel = NULL;
int has_readahead = FALSE;
if (tv->v_type == VAR_JOB)
{
if (tv->vval.v_job != NULL)
channel = tv->vval.v_job->jv_channel;
}
else if (tv->v_type == VAR_CHANNEL)
{
channel = tv->vval.v_channel;
}
else
{
semsg(_(e_invarg2), tv_get_string(tv));
return NULL;
}
if (channel != NULL && reading)
has_readahead = channel_has_readahead(channel,
part != PART_COUNT ? part : channel_part_read(channel));
if (check_open && (channel == NULL || (!channel_is_open(channel)
&& !(reading && has_readahead))))
{
emsg(_("E906: not an open channel"));
return NULL;
}
return channel;
}
/*
* Common for ch_read() and ch_readraw().
*/
static void
common_channel_read(typval_T *argvars, typval_T *rettv, int raw, int blob)
{
channel_T *channel;
ch_part_T part = PART_COUNT;
jobopt_T opt;
int mode;
int timeout;
int id = -1;
typval_T *listtv = NULL;
// return an empty string by default
rettv->v_type = VAR_STRING;
rettv->vval.v_string = NULL;
clear_job_options(&opt);
if (get_job_options(&argvars[1], &opt, JO_TIMEOUT + JO_PART + JO_ID, 0)
== FAIL)
goto theend;
if (opt.jo_set & JO_PART)
part = opt.jo_part;
channel = get_channel_arg(&argvars[0], TRUE, TRUE, part);
if (channel != NULL)
{
if (part == PART_COUNT)
part = channel_part_read(channel);
mode = channel_get_mode(channel, part);
timeout = channel_get_timeout(channel, part);
if (opt.jo_set & JO_TIMEOUT)
timeout = opt.jo_timeout;
if (blob)
{
int outlen = 0;
char_u *p = channel_read_block(channel, part,
timeout, TRUE, &outlen);
if (p != NULL)
{
blob_T *b = blob_alloc();
if (b != NULL)
{
b->bv_ga.ga_len = outlen;
if (ga_grow(&b->bv_ga, outlen) == FAIL)
blob_free(b);
else
{
memcpy(b->bv_ga.ga_data, p, outlen);
rettv_blob_set(rettv, b);
}
}
vim_free(p);
}
}
else if (raw || mode == MODE_RAW || mode == MODE_NL)
rettv->vval.v_string = channel_read_block(channel, part,
timeout, raw, NULL);
else
{
if (opt.jo_set & JO_ID)
id = opt.jo_id;
channel_read_json_block(channel, part, timeout, id, &listtv);
if (listtv != NULL)
{
*rettv = *listtv;
vim_free(listtv);
}
else
{
rettv->v_type = VAR_SPECIAL;
rettv->vval.v_number = VVAL_NONE;
}
}
}
theend:
free_job_options(&opt);
}
# if defined(MSWIN) || defined(FEAT_GUI) || defined(PROTO)
/*
* Check the channels for anything that is ready to be read.
* The data is put in the read queue.
* if "only_keep_open" is TRUE only check channels where ch_keep_open is set.
*/
void
channel_handle_events(int only_keep_open)
{
channel_T *channel;
ch_part_T part;
sock_T fd;
for (channel = first_channel; channel != NULL; channel = channel->ch_next)
{
if (only_keep_open && !channel->ch_keep_open)
continue;
// check the socket and pipes
for (part = PART_SOCK; part < PART_IN; ++part)
{
fd = channel->ch_part[part].ch_fd;
if (fd != INVALID_FD)
{
int r = channel_wait(channel, fd, 0);
if (r == CW_READY)
channel_read(channel, part, "channel_handle_events");
else if (r == CW_ERROR)
ch_close_part_on_error(channel, part, TRUE,
"channel_handle_events");
}
}
}
}
# endif
# if defined(FEAT_GUI) || defined(PROTO)
/*
* Return TRUE when there is any channel with a keep_open flag.
*/
int
channel_any_keep_open()
{
channel_T *channel;
for (channel = first_channel; channel != NULL; channel = channel->ch_next)
if (channel->ch_keep_open)
return TRUE;
return FALSE;
}
# endif
/*
* Set "channel"/"part" to non-blocking.
* Only works for sockets and pipes.
*/
void
channel_set_nonblock(channel_T *channel, ch_part_T part)
{
chanpart_T *ch_part = &channel->ch_part[part];
int fd = ch_part->ch_fd;
if (fd != INVALID_FD)
{
#ifdef MSWIN
u_long val = 1;
ioctlsocket(fd, FIONBIO, &val);
#else
(void)fcntl(fd, F_SETFL, O_NONBLOCK);
#endif
ch_part->ch_nonblocking = TRUE;
}
}
/*
* Write "buf" (NUL terminated string) to "channel"/"part".
* When "fun" is not NULL an error message might be given.
* Return FAIL or OK.
*/
int
channel_send(
channel_T *channel,
ch_part_T part,
char_u *buf_arg,
int len_arg,
char *fun)
{
int res;
sock_T fd;
chanpart_T *ch_part = &channel->ch_part[part];
int did_use_queue = FALSE;
fd = ch_part->ch_fd;
if (fd == INVALID_FD)
{
if (!channel->ch_error && fun != NULL)
{
ch_error(channel, "%s(): write while not connected", fun);
semsg(_("E630: %s(): write while not connected"), fun);
}
channel->ch_error = TRUE;
return FAIL;
}
if (channel->ch_nonblock && !ch_part->ch_nonblocking)
channel_set_nonblock(channel, part);
if (ch_log_active())
{
ch_log_lead("SEND ", channel, part);
fprintf(log_fd, "'");
vim_ignored = (int)fwrite(buf_arg, len_arg, 1, log_fd);
fprintf(log_fd, "'\n");
fflush(log_fd);
did_repeated_msg = 0;
}
for (;;)
{
writeq_T *wq = &ch_part->ch_writeque;
char_u *buf;
int len;
if (wq->wq_next != NULL)
{
// first write what was queued
buf = wq->wq_next->wq_ga.ga_data;
len = wq->wq_next->wq_ga.ga_len;
did_use_queue = TRUE;
}
else
{
if (len_arg == 0)
// nothing to write, called from channel_select_check()
return OK;
buf = buf_arg;
len = len_arg;
}
if (part == PART_SOCK)
res = sock_write(fd, (char *)buf, len);
else
{
res = fd_write(fd, (char *)buf, len);
#ifdef MSWIN
if (channel->ch_named_pipe && res < 0)
{
DisconnectNamedPipe((HANDLE)fd);
ConnectNamedPipe((HANDLE)fd, NULL);
}
#endif
}
if (res < 0 && (errno == EWOULDBLOCK
#ifdef EAGAIN
|| errno == EAGAIN
#endif
))
res = 0; // nothing got written
if (res >= 0 && ch_part->ch_nonblocking)
{
writeq_T *entry = wq->wq_next;
if (did_use_queue)
ch_log(channel, "Sent %d bytes now", res);
if (res == len)
{
// Wrote all the buf[len] bytes.
if (entry != NULL)
{
// Remove the entry from the write queue.
remove_from_writeque(wq, entry);
continue;
}
if (did_use_queue)
ch_log(channel, "Write queue empty");
}
else
{
// Wrote only buf[res] bytes, can't write more now.
if (entry != NULL)
{
if (res > 0)
{
// Remove the bytes that were written.
mch_memmove(entry->wq_ga.ga_data,
(char *)entry->wq_ga.ga_data + res,
len - res);
entry->wq_ga.ga_len -= res;
}
buf = buf_arg;
len = len_arg;
}
else
{
buf += res;
len -= res;
}
ch_log(channel, "Adding %d bytes to the write queue", len);
// Append the not written bytes of the argument to the write
// buffer. Limit entries to 4000 bytes.
if (wq->wq_prev != NULL
&& wq->wq_prev->wq_ga.ga_len + len < 4000)
{
writeq_T *last = wq->wq_prev;
// append to the last entry
if (len > 0 && ga_grow(&last->wq_ga, len) == OK)
{
mch_memmove((char *)last->wq_ga.ga_data
+ last->wq_ga.ga_len,
buf, len);
last->wq_ga.ga_len += len;
}
}
else
{
writeq_T *last = ALLOC_ONE(writeq_T);
if (last != NULL)
{
last->wq_prev = wq->wq_prev;
last->wq_next = NULL;
if (wq->wq_prev == NULL)
wq->wq_next = last;
else
wq->wq_prev->wq_next = last;
wq->wq_prev = last;
ga_init2(&last->wq_ga, 1, 1000);
if (len > 0 && ga_grow(&last->wq_ga, len) == OK)
{
mch_memmove(last->wq_ga.ga_data, buf, len);
last->wq_ga.ga_len = len;
}
}
}
}
}
else if (res != len)
{
if (!channel->ch_error && fun != NULL)
{
ch_error(channel, "%s(): write failed", fun);
semsg(_("E631: %s(): write failed"), fun);
}
channel->ch_error = TRUE;
return FAIL;
}
channel->ch_error = FALSE;
return OK;
}
}
/*
* Common for "ch_sendexpr()" and "ch_sendraw()".
* Returns the channel if the caller should read the response.
* Sets "part_read" to the read fd.
* Otherwise returns NULL.
