seabios/src/malloc.c

567 lines
17 KiB
C

// Internal dynamic memory allocations.
//
// Copyright (C) 2009-2013 Kevin O'Connor <kevin@koconnor.net>
//
// This file may be distributed under the terms of the GNU LGPLv3 license.
#include "biosvar.h" // GET_BDA
#include "config.h" // BUILD_BIOS_ADDR
#include "e820map.h" // struct e820entry
#include "list.h" // hlist_node
#include "malloc.h" // _malloc
#include "memmap.h" // PAGE_SIZE
#include "output.h" // dprintf
#include "stacks.h" // wait_preempt
#include "std/optionrom.h" // OPTION_ROM_ALIGN
#include "string.h" // memset
// Information on a reserved area.
struct allocinfo_s {
struct hlist_node node;
u32 range_start, range_end, alloc_size;
};
// Information on a tracked memory allocation.
struct allocdetail_s {
struct allocinfo_s detailinfo;
struct allocinfo_s datainfo;
u32 handle;
};
// The various memory zones.
struct zone_s {
struct hlist_head head;
};
struct zone_s ZoneLow VARVERIFY32INIT, ZoneHigh VARVERIFY32INIT;
struct zone_s ZoneFSeg VARVERIFY32INIT;
struct zone_s ZoneTmpLow VARVERIFY32INIT, ZoneTmpHigh VARVERIFY32INIT;
static struct zone_s *Zones[] VARVERIFY32INIT = {
&ZoneTmpLow, &ZoneLow, &ZoneFSeg, &ZoneTmpHigh, &ZoneHigh
};
/****************************************************************
* low-level memory reservations
****************************************************************/
// Find and reserve space from a given zone
static u32
alloc_new(struct zone_s *zone, u32 size, u32 align, struct allocinfo_s *fill)
{
struct allocinfo_s *info;
hlist_for_each_entry(info, &zone->head, node) {
u32 alloc_end = info->range_start + info->alloc_size;
u32 range_end = info->range_end;
u32 new_range_end = ALIGN_DOWN(range_end - size, align);
if (new_range_end >= alloc_end && new_range_end <= range_end) {
// Found space - now reserve it.
fill->range_start = new_range_end;
fill->range_end = range_end;
fill->alloc_size = size;
info->range_end = new_range_end;
hlist_add_before(&fill->node, &info->node);
return new_range_end;
}
}
return 0;
}
// Reserve space for a 'struct allocdetail_s' and fill
static struct allocdetail_s *
alloc_new_detail(struct allocdetail_s *temp)
{
u32 detail_addr = alloc_new(&ZoneTmpHigh, sizeof(struct allocdetail_s)
, MALLOC_MIN_ALIGN, &temp->detailinfo);
if (!detail_addr) {
detail_addr = alloc_new(&ZoneTmpLow, sizeof(struct allocdetail_s)
, MALLOC_MIN_ALIGN, &temp->detailinfo);
if (!detail_addr) {
warn_noalloc();
return NULL;
}
}
struct allocdetail_s *detail = memremap(detail_addr, sizeof(*detail));
// Fill final 'detail' allocation from data in 'temp'
memcpy(detail, temp, sizeof(*detail));
hlist_replace(&temp->detailinfo.node, &detail->detailinfo.node);
hlist_replace(&temp->datainfo.node, &detail->datainfo.node);
return detail;
}
// Add new memory to a zone
static void
alloc_add(struct zone_s *zone, u32 start, u32 end)
{
// Find position to add space
struct allocinfo_s *info;
struct hlist_node **pprev;
hlist_for_each_entry_pprev(info, pprev, &zone->head, node) {
if (info->range_start < start)
break;
}
// Add space using temporary allocation info.
struct allocdetail_s tempdetail;
tempdetail.handle = MALLOC_DEFAULT_HANDLE;
tempdetail.datainfo.range_start = start;
tempdetail.datainfo.range_end = end;
tempdetail.datainfo.alloc_size = 0;
hlist_add(&tempdetail.datainfo.node, pprev);
// Allocate final allocation info.
