// Internal dynamic memory allocations. // // Copyright (C) 2009-2013 Kevin O'Connor // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "biosvar.h" // GET_BDA #include "config.h" // BUILD_BIOS_ADDR #include "e820map.h" // struct e820entry #include "list.h" // hlist_node #include "malloc.h" // _malloc #include "memmap.h" // PAGE_SIZE #include "output.h" // dprintf #include "stacks.h" // wait_preempt #include "std/optionrom.h" // OPTION_ROM_ALIGN #include "string.h" // memset // Information on a reserved area. struct allocinfo_s { struct hlist_node node; u32 range_start, range_end, alloc_size; }; // Information on a tracked memory allocation. struct allocdetail_s { struct allocinfo_s detailinfo; struct allocinfo_s datainfo; u32 handle; }; // The various memory zones. struct zone_s { struct hlist_head head; }; struct zone_s ZoneLow VARVERIFY32INIT, ZoneHigh VARVERIFY32INIT; struct zone_s ZoneFSeg VARVERIFY32INIT; struct zone_s ZoneTmpLow VARVERIFY32INIT, ZoneTmpHigh VARVERIFY32INIT; static struct zone_s *Zones[] VARVERIFY32INIT = { &ZoneTmpLow, &ZoneLow, &ZoneFSeg, &ZoneTmpHigh, &ZoneHigh }; /**************************************************************** * low-level memory reservations ****************************************************************/ // Find and reserve space from a given zone static u32 alloc_new(struct zone_s *zone, u32 size, u32 align, struct allocinfo_s *fill) { struct allocinfo_s *info; hlist_for_each_entry(info, &zone->head, node) { u32 alloc_end = info->range_start + info->alloc_size; u32 range_end = info->range_end; u32 new_range_end = ALIGN_DOWN(range_end - size, align); if (new_range_end >= alloc_end && new_range_end <= range_end) { // Found space - now reserve it. fill->range_start = new_range_end; fill->range_end = range_end; fill->alloc_size = size; info->range_end = new_range_end; hlist_add_before(&fill->node, &info->node); return new_range_end; } } return 0; } // Reserve space for a 'struct allocdetail_s' and fill static struct allocdetail_s * alloc_new_detail(struct allocdetail_s *temp) { u32 detail_addr = alloc_new(&ZoneTmpHigh, sizeof(struct allocdetail_s) , MALLOC_MIN_ALIGN, &temp->detailinfo); if (!detail_addr) { detail_addr = alloc_new(&ZoneTmpLow, sizeof(struct allocdetail_s) , MALLOC_MIN_ALIGN, &temp->detailinfo); if (!detail_addr) { warn_noalloc(); return NULL; } } struct allocdetail_s *detail = memremap(detail_addr, sizeof(*detail)); // Fill final 'detail' allocation from data in 'temp' memcpy(detail, temp, sizeof(*detail)); hlist_replace(&temp->detailinfo.node, &detail->detailinfo.node); hlist_replace(&temp->datainfo.node, &detail->datainfo.node); return detail; } // Add new memory to a zone static void alloc_add(struct zone_s *zone, u32 start, u32 end) { // Find position to add space struct allocinfo_s *info; struct hlist_node **pprev; hlist_for_each_entry_pprev(info, pprev, &zone->head, node) { if (info->range_start < start) break; } // Add space using temporary allocation info. struct allocdetail_s tempdetail; tempdetail.handle = MALLOC_DEFAULT_HANDLE; tempdetail.datainfo.range_start = start; tempdetail.datainfo.range_end = end; tempdetail.datainfo.alloc_size = 0; hlist_add(&tempdetail.datainfo.node, pprev); // Allocate final allocation info. struct allocdetail_s *detail = alloc_new_detail(&tempdetail); if (!detail) hlist_del(&tempdetail.datainfo.node); } // Release space allocated with alloc_new() static void alloc_free(struct allocinfo_s *info) { struct allocinfo_s *next = container_of_or_null( info->node.next, struct allocinfo_s, node); if (next && next->range_end == info->range_start) next->range_end = info->range_end; hlist_del(&info->node); } // Search all zones for an allocation obtained from alloc_new() static struct allocinfo_s * alloc_find(u32 