*/
static channel_T *
send_common(
typval_T *argvars,
char_u *text,
int len,
int id,
int eval,
jobopt_T *opt,
char *fun,
ch_part_T *part_read)
{
channel_T *channel;
ch_part_T part_send;
clear_job_options(opt);
channel = get_channel_arg(&argvars[0], TRUE, FALSE, 0);
if (channel == NULL)
return NULL;
part_send = channel_part_send(channel);
*part_read = channel_part_read(channel);
if (get_job_options(&argvars[2], opt, JO_CALLBACK + JO_TIMEOUT, 0) == FAIL)
return NULL;
// Set the callback. An empty callback means no callback and not reading
// the response. With "ch_evalexpr()" and "ch_evalraw()" a callback is not
// allowed.
if (opt->jo_callback.cb_name != NULL && *opt->jo_callback.cb_name != NUL)
{
if (eval)
{
semsg(_("E917: Cannot use a callback with %s()"), fun);
return NULL;
}
channel_set_req_callback(channel, *part_read, &opt->jo_callback, id);
}
if (channel_send(channel, part_send, text, len, fun) == OK
&& opt->jo_callback.cb_name == NULL)
return channel;
return NULL;
}
/*
* common for "ch_evalexpr()" and "ch_sendexpr()"
*/
static void
ch_expr_common(typval_T *argvars, typval_T *rettv, int eval)
{
char_u *text;
typval_T *listtv;
channel_T *channel;
int id;
ch_mode_T ch_mode;
ch_part_T part_send;
ch_part_T part_read;
jobopt_T opt;
int timeout;
// return an empty string by default
rettv->v_type = VAR_STRING;
rettv->vval.v_string = NULL;
channel = get_channel_arg(&argvars[0], TRUE, FALSE, 0);
if (channel == NULL)
return;
part_send = channel_part_send(channel);
ch_mode = channel_get_mode(channel, part_send);
if (ch_mode == MODE_RAW || ch_mode == MODE_NL)
{
emsg(_("E912: cannot use ch_evalexpr()/ch_sendexpr() with a raw or nl channel"));
return;
}
id = ++channel->ch_last_msg_id;
text = json_encode_nr_expr(id, &argvars[1],
(ch_mode == MODE_JS ? JSON_JS : 0) | JSON_NL);
if (text == NULL)
return;
channel = send_common(argvars, text, (int)STRLEN(text), id, eval, &opt,
eval ? "ch_evalexpr" : "ch_sendexpr", &part_read);
vim_free(text);
if (channel != NULL && eval)
{
if (opt.jo_set & JO_TIMEOUT)
timeout = opt.jo_timeout;
else
timeout = channel_get_timeout(channel, part_read);
if (channel_read_json_block(channel, part_read, timeout, id, &listtv)
== OK)
{
list_T *list = listtv->vval.v_list;
// Move the item from the list and then change the type to
// avoid the value being freed.
*rettv = list->lv_last->li_tv;
list->lv_last->li_tv.v_type = VAR_NUMBER;
free_tv(listtv);
}
}
free_job_options(&opt);
}
/*
* common for "ch_evalraw()" and "ch_sendraw()"
*/
static void
ch_raw_common(typval_T *argvars, typval_T *rettv, int eval)
{
char_u buf[NUMBUFLEN];
char_u *text;
int len;
channel_T *channel;
ch_part_T part_read;
jobopt_T opt;
int timeout;
// return an empty string by default
rettv->v_type = VAR_STRING;
rettv->vval.v_string = NULL;
if (argvars[1].v_type == VAR_BLOB)
{
text = argvars[1].vval.v_blob->bv_ga.ga_data;
len = argvars[1].vval.v_blob->bv_ga.ga_len;
}
else
{
text = tv_get_string_buf(&argvars[1], buf);
len = (int)STRLEN(text);
}
channel = send_common(argvars, text, len, 0, eval, &opt,
eval ? "ch_evalraw" : "ch_sendraw", &part_read);
if (channel != NULL && eval)
{
if (opt.jo_set & JO_TIMEOUT)
timeout = opt.jo_timeout;
else
timeout = channel_get_timeout(channel, part_read);
rettv->vval.v_string = channel_read_block(channel, part_read,
timeout, TRUE, NULL);
}
free_job_options(&opt);
}
#define KEEP_OPEN_TIME 20 // msec
#if (defined(UNIX) && !defined(HAVE_SELECT)) || defined(PROTO)
/*
* Add open channels to the poll struct.
* Return the adjusted struct index.
* The type of "fds" is hidden to avoid problems with the function proto.
*/
int
channel_poll_setup(int nfd_in, void *fds_in, int *towait)
{
int nfd = nfd_in;
channel_T *channel;
struct pollfd *fds = fds_in;
ch_part_T part;
for (channel = first_channel; channel != NULL; channel = channel->ch_next)
{
for (part = PART_SOCK; part < PART_IN; ++part)
{
chanpart_T *ch_part = &channel->ch_part[part];
if (ch_part->ch_fd != INVALID_FD)
{
if (channel->ch_keep_open)
{
// For unknown reason poll() returns immediately for a
// keep-open channel. Instead of adding it to the fds add
// a short timeout and check, like polling.
if (*towait < 0 || *towait > KEEP_OPEN_TIME)
*towait = KEEP_OPEN_TIME;
}
else
{
ch_part->ch_poll_idx = nfd;
fds[nfd].fd = ch_part->ch_fd;
fds[nfd].events = POLLIN;
nfd++;
}
}
else
channel->ch_part[part].ch_poll_idx = -1;
}
}
nfd = channel_fill_poll_write(nfd, fds);
return nfd;
}
/*
* The type of "fds" is hidden to avoid problems with the function proto.
*/
int
channel_poll_check(int ret_in, void *fds_in)
{
int ret = ret_in;
channel_T *channel;
struct pollfd *fds = fds_in;
ch_part_T part;
int idx;
chanpart_T *in_part;
for (channel = first_channel; channel != NULL; channel = channel->ch_next)
{
for (part = PART_SOCK; part < PART_IN; ++part)
{
idx = channel->ch_part[part].ch_poll_idx;
if (ret > 0 && idx != -1 && (fds[idx].revents & POLLIN))
{
channel_read(channel, part, "channel_poll_check");
--ret;
}
else if (channel->ch_part[part].ch_fd != INVALID_FD
&& channel->ch_keep_open)
{
// polling a keep-open channel
channel_read(channel, part, "channel_poll_check_keep_open");
}
}
in_part = &channel->ch_part[PART_IN];
idx = in_part->ch_poll_idx;
if (ret > 0 && idx != -1 && (fds[idx].revents & POLLOUT))
{
channel_write_input(channel);
--ret;
}
}
return ret;
}
#endif // UNIX && !HAVE_SELECT
#if (!defined(MSWIN) && defined(HAVE_SELECT)) || defined(PROTO)
/*
* The "fd_set" type is hidden to avoid problems with the function proto.
*/
int
channel_select_setup(
int maxfd_in,
void *rfds_in,
void *wfds_in,
struct timeval *tv,
struct timeval **tvp)
{
int maxfd = maxfd_in;
channel_T *channel;
fd_set *rfds = rfds_in;
fd_set *wfds = wfds_in;
ch_part_T part;
for (channel = first_channel; channel != NULL; channel = channel->ch_next)
{
for (part = PART_SOCK; part < PART_IN; ++part)
{
sock_T fd = channel->ch_part[part].ch_fd;
if (fd != INVALID_FD)
{
if (channel->ch_keep_open)
{
// For unknown reason select() returns immediately for a
// keep-open channel. Instead of adding it to the rfds add
// a short timeout and check, like polling.
if (*tvp == NULL || tv->tv_sec > 0
|| tv->tv_usec > KEEP_OPEN_TIME * 1000)
{
*tvp = tv;
tv->tv_sec = 0;
tv->tv_usec = KEEP_OPEN_TIME * 1000;
}
}
else
{
FD_SET((int)fd, rfds);
if (maxfd < (int)fd)
maxfd = (int)fd;
}
}
}
}
maxfd = channel_fill_wfds(maxfd, wfds);
return maxfd;
}
/*
* The "fd_set" type is hidden to avoid problems with the function proto.
*/
int
channel_select_check(int ret_in, void *rfds_in, void *wfds_in)
{
int ret = ret_in;
channel_T *channel;
fd_set *rfds = rfds_in;
fd_set *wfds = wfds_in;
ch_part_T part;
chanpart_T *in_part;
for (channel = first_channel; channel != NULL; channel = channel->ch_next)
{
for (part = PART_SOCK; part < PART_IN; ++part)
{
sock_T fd = channel->ch_part[part].ch_fd;
if (ret > 0 && fd != INVALID_FD && FD_ISSET(fd, rfds))
{
channel_read(channel, part, "channel_select_check");
FD_CLR(fd, rfds);
--ret;
}
else if (fd != INVALID_FD && channel->ch_keep_open)
{
// polling a keep-open channel
channel_read(channel, part, "channel_select_check_keep_open");
}
}
in_part = &channel->ch_part[PART_IN];
if (ret > 0 && in_part->ch_fd != INVALID_FD
&& FD_ISSET(in_part->ch_fd, wfds))
{
// Clear the flag first, ch_fd may change in channel_write_input().
FD_CLR(in_part->ch_fd, wfds);
channel_write_input(channel);
--ret;
}
}
return ret;
}
#endif // !MSWIN && HAVE_SELECT
/*
* Execute queued up commands.
* Invoked from the main loop when it's safe to execute received commands,
* and during a blocking wait for ch_evalexpr().
* Return TRUE when something was done.