struct allocdetail_s *detail = alloc_new_detail(&tempdetail);
if (!detail)
hlist_del(&tempdetail.datainfo.node);
}
// Release space allocated with alloc_new()
static void
alloc_free(struct allocinfo_s *info)
{
struct allocinfo_s *next = container_of_or_null(
info->node.next, struct allocinfo_s, node);
if (next && next->range_end == info->range_start)
next->range_end = info->range_end;
hlist_del(&info->node);
}
// Search all zones for an allocation obtained from alloc_new()
static struct allocinfo_s *
alloc_find(u32 data)
{
int i;
for (i=0; i<ARRAY_SIZE(Zones); i++) {
struct allocinfo_s *info;
hlist_for_each_entry(info, &Zones[i]->head, node) {
if (info->range_start == data)
return info;
}
}
return NULL;
}
// Find the lowest memory range added by alloc_add()
static struct allocinfo_s *
alloc_find_lowest(struct zone_s *zone)
{
struct allocinfo_s *info, *last = NULL;
hlist_for_each_entry(info, &zone->head, node) {
last = info;
}
return last;
}
/****************************************************************
* ebda movement
****************************************************************/
// Move ebda
static int
relocate_ebda(u32 newebda, u32 oldebda, u8 ebda_size)
{
u32 lowram = GET_BDA(mem_size_kb) * 1024;
if (oldebda != lowram)
// EBDA isn't at end of ram - give up.
return -1;
// Do copy
memmove((void*)newebda, (void*)oldebda, ebda_size * 1024);
// Update indexes
dprintf(1, "ebda moved from %x to %x\n", oldebda, newebda);
SET_BDA(mem_size_kb, newebda / 1024);
SET_BDA(ebda_seg, FLATPTR_TO_SEG(newebda));
return 0;
}
// Support expanding the ZoneLow dynamically.
static u32
zonelow_expand(u32 size, u32 align, struct allocinfo_s *fill)
{
// Make sure to not move ebda while an optionrom is running.
if (unlikely(wait_preempt())) {
u32 data = alloc_new(&ZoneLow, size, align, fill);
if (data)
return data;
}
struct allocinfo_s *info = alloc_find_lowest(&ZoneLow);
if (!info)
return 0;
u32 oldpos = info->range_end;
u32 newpos = ALIGN_DOWN(oldpos - size, align);
u32 bottom = info->range_start + info->alloc_size;
if (newpos >= bottom && newpos <= oldpos)
// Space already present.
return alloc_new(&ZoneLow, size, align, fill);
u16 ebda_seg = get_ebda_seg();
u32 ebda_pos = (u32)MAKE_FLATPTR(ebda_seg, 0);
u8 ebda_size = GET_EBDA(ebda_seg, size);
u32 ebda_end = ebda_pos + ebda_size * 1024;
if (ebda_end != bottom)
// Something else is after ebda - can't use any existing space.
newpos = ALIGN_DOWN(ebda_end - size, align);
u32 newbottom = ALIGN_DOWN(newpos, 1024);
u32 newebda = ALIGN_DOWN(newbottom - ebda_size * 1024, 1024);
if (newebda < BUILD_EBDA_MINIMUM)
// Not enough space.
return 0;
// Move ebda
int ret = relocate_ebda(newebda, ebda_pos, ebda_size);
if (ret)
return 0;
// Update zone
if (ebda_end == bottom)
info->range_start = newbottom;
else
alloc_add(&ZoneLow, newbottom, ebda_end);
return alloc_new(&ZoneLow, size, align, fill);
}
/****************************************************************
* tracked memory allocations
****************************************************************/
// Allocate physical memory from the given zone and track it as a PMM allocation
u32
malloc_palloc(struct zone_s *zone, u32 size, u32 align)
{
ASSERT32FLAT();
if (!size)
return 0;
// Find and reserve space for main allocation
struct allocdetail_s tempdetail;
tempdetail.handle = MALLOC_DEFAULT_HANDLE;
u32 data = alloc_new(zone, size, align, &tempdetail.datainfo);
if (!CONFIG_MALLOC_UPPERMEMORY && !data && zone == &ZoneLow)
data = zonelow_expand(size, align, &tempdetail.datainfo);
if (!data)
return 0;
// Find and reserve space for bookkeeping.
struct allocdetail_s *detail = alloc_new_detail(&tempdetail);
if (!detail) {
alloc_free(&tempdetail.datainfo);
return 0;
}
dprintf(8, "phys_alloc zone=%p size=%d align=%x ret=%x (detail=%p)\n"
, zone, size, align, data, detail);
return data;
}
// Allocate virtual memory from the given zone
void * __malloc
_malloc(struct zone_s *zone, u32 size, u32 align)
{
return memremap(malloc_palloc(zone, size, align), size);
}
// Free a data block allocated with phys_alloc
int
malloc_pfree(u32 data)
{
ASSERT32FLAT();
struct allocinfo_s *info = alloc_find(data);
if (!info || data == virt_to_phys(info) || !info->alloc_size)
return -1;
struct allocdetail_s *detail = container_of(
info, struct allocdetail_s, datainfo);
dprintf(8, "phys_free %x (detail=%p)\n", data, detail);
alloc_free(info);
alloc_free(&detail->detailinfo);
return 0;
}
void
free(void *data)
{
if (!data)
return;
int ret = malloc_pfree(virt_to_phys(data));
if (ret)
warn_internalerror();
}
// Find the amount of free space in a given zone.
u32
malloc_getspace(struct zone_s *zone)
{
// XXX - doesn't account for ZoneLow being able to grow.
