// Standard VGA driver code // // Copyright (C) 2009-2024 Kevin O'Connor // Copyright (C) 2001-2008 the LGPL VGABios developers Team // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "biosvar.h" // GET_GLOBAL #include "farptr.h" // SET_FARVAR #include "stdvga.h" // stdvga_setup #include "string.h" // memset_far #include "vgabios.h" // struct vgamode_s #include "x86.h" // outb /**************************************************************** * Attribute control ****************************************************************/ // Emulate CGA background setting via VGA palette index registers void stdvga_set_cga_background_color(u8 color) { // Set the background color (via palette index 0) u8 v1 = color & 0x0f; if (v1 & 0x08) v1 += 0x08; stdvga_attr_write(0x00, v1); // Dim/brighten foreground (see pal_cga[] in stdvgamodes.c) int i; for (i = 1; i < 4; i++) stdvga_attr_mask(i, 0x10, color & 0x10); } // Emulate CGA palette setting by altering VGA palette index registers void stdvga_set_cga_palette(u8 palid) { // Switch foreground colors (see pal_cga[] in stdvgamodes.c) int i; for (i = 1; i < 4; i++) stdvga_attr_mask(i, 0x01, palid & 0x01); } // Set the VGA palette index register for the "overscan" area void stdvga_set_overscan_border_color(u8 color) { stdvga_attr_write(0x11, color); } // Get the VGA palette index register for the "overscan" area u8 stdvga_get_overscan_border_color(void) { return stdvga_attr_read(0x11); } // Set the VGA palette index registers void stdvga_set_all_palette_reg(u16 seg, u8 *data_far) { // Set palette indexes (offset into DAC colors) int i; for (i = 0; i < 0x10; i++) { stdvga_attr_write(i, GET_FARVAR(seg, *data_far)); data_far++; } // Set "overscan" palette index (offset into DAC colors) stdvga_attr_write(0x11, GET_FARVAR(seg, *data_far)); } // Get the VGA palette index registers void stdvga_get_all_palette_reg(u16 seg, u8 *data_far) { int i; for (i = 0; i < 0x10; i++) { SET_FARVAR(seg, *data_far, stdvga_attr_read(i)); data_far++; } SET_FARVAR(seg, *data_far, stdvga_attr_read(0x11)); } // Set blinking mode (when enabled, palette index bit 0x08 indicates blinking) void stdvga_set_palette_blinking(u8 enable_blink) { stdvga_attr_mask(0x10, 0x08, (enable_blink & 0x01) << 3); } // Select 4-bit or 6-bit palette indexes (for "page" switching of colors) void stdvga_set_palette_pagesize(u8 pal_pagesize) { stdvga_attr_mask(0x10, 0x80, pal_pagesize << 7); } // Set palette index offset (enables color switching via "pages") void stdvga_set_palette_page(u8 pal_page) { // Check if using 4-bit or 6-bit "palette index pages" u8 val = stdvga_attr_read(0x10); if (!(val & 0x80)) pal_page <<= 2; // select page pal_page &= 0x0f; stdvga_attr_write(0x14, pal_page); } // Report current palette index pagesize and current page void stdvga_get_palette_page(u8 *pal_pagesize, u8 *pal_page) { u8 val1 = stdvga_attr_read(0x10) >> 7; u8 val2 = stdvga_attr_read(0x14) & 0x0f; if (!