*/
int
channel_parse_messages(void)
{
channel_T *channel = first_channel;
int ret = FALSE;
int r;
ch_part_T part = PART_SOCK;
#ifdef ELAPSED_FUNC
elapsed_T start_tv;
ELAPSED_INIT(start_tv);
#endif
++safe_to_invoke_callback;
// Only do this message when another message was given, otherwise we get
// lots of them.
if ((did_repeated_msg & REPEATED_MSG_LOOKING) == 0)
{
ch_log(NULL, "looking for messages on channels");
// now we should also give the message for SafeState
did_repeated_msg = REPEATED_MSG_LOOKING;
}
while (channel != NULL)
{
if (channel_can_close(channel))
{
channel->ch_to_be_closed = (1U << PART_COUNT);
channel_close_now(channel);
// channel may have been freed, start over
channel = first_channel;
continue;
}
if (channel->ch_to_be_freed || channel->ch_killing)
{
if (channel->ch_killing)
{
channel_free_contents(channel);
channel->ch_job->jv_channel = NULL;
}
channel_free(channel);
// channel has been freed, start over
channel = first_channel;
continue;
}
if (channel->ch_refcount == 0 && !channel_still_useful(channel))
{
// channel is no longer useful, free it
channel_free(channel);
channel = first_channel;
part = PART_SOCK;
continue;
}
if (channel->ch_part[part].ch_fd != INVALID_FD
|| channel_has_readahead(channel, part))
{
// Increase the refcount, in case the handler causes the channel
// to be unreferenced or closed.
++channel->ch_refcount;
r = may_invoke_callback(channel, part);
if (r == OK)
ret = TRUE;
if (channel_unref(channel) || (r == OK
#ifdef ELAPSED_FUNC
// Limit the time we loop here to 100 msec, otherwise
// Vim becomes unresponsive when the callback takes
// more than a bit of time.
&& ELAPSED_FUNC(start_tv) < 100L
#endif
))
{
// channel was freed or something was done, start over
channel = first_channel;
part = PART_SOCK;
continue;
}
}
if (part < PART_ERR)
++part;
else
{
channel = channel->ch_next;
part = PART_SOCK;
}
}
if (channel_need_redraw)
{
channel_need_redraw = FALSE;
redraw_after_callback(TRUE);
}
--safe_to_invoke_callback;
return ret;
}
/*
* Return TRUE if any channel has readahead. That means we should not block on
* waiting for input.
*/
int
channel_any_readahead(void)
{
channel_T *channel = first_channel;
ch_part_T part = PART_SOCK;
while (channel != NULL)
{
if (channel_has_readahead(channel, part))
return TRUE;
if (part < PART_ERR)
++part;
else
{
channel = channel->ch_next;
part = PART_SOCK;
}
}
return FALSE;
}
/*
* Mark references to lists used in channels.
*/
int
set_ref_in_channel(int copyID)
{
int abort = FALSE;
channel_T *channel;
typval_T tv;
for (channel = first_channel; !abort && channel != NULL;
channel = channel->ch_next)
if (channel_still_useful(channel))
{
tv.v_type = VAR_CHANNEL;
tv.vval.v_channel = channel;
abort = abort || set_ref_in_item(&tv, copyID, NULL, NULL);
}
return abort;
}
/*
* Return the "part" to write to for "channel".
*/
static ch_part_T
channel_part_send(channel_T *channel)
{
if (channel->CH_SOCK_FD == INVALID_FD)
return PART_IN;
return PART_SOCK;
}
/*
* Return the default "part" to read from for "channel".
*/
static ch_part_T
channel_part_read(channel_T *channel)
{
if (channel->CH_SOCK_FD == INVALID_FD)
return PART_OUT;
return PART_SOCK;
}
/*
* Return the mode of "channel"/"part"
* If "channel" is invalid returns MODE_JSON.
*/
static ch_mode_T
channel_get_mode(channel_T *channel, ch_part_T part)
{
if (channel == NULL)
return MODE_JSON;
return channel->ch_part[part].ch_mode;
}
/*
* Return the timeout of "channel"/"part"
*/
static int
channel_get_timeout(channel_T *channel, ch_part_T part)
{
return channel->ch_part[part].ch_timeout;
}
static int
handle_mode(typval_T *item, jobopt_T *opt, ch_mode_T *modep, int jo)
{
char_u *val = tv_get_string(item);
opt->jo_set |= jo;
if (STRCMP(val, "nl") == 0)
*modep = MODE_NL;
else if (STRCMP(val, "raw") == 0)
*modep = MODE_RAW;
else if (STRCMP(val, "js") == 0)
*modep = MODE_JS;
else if (STRCMP(val, "json") == 0)
*modep = MODE_JSON;
else
{
semsg(_(e_invarg2), val);
return FAIL;
}
return OK;
}
static int
handle_io(typval_T *item, ch_part_T part, jobopt_T *opt)
{
char_u *val = tv_get_string(item);
opt->jo_set |= JO_OUT_IO << (part - PART_OUT);
if (STRCMP(val, "null") == 0)
opt->jo_io[part] = JIO_NULL;
else if (STRCMP(val, "pipe") == 0)
opt->jo_io[part] = JIO_PIPE;
else if (STRCMP(val, "file") == 0)
opt->jo_io[part] = JIO_FILE;
else if (STRCMP(val, "buffer") == 0)
opt->jo_io[part] = JIO_BUFFER;
else if (STRCMP(val, "out") == 0 && part == PART_ERR)
opt->jo_io[part] = JIO_OUT;
else
{
semsg(_(e_invarg2), val);
return FAIL;
}
return OK;
}
/*
* Clear a jobopt_T before using it.
*/
void
clear_job_options(jobopt_T *opt)
{
vim_memset(opt, 0, sizeof(jobopt_T));
}
/*
* Free any members of a jobopt_T.
*/
static void
free_job_options(jobopt_T *opt)
{
if (opt->jo_callback.cb_partial != NULL)
partial_unref(opt->jo_callback.cb_partial);
else if (opt->jo_callback.cb_name != NULL)
func_unref(opt->jo_callback.cb_name);
if (opt->jo_out_cb.cb_partial != NULL)
partial_unref(opt->jo_out_cb.cb_partial);
else if (opt->jo_out_cb.cb_name != NULL)
func_unref(opt->jo_out_cb.cb_name);
if (opt->jo_err_cb.cb_partial != NULL)
partial_unref(opt->jo_err_cb.cb_partial);
else if (opt->jo_err_cb.cb_name != NULL)
func_unref(opt->jo_err_cb.cb_name);
if (opt->jo_close_cb.cb_partial != NULL)
partial_unref(opt->jo_close_cb.cb_partial);
else if (opt->jo_close_cb.cb_name != NULL)
func_unref(opt->jo_close_cb.cb_name);
if (opt->jo_exit_cb.cb_partial != NULL)
partial_unref(opt->jo_exit_cb.cb_partial);
else if (opt->jo_exit_cb.cb_name != NULL)
func_unref(opt->jo_exit_cb.cb_name);
if (opt->jo_env != NULL)
dict_unref(opt->jo_env);
}
/*
* Get the PART_ number from the first character of an option name.
*/
static int
part_from_char(int c)
{
return c == 'i' ? PART_IN : c == 'o' ? PART_OUT: PART_ERR;
}
/*
* Get the option entries from the dict in "tv", parse them and put the result
* in "opt".
* Only accept JO_ options in "supported" and JO2_ options in "supported2".
* If an option value is invalid return FAIL.
*/
int
get_job_options(typval_T *tv, jobopt_T *opt, int supported, int supported2)
{
typval_T *item;
char_u *val;
dict_T *dict;
int todo;
hashitem_T *hi;
ch_part_T part;
if (tv->v_type == VAR_UNKNOWN)
return OK;
if (tv->v_type != VAR_DICT)
{
emsg(_(e_dictreq));
return FAIL;
}
dict = tv->vval.v_dict;
if (dict == NULL)
return OK;
todo = (int)dict->dv_hashtab.ht_used;
for (hi = dict->dv_hashtab.ht_array; todo > 0; ++hi)
if (!HASHITEM_EMPTY(hi))
{
item = &dict_lookup(hi)->di_tv;
if (STRCMP(hi->hi_key, "mode") == 0)
{
if (!(supported & JO_MODE))
break;
if (handle_mode(item, opt, &opt->jo_mode, JO_MODE) == FAIL)
return FAIL;
}
else if (STRCMP(hi->hi_key, "in_mode") == 0)
{
if (!(supported & JO_IN_MODE))
break;
if (handle_mode(item, opt, &opt->jo_in_mode, JO_IN_MODE)
== FAIL)
return FAIL;
}
else if (STRCMP(hi->hi_key, "out_mode") == 0)
{
if (!(supported & JO_OUT_MODE))
break;
if (handle_mode(item, opt, &opt->jo_out_mode, JO_OUT_MODE)
== FAIL)
return FAIL;
}
else if (STRCMP(hi->hi_key, "err_mode") == 0)
{
if (!(supported & JO_ERR_MODE))
break;
if (handle_mode(item, opt, &opt->jo_err_mode, JO_ERR_MODE)
== FAIL)