// XXX - results not reliable when CONFIG_THREAD_OPTIONROMS
u32 maxspace = 0;
struct allocinfo_s *info;
hlist_for_each_entry(info, &zone->head, node) {
u32 space = info->range_end - info->range_start - info->alloc_size;
if (space > maxspace)
maxspace = space;
}
if (zone != &ZoneTmpHigh && zone != &ZoneTmpLow)
return maxspace;
// Account for space needed for PMM tracking.
u32 reserve = ALIGN(sizeof(struct allocdetail_s), MALLOC_MIN_ALIGN);
if (maxspace <= reserve)
return 0;
return maxspace - reserve;
}
// Set a handle associated with an allocation.
void
malloc_sethandle(u32 data, u32 handle)
{
ASSERT32FLAT();
struct allocinfo_s *info = alloc_find(data);
if (!info || data == virt_to_phys(info) || !info->alloc_size)
return;
struct allocdetail_s *detail = container_of(
info, struct allocdetail_s, datainfo);
detail->handle = handle;
}
// Find the data block allocated with phys_alloc with a given handle.
u32
malloc_findhandle(u32 handle)
{
int i;
for (i=0; i<ARRAY_SIZE(Zones); i++) {
struct allocinfo_s *info;
hlist_for_each_entry(info, &Zones[i]->head, node) {
if (info->range_start != virt_to_phys(info))
continue;
struct allocdetail_s *detail = container_of(
info, struct allocdetail_s, detailinfo);
if (detail->handle == handle)
return detail->datainfo.range_start;
}
}
return 0;
}
/****************************************************************
* 0xc0000-0xf0000 management
****************************************************************/
static u32 RomEnd = BUILD_ROM_START;
static struct allocinfo_s *RomBase;
#define OPROM_HEADER_RESERVE 16
// Return the maximum memory position option roms may use.
u32
rom_get_max(void)
{
if (CONFIG_MALLOC_UPPERMEMORY)
return ALIGN_DOWN(RomBase->range_end - OPROM_HEADER_RESERVE
, OPTION_ROM_ALIGN);
return SYMBOL(final_readonly_start);
}
// Return the end of the last deployed option rom.
u32
rom_get_last(void)
{
return RomEnd;
}
// Request space for an optionrom in 0xc0000-0xf0000 area.
struct rom_header *
rom_reserve(u32 size)
{
u32 newend = ALIGN(RomEnd + size, OPTION_ROM_ALIGN);
if (newend > rom_get_max())
return NULL;
if (CONFIG_MALLOC_UPPERMEMORY) {
if (newend < SYMBOL(zonelow_base))
newend = SYMBOL(zonelow_base);
RomBase->range_start = newend + OPROM_HEADER_RESERVE;
}
return (void*)RomEnd;
}
// Confirm space as in use by an optionrom.
int
rom_confirm(u32 size)
{
void *new = rom_reserve(size);
if (!new) {
warn_noalloc();
return -1;
}
RomEnd = ALIGN(RomEnd + size, OPTION_ROM_ALIGN);
return 0;
}
/****************************************************************
* Setup
****************************************************************/
void
malloc_preinit(void)
{
ASSERT32FLAT();
dprintf(3, "malloc preinit\n");
// Don't declare any memory between 0xa0000 and 0x100000
e820_remove(BUILD_LOWRAM_END, BUILD_BIOS_ADDR-BUILD_LOWRAM_END);
// Mark known areas as reserved.