(val1 & 0x01)) val2 >>= 2; *pal_pagesize = val1; *pal_page = val2; } /**************************************************************** * DAC control ****************************************************************/ // Store dac colors into memory in 3-byte rgb format void stdvga_dac_read_many(u16 seg, u8 *data_far, u8 start, int count) { while (count) { struct vbe_palette_entry rgb = stdvga_dac_read(start); SET_FARVAR(seg, *data_far, rgb.red); data_far++; SET_FARVAR(seg, *data_far, rgb.green); data_far++; SET_FARVAR(seg, *data_far, rgb.blue); data_far++; start++; count--; } } // Load dac colors from memory in 3-byte rgb format void stdvga_dac_write_many(u16 seg, u8 *data_far, u8 start, int count) { while (count) { u8 r = GET_FARVAR(seg, *data_far); data_far++; u8 g = GET_FARVAR(seg, *data_far); data_far++; u8 b = GET_FARVAR(seg, *data_far); data_far++; struct vbe_palette_entry rgb = { .red=r, .green=g, .blue=b }; stdvga_dac_write(start, rgb); start++; count--; } } // Convert all loaded colors to shades of gray void stdvga_perform_gray_scale_summing(u16 start, u16 count) { stdvga_attrindex_write(0x00); int i; for (i = start; i < start+count; i++) { struct vbe_palette_entry rgb = stdvga_dac_read(i); // intensity = ( 0.3 * Red ) + ( 0.59 * Green ) + ( 0.11 * Blue ) u16 intensity = ((77 * rgb.red + 151 * rgb.green + 28 * rgb.blue) + 0x80) >> 8; if (intensity > 0x3f) intensity = 0x3f; rgb.red = rgb.green = rgb.blue = intensity; stdvga_dac_write(i, rgb); } stdvga_attrindex_write(0x20); } /**************************************************************** * Memory control ****************************************************************/ // Enable reads and writes to the given "plane" when in planar4 mode. void stdvga_planar4_plane(int plane) { if (plane < 0) { // Return to default mode (read plane0, write all planes) stdvga_sequ_write(0x02, 0x0f); stdvga_grdc_write(0x04, 0); } else { stdvga_sequ_write(0x02, 1<memmodel)) { case MM_TEXT: return 2; case MM_CGA: return 4 / GET_GLOBAL(vmode_g->depth); case MM_PLANAR: return 4; default: return 1; } } // Set cursor shape (when in text mode) void stdvga_set_cursor_shape(u16 cursor_type) { u16 crtc_addr = stdvga_get_crtc(); stdvga_crtc_write(crtc_addr, 0x0a, cursor_type >> 8); stdvga_crtc_write(crtc_addr, 0x0b, cursor_type); } // Set the position of the text cursor (as offset into system framebuffer) void stdvga_set_cursor_pos(int address) { u16 crtc_addr = stdvga_get_crtc(); address /= 2; // Assume we're in text mode. stdvga_crtc_write(crtc_addr, 0x0e, address >> 8); stdvga_crtc_write(crtc_addr, 0x0f, address); } // Set the character height (when in text mode) void stdvga_set_character_height(u8 lines) { stdvga_crtc_mask(stdvga_get_crtc(), 0x09, 0x1f, lines - 1); } // Get vertical screen size (number of horizontal lines in the display) u16 stdvga_get_vertical_size(void) { u16 crtc_addr = stdvga_get_crtc(); u16 vde = stdvga_crtc_read(crtc_addr, 0x12); u8 ovl = stdvga_crtc_read(crtc_addr, 0x07); vde += ((ovl & 0x02) << 7) + ((ovl & 0x40) << 3); return vde + 1; } // Set vertical screen size (number of horizontal lines in the display) void stdvga_set_vertical_size(int lines) { u16 crtc_addr = stdvga_get_crtc(); u16 vde = lines - 1; stdvga_crtc_write(crtc_addr, 0x12, vde); u8 ovl = ((vde >> 7) & 0x02) + ((vde >> 