return FAIL;
}
else if (STRCMP(hi->hi_key, "noblock") == 0)
{
if (!(supported & JO_MODE))
break;
opt->jo_noblock = tv_get_number(item);
}
else if (STRCMP(hi->hi_key, "in_io") == 0
|| STRCMP(hi->hi_key, "out_io") == 0
|| STRCMP(hi->hi_key, "err_io") == 0)
{
if (!(supported & JO_OUT_IO))
break;
if (handle_io(item, part_from_char(*hi->hi_key), opt) == FAIL)
return FAIL;
}
else if (STRCMP(hi->hi_key, "in_name") == 0
|| STRCMP(hi->hi_key, "out_name") == 0
|| STRCMP(hi->hi_key, "err_name") == 0)
{
part = part_from_char(*hi->hi_key);
if (!(supported & JO_OUT_IO))
break;
opt->jo_set |= JO_OUT_NAME << (part - PART_OUT);
opt->jo_io_name[part] =
tv_get_string_buf_chk(item, opt->jo_io_name_buf[part]);
}
else if (STRCMP(hi->hi_key, "pty") == 0)
{
if (!(supported & JO_MODE))
break;
opt->jo_pty = tv_get_number(item);
}
else if (STRCMP(hi->hi_key, "in_buf") == 0
|| STRCMP(hi->hi_key, "out_buf") == 0
|| STRCMP(hi->hi_key, "err_buf") == 0)
{
part = part_from_char(*hi->hi_key);
if (!(supported & JO_OUT_IO))
break;
opt->jo_set |= JO_OUT_BUF << (part - PART_OUT);
opt->jo_io_buf[part] = tv_get_number(item);
if (opt->jo_io_buf[part] <= 0)
{
semsg(_(e_invargNval), hi->hi_key, tv_get_string(item));
return FAIL;
}
if (buflist_findnr(opt->jo_io_buf[part]) == NULL)
{
semsg(_(e_nobufnr), (long)opt->jo_io_buf[part]);
return FAIL;
}
}
else if (STRCMP(hi->hi_key, "out_modifiable") == 0
|| STRCMP(hi->hi_key, "err_modifiable") == 0)
{
part = part_from_char(*hi->hi_key);
if (!(supported & JO_OUT_IO))
break;
opt->jo_set |= JO_OUT_MODIFIABLE << (part - PART_OUT);
opt->jo_modifiable[part] = tv_get_number(item);
}
else if (STRCMP(hi->hi_key, "out_msg") == 0
|| STRCMP(hi->hi_key, "err_msg") == 0)
{
part = part_from_char(*hi->hi_key);
if (!(supported & JO_OUT_IO))
break;
opt->jo_set2 |= JO2_OUT_MSG << (part - PART_OUT);
opt->jo_message[part] = tv_get_number(item);
}
else if (STRCMP(hi->hi_key, "in_top") == 0
|| STRCMP(hi->hi_key, "in_bot") == 0)
{
linenr_T *lp;
if (!(supported & JO_OUT_IO))
break;
if (hi->hi_key[3] == 't')
{
lp = &opt->jo_in_top;
opt->jo_set |= JO_IN_TOP;
}
else
{
lp = &opt->jo_in_bot;
opt->jo_set |= JO_IN_BOT;
}
*lp = tv_get_number(item);
if (*lp < 0)
{
semsg(_(e_invargNval), hi->hi_key, tv_get_string(item));
return FAIL;
}
}
else if (STRCMP(hi->hi_key, "channel") == 0)
{
if (!(supported & JO_OUT_IO))
break;
opt->jo_set |= JO_CHANNEL;
if (item->v_type != VAR_CHANNEL)
{
semsg(_(e_invargval), "channel");
return FAIL;
}
opt->jo_channel = item->vval.v_channel;
}
else if (STRCMP(hi->hi_key, "callback") == 0)
{
if (!(supported & JO_CALLBACK))
break;
opt->jo_set |= JO_CALLBACK;
opt->jo_callback = get_callback(item);
if (opt->jo_callback.cb_name == NULL)
{
semsg(_(e_invargval), "callback");
return FAIL;
}
}
else if (STRCMP(hi->hi_key, "out_cb") == 0)
{
if (!(supported & JO_OUT_CALLBACK))
break;
opt->jo_set |= JO_OUT_CALLBACK;
opt->jo_out_cb = get_callback(item);
if (opt->jo_out_cb.cb_name == NULL)
{
semsg(_(e_invargval), "out_cb");
return FAIL;
}
}
else if (STRCMP(hi->hi_key, "err_cb") == 0)
{
if (!(supported & JO_ERR_CALLBACK))
break;
opt->jo_set |= JO_ERR_CALLBACK;
opt->jo_err_cb = get_callback(item);
if (opt->jo_err_cb.cb_name == NULL)
{
semsg(_(e_invargval), "err_cb");
return FAIL;
}
}
else if (STRCMP(hi->hi_key, "close_cb") == 0)
{
if (!(supported & JO_CLOSE_CALLBACK))
break;
opt->jo_set |= JO_CLOSE_CALLBACK;
opt->jo_close_cb = get_callback(item);
if (opt->jo_close_cb.cb_name == NULL)
{
semsg(_(e_invargval), "close_cb");
return FAIL;
}
}
else if (STRCMP(hi->hi_key, "drop") == 0)
{
int never = FALSE;
val = tv_get_string(item);
if (STRCMP(val, "never") == 0)
never = TRUE;
else if (STRCMP(val, "auto") != 0)
{
semsg(_(e_invargNval), "drop", val);
return FAIL;
}
opt->jo_drop_never = never;
}
else if (STRCMP(hi->hi_key, "exit_cb") == 0)
{
if (!(supported & JO_EXIT_CB))
break;
opt->jo_set |= JO_EXIT_CB;
opt->jo_exit_cb = get_callback(item);
if (opt->jo_exit_cb.cb_name == NULL)
{
semsg(_(e_invargval), "exit_cb");
return FAIL;
}
}
#ifdef FEAT_TERMINAL
else if (STRCMP(hi->hi_key, "term_name") == 0)
{
if (!(supported2 & JO2_TERM_NAME))
break;
opt->jo_set2 |= JO2_TERM_NAME;
opt->jo_term_name = tv_get_string_chk(item);
if (opt->jo_term_name == NULL)
{
semsg(_(e_invargval), "term_name");
return FAIL;
}
}
else if (STRCMP(hi->hi_key, "term_finish") == 0)
{
if (!(supported2 & JO2_TERM_FINISH))
break;
val = tv_get_string(item);
if (STRCMP(val, "open") != 0 && STRCMP(val, "close") != 0)
{
semsg(_(e_invargNval), "term_finish", val);
return FAIL;
}
opt->jo_set2 |= JO2_TERM_FINISH;
opt->jo_term_finish = *val;
}
else if (STRCMP(hi->hi_key, "term_opencmd") == 0)
{
char_u *p;
if (!(supported2 & JO2_TERM_OPENCMD))
break;
opt->jo_set2 |= JO2_TERM_OPENCMD;
p = opt->jo_term_opencmd = tv_get_string_chk(item);
if (p != NULL)
{
// Must have %d and no other %.
p = vim_strchr(p, '%');
if (p != NULL && (p[1] != 'd'
|| vim_strchr(p + 2, '%') != NULL))
p = NULL;
}
if (p == NULL)
{
semsg(_(e_invargval), "term_opencmd");
return FAIL;
}
}
else if (STRCMP(hi->hi_key, "eof_chars") == 0)
{
char_u *p;
if (!(supported2 & JO2_EOF_CHARS))
break;
opt->jo_set2 |= JO2_EOF_CHARS;
p = opt->jo_eof_chars = tv_get_string_chk(item);
if (p == NULL)
{
semsg(_(e_invargval), "eof_chars");
return FAIL;
}
}
else if (STRCMP(hi->hi_key, "term_rows") == 0)
{
if (!(supported2 & JO2_TERM_ROWS))
break;
opt->jo_set2 |= JO2_TERM_ROWS;
opt->jo_term_rows = tv_get_number(item);
}
else if (STRCMP(hi->hi_key, "term_cols") == 0)
{
if (!(supported2 & JO2_TERM_COLS))
break;
opt->jo_set2 |= JO2_TERM_COLS;
opt->jo_term_cols = tv_get_number(item);
}
else if (STRCMP(hi->hi_key, "vertical") == 0)
{
if (!(supported2 & JO2_VERTICAL))
break;
opt->jo_set2 |= JO2_VERTICAL;
opt->jo_vertical = tv_get_number(item);
}
else if (STRCMP(hi->hi_key, "curwin") == 0)
{
if (!(supported2 & JO2_CURWIN))
break;
opt->jo_set2 |= JO2_CURWIN;
opt->jo_curwin = tv_get_number(item);
}
else if (STRCMP(hi->hi_key, "bufnr") == 0)
{
int nr;
if (!(supported2 & JO2_CURWIN))
break;
opt->jo_set2 |= JO2_BUFNR;
nr = tv_get_number(item);
if (nr <= 0)
{
semsg(_(e_invargNval), hi->hi_key, tv_get_string(item));
return FAIL;
}
opt->jo_bufnr_buf = buflist_findnr(nr);
if (opt->jo_bufnr_buf == NULL)
{
semsg(_(e_nobufnr), (long)nr);
return FAIL;
}
if (opt->jo_bufnr_buf->b_nwindows == 0
|| opt->jo_bufnr_buf->b_term == NULL)
{
semsg(_(e_invarg2), "bufnr");
return FAIL;
}
}
else if (STRCMP(hi->hi_key, "hidden") == 0)
{
if (!(supported2 & JO2_HIDDEN))
break;
opt->jo_set2 |= JO2_HIDDEN;
opt->jo_hidden = tv_get_number(item);
}
else if (STRCMP(hi->hi_key, "norestore") == 0)
{
if (!(supported2 & JO2_NORESTORE))
break;
opt->jo_set2 |= JO2_NORESTORE;
opt->jo_term_norestore = tv_get_number(item);
}
else if (STRCMP(hi->hi_key, "term_kill") == 0)
{
if (!(supported2 & JO2_TERM_KILL))
break;
opt->jo_set2 |= JO2_TERM_KILL;
opt->jo_term_kill = tv_get_string_chk(item);
}
else if (STRCMP(hi->hi_key, "tty_type") == 0)
{
char_u *p;
if (!(supported2 & JO2_TTY_TYPE))
break;
opt->jo_set2 |= JO2_TTY_TYPE;
p = tv_get_string_chk(item);
if (p == NULL)
{
semsg(_(e_invargval), "tty_type");
return FAIL;
}
// Allow empty string, "winpty", "conpty".