e820_add(BUILD_BIOS_ADDR, BUILD_BIOS_SIZE, E820_RESERVED);
// Populate temp high ram
u32 highram_start = 0;
u32 highram_size = 0;
int i;
for (i=e820_count-1; i>=0; i--) {
struct e820entry *en = &e820_list[i];
u64 end = en->start + en->size;
if (end < 1024*1024)
break;
if (en->type != E820_RAM || end > 0xffffffff)
continue;
u32 s = en->start, e = end;
if (!highram_start) {
u32 new_max = ALIGN_DOWN(e - BUILD_MAX_HIGHTABLE, MALLOC_MIN_ALIGN);
u32 new_min = ALIGN_DOWN(e - BUILD_MIN_HIGHTABLE, MALLOC_MIN_ALIGN);
if (new_max <= e && new_max >= s + BUILD_MAX_HIGHTABLE) {
highram_start = e = new_max;
highram_size = BUILD_MAX_HIGHTABLE;
} else if (new_min <= e && new_min >= s) {
highram_start = e = new_min;
highram_size = BUILD_MIN_HIGHTABLE;
}
}
alloc_add(&ZoneTmpHigh, s, e);
}
// Populate regions
alloc_add(&ZoneTmpLow, BUILD_STACK_ADDR, BUILD_EBDA_MINIMUM);
if (highram_start) {
alloc_add(&ZoneHigh, highram_start, highram_start + highram_size);
e820_add(highram_start, highram_size, E820_RESERVED);
}
}
void
malloc_csm_preinit(u32 low_pmm, u32 low_pmm_size, u32 hi_pmm, u32 hi_pmm_size)
{
ASSERT32FLAT();
if (hi_pmm_size > BUILD_MIN_HIGHTABLE) {
u32 hi_pmm_end = hi_pmm + hi_pmm_size;
alloc_add(&ZoneTmpHigh, hi_pmm, hi_pmm_end - BUILD_MIN_HIGHTABLE);
alloc_add(&ZoneHigh, hi_pmm_end - BUILD_MIN_HIGHTABLE, hi_pmm_end);
} else {
alloc_add(&ZoneTmpHigh, hi_pmm, hi_pmm + hi_pmm_size);
}
alloc_add(&ZoneTmpLow, low_pmm, low_pmm + low_pmm_size);
}
u32 LegacyRamSize VARFSEG;
// Calculate the maximum ramsize (less than 4gig) from e820 map.
static void
calcRamSize(void)
{
u32 rs = 0;
int i;
for (i=e820_count-1; i>=0; i--) {
struct e820entry *en = &e820_list[i];
u64 end = en->start + en->size;
u32 type = en->type;
if (end <= 0xffffffff && (type == E820_ACPI || type == E820_RAM)) {
rs = end;
break;
}
}
LegacyRamSize = rs >= 1024*1024 ? rs : 1024*1024;
}
// Update pointers after code relocation.
void
malloc_init(void)
{
ASSERT32FLAT();
dprintf(3, "malloc init\n");
if (CONFIG_RELOCATE_INIT) {
// Fixup malloc pointers after relocation
int i;
for (i=0; i<ARRAY_SIZE(Zones); i++) {
struct zone_s *zone = Zones[i];
if (zone->head.first)
zone->head.first->pprev = &zone->head.first;
}
}
// Initialize low-memory region
memmove(VSYMBOL(final_varlow_start), VSYMBOL(varlow_start)
, SYMBOL(varlow_end) - SYMBOL(varlow_start));
if (CONFIG_MALLOC_UPPERMEMORY) {
alloc_add(&ZoneLow, SYMBOL(zonelow_base) + OPROM_HEADER_RESERVE
, SYMBOL(final_varlow_start));
RomBase = alloc_find_lowest(&ZoneLow);
} else {
alloc_add(&ZoneLow, ALIGN_DOWN(SYMBOL(final_varlow_start), 1024)
, SYMBOL(final_varlow_start));
}
// Add space available in f-segment to ZoneFSeg
memset(VSYMBOL(zonefseg_start), 0
, SYMBOL(zonefseg_end) - SYMBOL(zonefseg_start));
alloc_add(&ZoneFSeg, SYMBOL(zonefseg_start), SYMBOL(zonefseg_end));
calcRamSize();
}
void
malloc_prepboot(void)
{
ASSERT32FLAT();
dprintf(3, "malloc finalize\n");
u32 base = rom_get_max();
memset((void*)RomEnd, 0, base-RomEnd);
if (CONFIG_MALLOC_UPPERMEMORY) {
// Place an optionrom signature around used low mem area.
struct rom_header *dummyrom = (void*)base;
dummyrom->signature = OPTION_ROM_SIGNATURE;
int size = (BUILD_BIOS_ADDR - base) / 512;
dummyrom->size = (size > 255) ? 255 : size;
}
// Reserve more low-mem if needed.
u32 endlow = GET_BDA(mem_size_kb)*1024;
e820_add(endlow, BUILD_LOWRAM_END-endlow, E820_RESERVED);
// Clear unused f-seg ram.
struct allocinfo_s *info = alloc_find_lowest(&ZoneFSeg);
u32 size = info->range_end - info->range_start;
memset(memremap(info->range_start, size), 0, size);
dprintf(1, "Space available for UMB: %x-%x, %x-%x\n"
, RomEnd, base, info->range_start, info->range_end);
// Give back unused high ram.
info = alloc_find_lowest(&ZoneHigh);
if (info) {
u32 giveback = ALIGN_DOWN(info->range_end-info->range_start, PAGE_SIZE);
e820_add(info->range_start, giveback, E820_RAM);
dprintf(1, "Returned %d bytes of ZoneHigh\n", giveback);
}
calcRamSize();
}