3) & 0x40); stdvga_crtc_mask(crtc_addr, 0x07, 0x42, ovl); } // Get offset into framebuffer accessible from real-mode 64K segment int stdvga_get_window(struct vgamode_s *curmode_g, int window) { return -1; } // Set offset into framebuffer that is accessible from real-mode 64K // segment (in units of VBE_win_granularity windows) int stdvga_set_window(struct vgamode_s *curmode_g, int window, int val) { // Stdvga does not support changing window offset return -1; } // Minimum framebuffer bytes between each vertical line for given mode int stdvga_minimum_linelength(struct vgamode_s *vmode_g) { return DIV_ROUND_UP(GET_GLOBAL(vmode_g->width) * vga_bpp(vmode_g), 8); } // Return number of framebuffer bytes between start of each vertical line int stdvga_get_linelength(struct vgamode_s *curmode_g) { u8 val = stdvga_crtc_read(stdvga_get_crtc(), 0x13); return val * 8 / stdvga_vram_ratio(curmode_g); } // Set number of framebuffer bytes between start of each vertical line int stdvga_set_linelength(struct vgamode_s *curmode_g, int val) { val = DIV_ROUND_UP(val * stdvga_vram_ratio(curmode_g), 8); stdvga_crtc_write(stdvga_get_crtc(), 0x13, val); return 0; } // Return framebuffer offset of first byte of displayed content int stdvga_get_displaystart(struct vgamode_s *curmode_g) { u16 crtc_addr = stdvga_get_crtc(); int addr = (stdvga_crtc_read(crtc_addr, 0x0c) << 8 | stdvga_crtc_read(crtc_addr, 0x0d)); return addr * 4 / stdvga_vram_ratio(curmode_g); } // Set framebuffer offset of first byte of displayed content int stdvga_set_displaystart(struct vgamode_s *curmode_g, int val) { u16 crtc_addr = stdvga_get_crtc(); val = val * stdvga_vram_ratio(curmode_g) / 4; stdvga_crtc_write(crtc_addr, 0x0c, val >> 8); stdvga_crtc_write(crtc_addr, 0x0d, val); return 0; } // Report if using 8bit per rgb (24bit total) or 6bit per rgb (18bit total) int stdvga_get_dacformat(struct vgamode_s *curmode_g) { return -1; } // Set 8bit per rgb (24bit total) or 6bit per rgb (18bit total) int stdvga_set_dacformat(struct vgamode_s *curmode_g, int val) { // Stdvga only supports 6bits for each color channel return -1; } /**************************************************************** * Save/Restore state ****************************************************************/ struct saveVideoHardware { u8 sequ_index; u8 crtc_index; u8 grdc_index; u8 actl_index; u8 feature; u8 sequ_regs[4]; u8 sequ0; u8 crtc_regs[25]; u8 actl_regs[20]; u8 grdc_regs[9]; u16 crtc_addr; u8 plane_latch[4]; } PACKED; static void stdvga_save_hw_state(u16 seg, struct saveVideoHardware *info) { u16 crtc_addr = stdvga_get_crtc(); SET_FARVAR(seg, info->sequ_index, inb(VGAREG_SEQU_ADDRESS)); SET_FARVAR(seg, info->crtc_index, inb(crtc_addr)); SET_FARVAR(seg, info->grdc_index, inb(VGAREG_GRDC_ADDRESS)); SET_FARVAR(seg, info->actl_index, stdvga_attrindex_read()); SET_FARVAR(seg, info->feature, inb(VGAREG_READ_FEATURE_CTL)); int i; for (i=0; i<4; i++) SET_FARVAR(seg, info->sequ_regs[i], stdvga_sequ_read(i+1)); SET_FARVAR(seg, info->sequ0, stdvga_sequ_read(0)); for (i=0; i<25; i++) SET_FARVAR(seg, info->crtc_regs[i], stdvga_crtc_read(crtc_addr, i)); for (i=0; i<20; i++) SET_FARVAR(seg, info->actl_regs[i], stdvga_attr_read(i)); for (i=0; i<9; i++) SET_FARVAR(seg, info->grdc_regs[i], stdvga_grdc_read(i)); SET_FARVAR(seg, info->crtc_addr, crtc_addr); /* XXX: read plane latches */ for (i=0; i<4; i++) SET_FARVAR(seg, info->plane_latch[i], 0); } static void stdvga_restore_hw_state(u16 seg, struct saveVideoHardware *info) { int i; for (i=0; i<4; i++) stdvga_sequ_write(i+1, GET_FARVAR(seg, info->sequ_regs[i])); stdvga_sequ_write(0x00, GET_FARVAR(seg, info->sequ0)); // Disable CRTC write protection u16 crtc_addr = GET_FARVAR(seg, info->crtc_addr); stdvga_crtc_write(crtc_addr, 0x11, 0x00); // Set CRTC regs for (i=0; i<25; i++) if (i != 0x11) stdvga_crtc_write(crtc_addr, i, GET_FARVAR(seg, info->crtc_regs[i])); // select crtc base address stdvga_misc_mask(0x01, crtc_addr == VGAREG_VGA_CRTC_ADDRESS ? 0x01 : 0x00); // enable write protection if needed stdvga_crtc_write(crtc_addr, 0x11, GET_FARVAR(seg, info->crtc_regs[0x11])); // Set Attribute Ctl for (i=0; i<20; i++) stdvga_attr_write(i, GET_FARVAR(seg, info->actl_regs[i])); stdvga_attrindex_write(GET_FARVAR(seg, info->actl_index)); for (i=0; i<9; i++) stdvga_grdc_write(i, GET_FARVAR(seg, info->grdc_regs[i])); outb(GET_FARVAR(seg, info->sequ_index), VGAREG_SEQU_ADDRESS); outb(GET_FARVAR(seg, info->crtc_index), crtc_addr); outb(GET_FARVAR(seg, info->grdc_index), VGAREG_GRDC_ADDRESS); outb(GET_FARVAR(seg, info->feature), crtc_addr - 0x4 + 0xa); } struct saveDACcolors { u8 rwmode; u8 peladdr; u8 pelmask; u8 dac[768]; u8 color_select; } PACKED; static void stdvga_save_dac_state(u16 seg, struct saveDACcolors *info) { /* XXX: check this */ SET_FARVAR(seg, info->rwmode, inb(VGAREG_DAC_STATE)); SET_FARVAR(seg, info->peladdr, inb(VGAREG_DAC_WRITE_ADDRESS)); SET_FARVAR(seg, info->pelmask, stdvga_pelmask_read()); stdvga_dac_read_many(seg, info->dac, 0, 256); SET_FARVAR(seg, info->color_select, 0); } static void stdvga_restore_dac_state(u16 seg, struct saveDACcolors *info) { stdvga_pelmask_write(GET_FARVAR(seg, info->pelmask)); stdvga_dac_write_many(seg, info->dac, 0, 256); outb(GET_FARVAR(seg, info->peladdr), VGAREG_DAC_WRITE_ADDRESS); } int stdvga_save_restore(int cmd, u16 seg, void *data) { void *pos = data; if (cmd & SR_HARDWARE) { if (cmd & SR_SAVE) stdvga_save_hw_state(seg, pos); if (cmd & SR_RESTORE) stdvga_restore_hw_state(seg, pos); pos += sizeof(struct saveVideoHardware); } pos += bda_save_restore(cmd, seg, pos); if (cmd & SR_DAC) { if (cmd & SR_SAVE) stdvga_save_dac_state(seg, pos); if (cmd & SR_RESTORE) stdvga_restore_dac_state(seg, pos); pos += sizeof(struct saveDACcolors); } return pos - data; } /**************************************************************** * Misc ****************************************************************/ // Enable/disable system access to the video memory void stdvga_enable_video_addressing(u8 disable) { u8 v = (disable & 1) ? 0x00 : 0x02; stdvga_misc_mask(0x02, v); } int stdvga_setup(void) { // switch to color mode and enable CPU access 480 lines stdvga_misc_write(0xc3); // more than 64k 3C4/04 stdvga_sequ_write(0x04, 0x02); return 0; }