if (!(*p == NUL || STRCMP(p, "winpty") == 0
|| STRCMP(p, "conpty") == 0))
{
semsg(_(e_invargval), "tty_type");
return FAIL;
}
opt->jo_tty_type = p[0];
}
# if defined(FEAT_GUI) || defined(FEAT_TERMGUICOLORS)
else if (STRCMP(hi->hi_key, "ansi_colors") == 0)
{
int n = 0;
listitem_T *li;
long_u rgb[16];
if (!(supported2 & JO2_ANSI_COLORS))
break;
if (item == NULL || item->v_type != VAR_LIST
|| item->vval.v_list == NULL)
{
semsg(_(e_invargval), "ansi_colors");
return FAIL;
}
li = item->vval.v_list->lv_first;
for (; li != NULL && n < 16; li = li->li_next, n++)
{
char_u *color_name;
guicolor_T guicolor;
color_name = tv_get_string_chk(&li->li_tv);
if (color_name == NULL)
return FAIL;
guicolor = GUI_GET_COLOR(color_name);
if (guicolor == INVALCOLOR)
return FAIL;
rgb[n] = GUI_MCH_GET_RGB(guicolor);
}
if (n != 16 || li != NULL)
{
semsg(_(e_invargval), "ansi_colors");
return FAIL;
}
opt->jo_set2 |= JO2_ANSI_COLORS;
memcpy(opt->jo_ansi_colors, rgb, sizeof(rgb));
}
# endif
else if (STRCMP(hi->hi_key, "term_api") == 0)
{
if (!(supported2 & JO2_TERM_API))
break;
opt->jo_set2 |= JO2_TERM_API;
opt->jo_term_api = tv_get_string_buf_chk(item,
opt->jo_term_api_buf);
}
#endif
else if (STRCMP(hi->hi_key, "env") == 0)
{
if (!(supported2 & JO2_ENV))
break;
if (item->v_type != VAR_DICT)
{
semsg(_(e_invargval), "env");
return FAIL;
}
opt->jo_set2 |= JO2_ENV;
opt->jo_env = item->vval.v_dict;
if (opt->jo_env != NULL)
++opt->jo_env->dv_refcount;
}
else if (STRCMP(hi->hi_key, "cwd") == 0)
{
if (!(supported2 & JO2_CWD))
break;
opt->jo_cwd = tv_get_string_buf_chk(item, opt->jo_cwd_buf);
if (opt->jo_cwd == NULL || !mch_isdir(opt->jo_cwd)
#ifndef MSWIN // Win32 directories don't have the concept of "executable"
|| mch_access((char *)opt->jo_cwd, X_OK) != 0
#endif
)
{
semsg(_(e_invargval), "cwd");
return FAIL;
}
opt->jo_set2 |= JO2_CWD;
}
else if (STRCMP(hi->hi_key, "waittime") == 0)
{
if (!(supported & JO_WAITTIME))
break;
opt->jo_set |= JO_WAITTIME;
opt->jo_waittime = tv_get_number(item);
}
else if (STRCMP(hi->hi_key, "timeout") == 0)
{
if (!(supported & JO_TIMEOUT))
break;
opt->jo_set |= JO_TIMEOUT;
opt->jo_timeout = tv_get_number(item);
}
else if (STRCMP(hi->hi_key, "out_timeout") == 0)
{
if (!(supported & JO_OUT_TIMEOUT))
break;
opt->jo_set |= JO_OUT_TIMEOUT;
opt->jo_out_timeout = tv_get_number(item);
}
else if (STRCMP(hi->hi_key, "err_timeout") == 0)
{
if (!(supported & JO_ERR_TIMEOUT))
break;
opt->jo_set |= JO_ERR_TIMEOUT;
opt->jo_err_timeout = tv_get_number(item);
}
else if (STRCMP(hi->hi_key, "part") == 0)
{
if (!(supported & JO_PART))
break;
opt->jo_set |= JO_PART;
val = tv_get_string(item);
if (STRCMP(val, "err") == 0)
opt->jo_part = PART_ERR;
else if (STRCMP(val, "out") == 0)
opt->jo_part = PART_OUT;
else
{
semsg(_(e_invargNval), "part", val);
return FAIL;
}
}
else if (STRCMP(hi->hi_key, "id") == 0)
{
if (!(supported & JO_ID))
break;
opt->jo_set |= JO_ID;
opt->jo_id = tv_get_number(item);
}
else if (STRCMP(hi->hi_key, "stoponexit") == 0)
{
if (!(supported & JO_STOPONEXIT))
break;
opt->jo_set |= JO_STOPONEXIT;
opt->jo_stoponexit = tv_get_string_buf_chk(item,
opt->jo_soe_buf);
if (opt->jo_stoponexit == NULL)
{
semsg(_(e_invargval), "stoponexit");
return FAIL;
}
}
else if (STRCMP(hi->hi_key, "block_write") == 0)
{
if (!(supported & JO_BLOCK_WRITE))
break;
opt->jo_set |= JO_BLOCK_WRITE;
opt->jo_block_write = tv_get_number(item);
}
else
break;
--todo;
}
if (todo > 0)
{
semsg(_(e_invarg2), hi->hi_key);
return FAIL;
}
return OK;
}
static job_T *first_job = NULL;
static void
job_free_contents(job_T *job)
{
int i;
ch_log(job->jv_channel, "Freeing job");
if (job->jv_channel != NULL)
{
// The link from the channel to the job doesn't count as a reference,
// thus don't decrement the refcount of the job. The reference from
// the job to the channel does count the reference, decrement it and
// NULL the reference. We don't set ch_job_killed, unreferencing the
// job doesn't mean it stops running.
job->jv_channel->ch_job = NULL;
channel_unref(job->jv_channel);
}
mch_clear_job(job);
vim_free(job->jv_tty_in);
vim_free(job->jv_tty_out);
vim_free(job->jv_stoponexit);
#ifdef UNIX
vim_free(job->jv_termsig);
#endif
#ifdef MSWIN
vim_free(job->jv_tty_type);
#endif
free_callback(&job->jv_exit_cb);
if (job->jv_argv != NULL)
{
for (i = 0; job->jv_argv[i] != NULL; i++)
vim_free(job->jv_argv[i]);
vim_free(job->jv_argv);
}
}
/*
* Remove "job" from the list of jobs.
*/
static void
job_unlink(job_T *job)
{
if (job->jv_next != NULL)
job->jv_next->jv_prev = job->jv_prev;
if (job->jv_prev == NULL)
first_job = job->jv_next;
else
job->jv_prev->jv_next = job->jv_next;
}
static void
job_free_job(job_T *job)
{
job_unlink(job);
vim_free(job);
}
static void
job_free(job_T *job)
{
if (!in_free_unref_items)
{
job_free_contents(job);
job_free_job(job);
}
}
static job_T *jobs_to_free = NULL;
/*
* Put "job" in a list to be freed later, when it's no longer referenced.
*/
static void
job_free_later(job_T *job)
{
job_unlink(job);
job->jv_next = jobs_to_free;
jobs_to_free = job;
}
static void
free_jobs_to_free_later(void)
{
job_T *job;
while (jobs_to_free != NULL)
{
job = jobs_to_free;
jobs_to_free = job->jv_next;
job_free_contents(job);
vim_free(job);
}
}
#if defined(EXITFREE) || defined(PROTO)
void
job_free_all(void)
{
while (first_job != NULL)
job_free(first_job);
free_jobs_to_free_later();
# ifdef FEAT_TERMINAL
free_unused_terminals();
# endif
}
#endif
/*
* Return TRUE if we need to check if the process of "job" has ended.
*/
static int
job_need_end_check(job_T *job)
{
return job->jv_status == JOB_STARTED
&& (job->jv_stoponexit != NULL || job->jv_exit_cb.cb_name != NULL);
}
/*
* Return TRUE if the channel of "job" is still useful.
*/
static int
job_channel_still_useful(job_T *job)
{
return job->jv_channel != NULL && channel_still_useful(job->jv_channel);
}
/*
* Return TRUE if the channel of "job" is closeable.
*/
static int
job_channel_can_close(job_T *job)
{
return job->jv_channel != NULL && channel_can_close(job->jv_channel);
}
/*
* Return TRUE if the job should not be freed yet. Do not free the job when
* it has not ended yet and there is a "stoponexit" flag, an exit callback
* or when the associated channel will do something with the job output.
*/
static int
job_still_useful(job_T *job)
{
return job_need_end_check(job) || job_channel_still_useful(job);
}
#if defined(GUI_MAY_FORK) || defined(GUI_MAY_SPAWN) || defined(PROTO)
/*
* Return TRUE when there is any running job that we care about.
*/
int
job_any_running()
{
job_T *job;
for (job = first_job; job != NULL; job = job->jv_next)
if (job_still_useful(job))
{
ch_log(NULL, "GUI not forking because a job is running");
return TRUE;
}
return FALSE;
}
#endif
#if !defined(USE_ARGV) || defined(PROTO)
/*
* Escape one argument for an external command.
* Returns the escaped string in allocated memory. NULL when out of memory.
*/
static char_u *
win32_escape_arg(char_u *arg)
{
int slen, dlen;
int escaping = 0;
int i;
char_u *s, *d;
char_u *escaped_arg;
int has_spaces = FALSE;
// First count the number of extra bytes required.
slen = (int)STRLEN(arg);
dlen = slen;
for (s = arg; *s != NUL; MB_PTR_ADV(s))
{
if (*s == '"' || *s == '\\')
++dlen;
if (*s == ' ' || *s == '\t')
has_spaces = TRUE;
}
if (has_spaces)
dlen += 2;
if (dlen == slen)
return vim_strsave(arg);
// Allocate memory for the result and fill it.
escaped_arg = alloc(dlen + 1);
if (escaped_arg == NULL)
return NULL;
memset(escaped_arg, 0, dlen+1);
d = escaped_arg;
if (has_spaces)
*d++ = '"';
for (s = arg; *s != NUL;)
{
switch (*s)
{
case '"':
for (i = 0; i < escaping; i++)
*d++ = '\\';
escaping = 0;
*d++ = '\\';
*d++ = *s++;
break;
case '\\':
escaping++;
*d++ = *s++;
break;
default:
escaping = 0;
MB_COPY_CHAR(s, d);
break;
}
}
// add terminating quote and finish with a NUL
if (has_spaces)
{
for (i = 0; i < escaping; i++)
*d++ = '\\';
*d++ = '"';
}
*d = NUL;
return escaped_arg;
}
/*
* Build a command line from a list, taking care of escaping.
* The result is put in gap->ga_data.
* Returns FAIL when out of memory.
*/
int
win32_build_cmd(list_T *l, garray_T *gap)
{
listitem_T *li;
char_u *s;
for (li = l->lv_first; li != NULL; li = li->li_next)
{
s = tv_get_string_chk(&li->li_tv);
if (s == NULL)
return FAIL;
s = win32_escape_arg(s);
if (s == NULL)
return FAIL;
ga_concat(gap, s);
vim_free(s);
if (li->li_next != NULL)
ga_append(gap, ' ');
}
return OK;
}
#endif
/*
* NOTE: Must call job_cleanup() only once right after the status of "job"
* changed to JOB_ENDED (i.e. after job_status() returned "dead" first or
* mch_detect_ended_job() returned non-NULL).
* If the job is no longer used it will be removed from the list of jobs, and
* deleted a bit later.
*/
void
job_cleanup(job_T *job)
{
if (job->jv_status != JOB_ENDED)
return;
// Ready to cleanup the job.
job->jv_status = JOB_FINISHED;
// When only channel-in is kept open, close explicitly.
if (job->jv_channel != NULL)
ch_close_part(job->jv_channel, PART_IN);
if (job->jv_exit_cb.cb_name != NULL)
{
typval_T argv[3];
typval_T rettv;
// Invoke the exit callback. Make sure the refcount is > 0.
ch_log(job->jv_channel, "Invoking exit callback %s",
job->jv_exit_cb.cb_name);
++job->jv_refcount;
argv[0].v_type = VAR_JOB;
argv[0].vval.v_job = job;
argv[1].v_type = VAR_NUMBER;
argv[1].vval.v_number = job->jv_exitval;
call_callback(&job->jv_exit_cb, -1, &rettv, 2, argv);
clear_tv(&rettv);
--job->jv_refcount;
channel_need_redraw = TRUE;
}
if (job->jv_channel != NULL && job->jv_channel->ch_anonymous_pipe)
job->jv_channel->ch_killing = TRUE;
// Do not free the job in case the close callback of the associated channel
// isn't invoked yet and may get information by job_info().
if (job->jv_refcount == 0 && !job_channel_still_useful(job))
// The job was already unreferenced and the associated channel was
// detached, now that it ended it can be freed. However, a caller might
// still use it, thus free it a bit later.
job_free_later(job);
}
/*
* Mark references in jobs that are still useful.
*/
int
set_ref_in_job(int copyID)
{
int abort = FALSE;
job_T *job;
typval_T tv;
for (job = first_job; !abort && job != NULL; job = job->jv_next)
if (job_still_useful(job))
{
tv.v_type = VAR_JOB;
tv.vval.v_job = job;
abort = abort || set_ref_in_item(&tv, copyID, NULL, NULL);
}
return abort;
}
/*
* Dereference "job". Note that after this "job" may have been freed.
*/
void
job_unref(job_T *job)
{
if (job != NULL && --job->jv_refcount <= 0)
{
// Do not free the job if there is a channel where the close callback
// may get the job info.
if (!job_channel_still_useful(job))
{
// Do not free the job when it has not ended yet and there is a
// "stoponexit" flag or an exit callback.
if (!job_need_end_check(job))
{
job_free(job);
}
else if (job->jv_channel != NULL)
{
// Do remove the link to the channel, otherwise it hangs
// around until Vim exits. See job_free() for refcount.
ch_log(job->jv_channel, "detaching channel from job");
job->jv_channel->ch_job = NULL;
channel_unref(job->jv_channel);
job->jv_channel = NULL;
}
}
}
}
int
free_unused_jobs_contents(int copyID, int mask)
{
int did_free = FALSE;
job_T *job;
for (job = first_job; job != NULL; job = job->jv_next)
if ((job->jv_copyID & mask) != (copyID & mask)
&& !job_still_useful(job))
{
// Free the channel and ordinary items it contains, but don't
// recurse into Lists, Dictionaries etc.
job_free_contents(job);
did_free = TRUE;
}
return did_free;
}
void
free_unused_jobs(int copyID, int mask)
{
job_T *job;
job_T *job_next;
for (job = first_job; job != NULL; job = job_next)
{
job_next = job->jv_next;
if ((job->jv_copyID & mask) != (copyID & mask)
&& !job_still_useful(job))
{
// Free the job struct itself.
job_free_job(job);
}
}
}
/*
* Allocate a job. Sets the refcount to one and sets options default.
*/
job_T *
job_alloc(void)
{
job_T *job;
job = ALLOC_CLEAR_ONE(job_T);
if (job != NULL)
{
job->jv_refcount = 1;
job->jv_stoponexit = vim_strsave((char_u *)"term");
if (first_job != NULL)
{
first_job->jv_prev = job;
job->jv_next = first_job;
}
first_job = job;
}
return job;
}
void
job_set_options(job_T *job, jobopt_T *opt)
{
if (opt->jo_set & JO_STOPONEXIT)
{
vim_free(job->jv_stoponexit);
if (opt->jo_stoponexit == NULL || *opt->jo_stoponexit == NUL)
job->jv_stoponexit = NULL;
else
job->jv_stoponexit = vim_strsave(opt->jo_stoponexit);
}
if (opt->jo_set & JO_EXIT_CB)
{
free_callback(&job->jv_exit_cb);
if (opt->jo_exit_cb.cb_name == NULL || *opt->jo_exit_cb.cb_name == NUL)
{
job->jv_exit_cb.cb_name = NULL;
job->jv_exit_cb.cb_partial = NULL;
}
else
copy_callback(&job->jv_exit_cb, &opt->jo_exit_cb);
}
}
/*
* Called when Vim is exiting: kill all jobs that have the "stoponexit" flag.
*/
void
job_stop_on_exit(void)
{
job_T *job;
for (job = first_job; job != NULL; job = job->jv_next)
if (job->jv_status == JOB_STARTED && job->jv_stoponexit != NULL)
mch_signal_job(job, job->jv_stoponexit);
}
/*
* Return TRUE when there is any job that has an exit callback and might exit,
* which means job_check_ended() should be called more often.
*/
int
has_pending_job(void)
{
job_T *job;
for (job = first_job; job != NULL; job = job->jv_next)
// Only should check if the channel has been closed, if the channel is
// open the job won't exit.
if ((job->jv_status == JOB_STARTED && !job_channel_still_useful(job))
|| (job->jv_status == JOB_FINISHED
&& job_channel_can_close(job)))
return TRUE;
return FALSE;
}
#define MAX_CHECK_ENDED 8
/*
* Called once in a while: check if any jobs that seem useful have ended.
* Returns TRUE if a job did end.
*/
int
job_check_ended(void)
{
int i;
int did_end = FALSE;
// be quick if there are no jobs to check
if (first_job == NULL)
return did_end;
for (i = 0; i < MAX_CHECK_ENDED; ++i)
{
// NOTE: mch_detect_ended_job() must only return a job of which the
// status was just set to JOB_ENDED.
job_T *job = mch_detect_ended_job(first_job);
if (job == NULL)
break;
did_end = TRUE;
job_cleanup(job); // may add "job" to jobs_to_free
}
// Actually free jobs that were cleaned up.
free_jobs_to_free_later();
if (channel_need_redraw)
{
channel_need_redraw = FALSE;
redraw_after_callback(TRUE);
}
return did_end;
}
/*
* Create a job and return it. Implements job_start().
* "argv_arg" is only for Unix.
* When "argv_arg" is NULL then "argvars" is used.
* The returned job has a refcount of one.
* Returns NULL when out of memory.
*/
job_T *
job_start(
typval_T *argvars,
char **argv_arg UNUSED,
jobopt_T *opt_arg,
int is_terminal UNUSED)
{
job_T *job;
char_u *cmd = NULL;
char **argv = NULL;
int argc = 0;
int i;
#if defined(UNIX)
# define USE_ARGV
#else
garray_T ga;
#endif
jobopt_T opt;
ch_part_T part;
job = job_alloc();
if (job == NULL)
return NULL;
job->jv_status = JOB_FAILED;
#ifndef USE_ARGV
ga_init2(&ga, (int)sizeof(char*), 20);
#endif
if (opt_arg != NULL)
opt = *opt_arg;
else
{
// Default mode is NL.
clear_job_options(&opt);
opt.jo_mode = MODE_NL;
if (get_job_options(&argvars[1], &opt,
JO_MODE_ALL + JO_CB_ALL + JO_TIMEOUT_ALL + JO_STOPONEXIT
+ JO_EXIT_CB + JO_OUT_IO + JO_BLOCK_WRITE,
JO2_ENV + JO2_CWD) == FAIL)
goto theend;
}
// Check that when io is "file" that there is a file name.
for (part = PART_OUT; part < PART_COUNT; ++part)
if ((opt.jo_set & (JO_OUT_IO << (part - PART_OUT)))
&& opt.jo_io[part] == JIO_FILE
&& (!(opt.jo_set & (JO_OUT_NAME << (part - PART_OUT)))
|| *opt.jo_io_name[part] == NUL))
{
emsg(_("E920: _io file requires _name to be set"));
goto theend;
}
if ((opt.jo_set & JO_IN_IO) && opt.jo_io[PART_IN] == JIO_BUFFER)
{
buf_T *buf = NULL;
// check that we can find the buffer before starting the job
if (opt.jo_set & JO_IN_BUF)
{
buf = buflist_findnr(opt.jo_io_buf[PART_IN]);
if (buf == NULL)
semsg(_(e_nobufnr), (long)opt.jo_io_buf[PART_IN]);
}
else if (!(opt.jo_set & JO_IN_NAME))
{
emsg(_("E915: in_io buffer requires in_buf or in_name to be set"));
}
else
buf = buflist_find_by_name(opt.jo_io_name[PART_IN], FALSE);
if (buf == NULL)
goto theend;
if (buf->b_ml.ml_mfp == NULL)
{
char_u numbuf[NUMBUFLEN];
char_u *s;
if (opt.jo_set & JO_IN_BUF)
{
sprintf((char *)numbuf, "%d", opt.jo_io_buf[PART_IN]);
s = numbuf;
}
else
s = opt.jo_io_name[PART_IN];
semsg(_("E918: buffer must be loaded: %s"), s);
goto theend;
}
job->jv_in_buf = buf;
}
job_set_options(job, &opt);
#ifdef USE_ARGV
if (argv_arg != NULL)
{
// Make a copy of argv_arg for job->jv_argv.
for (i = 0; argv_arg[i] != NULL; i++)
argc++;
argv = ALLOC_MULT(char *, argc + 1);
if (argv == NULL)
goto theend;
for (i = 0; i < argc; i++)
argv[i] = (char *)vim_strsave((char_u *)argv_arg[i]);
argv[argc] = NULL;
}
else
#endif
if (argvars[0].v_type == VAR_STRING)
{
// Command is a string.
cmd = argvars[0].vval.v_string;
if (cmd == NULL || *skipwhite(cmd) == NUL)
{
emsg(_(e_invarg));
goto theend;
}
if (build_argv_from_string(cmd, &argv, &argc) == FAIL)
goto theend;
}
else if (argvars[0].v_type != VAR_LIST
|| argvars[0].vval.v_list == NULL
|| argvars[0].vval.v_list->lv_len < 1)
{
emsg(_(e_invarg));
goto theend;
}
else
{
list_T *l = argvars[0].vval.v_list;
if (build_argv_from_list(l, &argv, &argc) == FAIL)
goto theend;
// Empty command is invalid.
if (argc == 0 || *skipwhite((char_u *)argv[0]) == NUL)
{
emsg(_(e_invarg));
goto theend;
}
#ifndef USE_ARGV
if (win32_build_cmd(l, &ga) == FAIL)
goto theend;
cmd = ga.ga_data;
if (cmd == NULL || *skipwhite(cmd) == NUL)
{
emsg(_(e_invarg));
goto theend;
}
#endif
}
// Save the command used to start the job.
job->jv_argv = argv;
#ifdef USE_ARGV
if (ch_log_active())
{
garray_T ga;
ga_init2(&ga, (int)sizeof(char), 200);
for (i = 0; i < argc; ++i)
{
if (i > 0)
ga_concat(&ga, (char_u *)" ");
ga_concat(&ga, (char_u *)argv[i]);
}
ga_append(&ga, NUL);
ch_log(NULL, "Starting job: %s", (char *)ga.ga_data);
ga_clear(&ga);
}
mch_job_start(argv, job, &opt, is_terminal);
#else
ch_log(NULL, "Starting job: %s", (char *)cmd);
mch_job_start((char *)cmd, job, &opt);
#endif
// If the channel is reading from a buffer, write lines now.
if (job->jv_channel != NULL)
channel_write_in(job->jv_channel);
theend:
#ifndef USE_ARGV
vim_free(ga.ga_data);
#endif
if (argv != NULL && argv != job->jv_argv)
{
for (i = 0; argv[i] != NULL; i++)
vim_free(argv[i]);
vim_free(argv);
}
free_job_options(&opt);
return job;
}
/*
* Get the status of "job" and invoke the exit callback when needed.
* The returned string is not allocated.
*/
char *
job_status(job_T *job)
{
char *result;
if (job->jv_status >= JOB_ENDED)
// No need to check, dead is dead.
result = "dead";
else if (job->jv_status == JOB_FAILED)
result = "fail";
else
{
result = mch_job_status(job);
if (job->jv_status == JOB_ENDED)
job_cleanup(job);
}
return result;
}
/*
* Send a signal to "job". Implements job_stop().
* When "type" is not NULL use this for the type.
* Otherwise use argvars[1] for the type.
*/
int
job_stop(job_T *job, typval_T *argvars, char *type)
{
char_u *arg;
if (type != NULL)
arg = (char_u *)type;
else if (argvars[1].v_type == VAR_UNKNOWN)
arg = (char_u *)"";
else
{
arg = tv_get_string_chk(&argvars[1]);
if (arg == NULL)
{
emsg(_(e_invarg));
return 0;
}
}
if (job->jv_status == JOB_FAILED)
{
ch_log(job->jv_channel, "Job failed to start, job_stop() skipped");
return 0;
}
if (job->jv_status == JOB_ENDED)
{
ch_log(job->jv_channel, "Job has already ended, job_stop() skipped");
return 0;
}
ch_log(job->jv_channel, "Stopping job with '%s'", (char *)arg);
if (mch_signal_job(job, arg) == FAIL)
return 0;
// Assume that only "kill" will kill the job.
if (job->jv_channel != NULL && STRCMP(arg, "kill") == 0)
job->jv_channel->ch_job_killed = TRUE;
// We don't try freeing the job, obviously the caller still has a
// reference to it.
return 1;
}
void
invoke_prompt_callback(void)
{
typval_T rettv;
typval_T argv[2];
char_u *text;
char_u *prompt;
linenr_T lnum = curbuf->b_ml.ml_line_count;
// Add a new line for the prompt before invoking the callback, so that
// text can always be inserted above the last line.
ml_append(lnum, (char_u *)"", 0, FALSE);
curwin->w_cursor.lnum = lnum + 1;
curwin->w_cursor.col = 0;
if (curbuf->b_prompt_callback.cb_name == NULL
|| *curbuf->b_prompt_callback.cb_name == NUL)
return;
text = ml_get(lnum);
prompt = prompt_text();
if (STRLEN(text) >= STRLEN(prompt))
text += STRLEN(prompt);
argv[0].v_type = VAR_STRING;
argv[0].vval.v_string = vim_strsave(text);
argv[1].v_type = VAR_UNKNOWN;
call_callback(&curbuf->b_prompt_callback, -1, &rettv, 1, argv);
clear_tv(&argv[0]);
clear_tv(&rettv);
}
/*
* Return TRUE when the interrupt callback was invoked.
*/
int
invoke_prompt_interrupt(void)
{
typval_T rettv;
typval_T argv[1];
if (curbuf->b_prompt_interrupt.cb_name == NULL
|| *curbuf->b_prompt_interrupt.cb_name == NUL)
return FALSE;
argv[0].v_type = VAR_UNKNOWN;
got_int = FALSE; // don't skip executing commands
call_callback(&curbuf->b_prompt_interrupt, -1, &rettv, 0, argv);
clear_tv(&rettv);
return TRUE;
}
/*
* "prompt_setcallback({buffer}, {callback})" function
*/
void
f_prompt_setcallback(typval_T *argvars, typval_T *rettv UNUSED)
{
buf_T *buf;
callback_T callback;
if (check_secure())
return;
buf = tv_get_buf(&argvars[0], FALSE);
if (buf == NULL)
return;
callback = get_callback(&argvars[1]);
if (callback.cb_name == NULL)
return;
free_callback(&buf->b_prompt_callback);
set_callback(&buf->b_prompt_callback, &callback);
}
/*
* "prompt_setinterrupt({buffer}, {callback})" function
*/
void
f_prompt_setinterrupt(typval_T *argvars, typval_T *rettv UNUSED)
{
buf_T *buf;
callback_T callback;
if (check_secure())
return;
buf = tv_get_buf(&argvars[0], FALSE);
if (buf == NULL)
return;
callback = get_callback(&argvars[1]);
if (callback.cb_name == NULL)
return;
free_callback(&buf->b_prompt_interrupt);
set_callback(&buf->b_prompt_interrupt, &callback);
}
/*
* "prompt_setprompt({buffer}, {text})" function
*/
void
f_prompt_setprompt(typval_T *argvars, typval_T *rettv UNUSED)
{
buf_T *buf;
char_u *text;
if (check_secure())
return;
buf = tv_get_buf(&argvars[0], FALSE);
if (buf == NULL)
return;
text = tv_get_string(&argvars[1]);
vim_free(buf->b_prompt_text);
buf->b_prompt_text = vim_strsave(text);
}
/*
* "ch_canread()" function
*/
void
f_ch_canread(typval_T *argvars, typval_T *rettv)
{
channel_T *channel = get_channel_arg(&argvars[0], FALSE, FALSE, 0);
rettv->vval.v_number = 0;
if (channel != NULL)
rettv->vval.v_number = channel_has_readahead(channel, PART_SOCK)
|| channel_has_readahead(channel, PART_OUT)
|| channel_has_readahead(channel, PART_ERR);
}
/*
* "ch_close()" function
*/
void
f_ch_close(typval_T *argvars, typval_T *rettv UNUSED)
{
channel_T *channel = get_channel_arg(&argvars[0], TRUE, FALSE, 0);
if (channel != NULL)
{
channel_close(channel, FALSE);
channel_clear(channel);
}
}
/*
* "ch_close()" function
*/
void
f_ch_close_in(typval_T *argvars, typval_T *rettv UNUSED)
{
channel_T *channel = get_channel_arg(&argvars[0], TRUE, FALSE, 0);
if (channel != NULL)
channel_close_in(channel);
}
/*
* "ch_getbufnr()" function
*/
void
f_ch_getbufnr(typval_T *argvars, typval_T *rettv)
{
channel_T *channel = get_channel_arg(&argvars[0], FALSE, FALSE, 0);
rettv->vval.v_number = -1;
if (channel != NULL)
{
char_u *what = tv_get_string(&argvars[1]);
int part;
if (STRCMP(what, "err") == 0)
part = PART_ERR;
else if (STRCMP(what, "out") == 0)
part = PART_OUT;
else if (STRCMP(what, "in") == 0)
part = PART_IN;
else
part = PART_SOCK;
if (channel->ch_part[part].ch_bufref.br_buf != NULL)
rettv->vval.v_number =
channel->ch_part[part].ch_bufref.br_buf->b_fnum;
}
}
/*
* "ch_getjob()" function
*/
void
f_ch_getjob(typval_T *argvars, typval_T *rettv)
{
channel_T *channel = get_channel_arg(&argvars[0], FALSE, FALSE, 0);
if (channel != NULL)
{
rettv->v_type = VAR_JOB;
rettv->vval.v_job = channel->ch_job;
if (channel->ch_job != NULL)
++channel->ch_job->jv_refcount;
}
}
/*
* "ch_info()" function
*/
void
f_ch_info(typval_T *argvars, typval_T *rettv UNUSED)
{
channel_T *channel = get_channel_arg(&argvars[0], FALSE, FALSE, 0);
if (channel != NULL && rettv_dict_alloc(rettv) != FAIL)
channel_info(channel, rettv->vval.v_dict);
}
/*
* "ch_log()" function
*/
void
f_ch_log(typval_T *argvars, typval_T *rettv UNUSED)
{
char_u *msg = tv_get_string(&argvars[0]);
channel_T *channel = NULL;
if (argvars[1].v_type != VAR_UNKNOWN)
channel = get_channel_arg(&argvars[1], FALSE, FALSE, 0);
ch_log(channel, "%s", msg);
}
/*
* "ch_logfile()" function
*/
void
f_ch_logfile(typval_T *argvars, typval_T *rettv UNUSED)
{
char_u *fname;
char_u *opt = (char_u *)"";
char_u buf[NUMBUFLEN];
// Don't open a file in restricted mode.
if (check_restricted() || check_secure())
return;
fname = tv_get_string(&argvars[0]);
if (argvars[1].v_type == VAR_STRING)
opt = tv_get_string_buf(&argvars[1], buf);
ch_logfile(fname, opt);
}
/*
* "ch_open()" function
*/
void
f_ch_open(typval_T *argvars, typval_T *rettv)
{
rettv->v_type = VAR_CHANNEL;
if (check_restricted() || check_secure())
return;
rettv->vval.v_channel = channel_open_func(argvars);
}
/*
* "ch_read()" function
*/
void
f_ch_read(typval_T *argvars, typval_T *rettv)
{
common_channel_read(argvars, rettv, FALSE, FALSE);
}
/*
* "ch_readblob()" function
*/
void
f_ch_readblob(typval_T *argvars, typval_T *rettv)
{
common_channel_read(argvars, rettv, TRUE, TRUE);
}
/*
* "ch_readraw()" function
*/
void
f_ch_readraw(typval_T *argvars, typval_T *rettv)
{
common_channel_read(argvars, rettv, TRUE, FALSE);
}
/*
* "ch_evalexpr()" function
*/
void
f_ch_evalexpr(typval_T *argvars, typval_T *rettv)
{
ch_expr_common(argvars, rettv, TRUE);
}
/*
* "ch_sendexpr()" function
*/
void
f_ch_sendexpr(typval_T *argvars, typval_T *rettv)
{
ch_expr_common(argvars, rettv, FALSE);
}
/*
* "ch_evalraw()" function
*/
void
f_ch_evalraw(typval_T *argvars, typval_T *rettv)
{
ch_raw_common(argvars, rettv, TRUE);
}
/*
* "ch_sendraw()" function
*/
void
f_ch_sendraw(typval_T *argvars, typval_T *rettv)
{
ch_raw_common(argvars, rettv, FALSE);
}
/*
* "ch_setoptions()" function
*/
void
f_ch_setoptions(typval_T *argvars, typval_T *rettv UNUSED)
{
channel_T *channel;
jobopt_T opt;
channel = get_channel_arg(&argvars[0], FALSE, FALSE, 0);
if (channel == NULL)
return;
clear_job_options(&opt);
if (get_job_options(&argvars[1], &opt,
JO_CB_ALL + JO_TIMEOUT_ALL + JO_MODE_ALL, 0) == OK)
channel_set_options(channel, &opt);
free_job_options(&opt);
}
/*
* "ch_status()" function
*/
void
f_ch_status(typval_T *argvars, typval_T *rettv)
{
channel_T *channel;
jobopt_T opt;
int part = -1;
// return an empty string by default
rettv->v_type = VAR_STRING;
rettv->vval.v_string = NULL;
channel = get_channel_arg(&argvars[0], FALSE, FALSE, 0);
if (argvars[1].v_type != VAR_UNKNOWN)
{
clear_job_options(&opt);
if (get_job_options(&argvars[1], &opt, JO_PART, 0) == OK
&& (opt.jo_set & JO_PART))
part = opt.jo_part;
}
rettv->vval.v_string = vim_strsave((char_u *)channel_status(channel, part));
}
/*
* Get the job from the argument.
* Returns NULL if the job is invalid.
*/
static job_T *
get_job_arg(typval_T *tv)
{
job_T *job;
if (tv->v_type != VAR_JOB)
{
semsg(_(e_invarg2), tv_get_string(tv));
return NULL;
}
job = tv->vval.v_job;
if (job == NULL)
emsg(_("E916: not a valid job"));
return job;
}
/*
* "job_getchannel()" function
*/
void
f_job_getchannel(typval_T *argvars, typval_T *rettv)
{
job_T *job = get_job_arg(&argvars[0]);
if (job != NULL)
{
rettv->v_type = VAR_CHANNEL;
rettv->vval.v_channel = job->jv_channel;
if (job->jv_channel != NULL)
++job->jv_channel->ch_refcount;
}
}
/*
* Implementation of job_info().
*/
static void
job_info(job_T *job, dict_T *dict)
{
dictitem_T *item;
varnumber_T nr;
list_T *l;
int i;
dict_add_string(dict, "status", (char_u *)job_status(job));
item = dictitem_alloc((char_u *)"channel");
if (item == NULL)
return;
item->di_tv.v_type = VAR_CHANNEL;
item->di_tv.vval.v_channel = job->jv_channel;
if (job->jv_channel != NULL)
++job->jv_channel->ch_refcount;
if (dict_add(dict, item) == FAIL)
dictitem_free(item);
#ifdef UNIX
nr = job->jv_pid;
#else
nr = job->jv_proc_info.dwProcessId;
#endif
dict_add_number(dict, "process", nr);
dict_add_string(dict, "tty_in", job->jv_tty_in);
dict_add_string(dict, "tty_out", job->jv_tty_out);
dict_add_number(dict, "exitval", job->jv_exitval);
dict_add_string(dict, "exit_cb", job->jv_exit_cb.cb_name);
dict_add_string(dict, "stoponexit", job->jv_stoponexit);
#ifdef UNIX
dict_add_string(dict, "termsig", job->jv_termsig);
#endif
#ifdef MSWIN
dict_add_string(dict, "tty_type", job->jv_tty_type);
#endif
l = list_alloc();
if (l != NULL)
{
dict_add_list(dict, "cmd", l);
if (job->jv_argv != NULL)
for (i = 0; job->jv_argv[i] != NULL; i++)
list_append_string(l, (char_u *)job->jv_argv[i], -1);
}
}
/*
* Implementation of job_info() to return info for all jobs.
*/
static void
job_info_all(list_T *l)
{
job_T *job;
typval_T tv;
for (job = first_job; job != NULL; job = job->jv_next)
{
tv.v_type = VAR_JOB;
tv.vval.v_job = job;
if (list_append_tv(l, &tv) != OK)
return;
}
}
/*
* "job_info()" function
*/
void
f_job_info(typval_T *argvars, typval_T *rettv)
{
if (argvars[0].v_type != VAR_UNKNOWN)
{
job_T *job = get_job_arg(&argvars[0]);
if (job != NULL && rettv_dict_alloc(rettv) != FAIL)
job_info(job, rettv->vval.v_dict);
}
else if (rettv_list_alloc(rettv) == OK)
job_info_all(rettv->vval.v_list);
}
/*
* "job_setoptions()" function
*/
void
f_job_setoptions(typval_T *argvars, typval_T *rettv UNUSED)
{
job_T *job = get_job_arg(&argvars[0]);
jobopt_T opt;
if (job == NULL)
return;
clear_job_options(&opt);
if (get_job_options(&argvars[1], &opt, JO_STOPONEXIT + JO_EXIT_CB, 0) == OK)
job_set_options(job, &opt);
free_job_options(&opt);
}
/*
* "job_start()" function
*/
void
f_job_start(typval_T *argvars, typval_T *rettv)
{
rettv->v_type = VAR_JOB;
if (check_restricted() || check_secure())
return;
rettv->vval.v_job = job_start(argvars, NULL, NULL, FALSE);
}
/*
* "job_status()" function
*/
void
f_job_status(typval_T *argvars, typval_T *rettv)
{
job_T *job = get_job_arg(&argvars[0]);
if (job != NULL)
{
rettv->v_type = VAR_STRING;
rettv->vval.v_string = vim_strsave((char_u *)job_status(job));
}
}
/*
* "job_stop()" function
*/
void
f_job_stop(typval_T *argvars, typval_T *rettv)
{
job_T *job = get_job_arg(&argvars[0]);
if (job != NULL)
rettv->vval.v_number = job_stop(job, argvars, NULL);
}
#endif // FEAT_JOB_CHANNEL