data) { int i; for (i=0; ihead, node) { if (info->range_start == data) return info; } } return NULL; } // Find the lowest memory range added by alloc_add() static struct allocinfo_s * alloc_find_lowest(struct zone_s *zone) { struct allocinfo_s *info, *last = NULL; hlist_for_each_entry(info, &zone->head, node) { last = info; } return last; } /**************************************************************** * ebda movement ****************************************************************/ // Move ebda static int relocate_ebda(u32 newebda, u32 oldebda, u8 ebda_size) { u32 lowram = GET_BDA(mem_size_kb) * 1024; if (oldebda != lowram) // EBDA isn't at end of ram - give up. return -1; // Do copy memmove((void*)newebda, (void*)oldebda, ebda_size * 1024); // Update indexes dprintf(1, "ebda moved from %x to %x\n", oldebda, newebda); SET_BDA(mem_size_kb, newebda / 1024); SET_BDA(ebda_seg, FLATPTR_TO_SEG(newebda)); return 0; } // Support expanding the ZoneLow dynamically. static u32 zonelow_expand(u32 size, u32 align, struct allocinfo_s *fill) { // Make sure to not move ebda while an optionrom is running. if (unlikely(wait_preempt())) { u32 data = alloc_new(&ZoneLow, size, align, fill); if (data) return data; } struct allocinfo_s *info = alloc_find_lowest(&ZoneLow); if (!info) return 0; u32 oldpos = info->range_end; u32 newpos = ALIGN_DOWN(oldpos - size, align); u32 bottom = info->range_start + info->alloc_size; if (newpos >= bottom && newpos <= oldpos) // Space already present. return alloc_new(&ZoneLow, size, align, fill); u16 ebda_seg = get_ebda_seg(); u32 ebda_pos = (u32)MAKE_FLATPTR(ebda_seg, 0); u8 ebda_size = GET_EBDA(ebda_seg, size); u32 ebda_end = ebda_pos + ebda_size * 1024; if (ebda_end != bottom) // Something else is after ebda - can't use any existing space. newpos = ALIGN_DOWN(ebda_end - size, align); u32 newbottom = ALIGN_DOWN(newpos, 1024); u32 newebda = ALIGN_DOWN(newbottom - ebda_size * 1024, 1024); if (newebda < BUILD_EBDA_MINIMUM) // Not enough space. return 0; // Move ebda int ret = relocate_ebda(newebda, ebda_pos, ebda_size); if (ret) return 0; // Update zone if (ebda_end == bottom) info->range_start = newbottom; else alloc_add(&ZoneLow, newbottom, ebda_end); return alloc_new(&ZoneLow, size, align, fill); } /**************************************************************** * tracked memory allocations ****************************************************************/ // Allocate physical memory from the given zone and track it as a PMM allocation u32 malloc_palloc(struct zone_s *zone, u32 size, u32 align) { ASSERT32FLAT(); if (!size) return 0; // Find and reserve space for main allocation struct allocdetail_s tempdetail; tempdetail.handle = MALLOC_DEFAULT_HANDLE; u32 data = alloc_new(zone, size, align, &tempdetail.datainfo); if (!CONFIG_MALLOC_UPPERMEMORY && !data && zone == &ZoneLow) data = zonelow_expand(size, align, &tempdetail.datainfo); if (!data) return 0; // Find and reserve space for bookkeeping. struct allocdetail_s *detail = alloc_new_detail(&tempdetail); if (!detail) { alloc_free(&tempdetail.datainfo); return 0; } dprintf(8, "phys_alloc zone=%p size=%d align=%x ret=%x (detail=%p)\n" , zone, size, align, data, detail); return data; } // Allocate virtual memory from the given zone void * __malloc _malloc(struct zone_s *zone, u32 size, u32 align) { return memremap(malloc_palloc(zone, size, align), size); } // Free a data block allocated with phys_alloc int malloc_pfree(u32 data) { ASSERT32FLAT(); struct allocinfo_s *info = alloc_find(data); if (!info || data == virt_to_phys(info) || !info->alloc_size) return -1; struct allocdetail_s *detail = container_of( info, struct allocdetail_s, datainfo); dprintf(8, "phys_free %x (detail=%p)\n", data, detail); alloc_free(info); alloc_free(&detail->detailinfo); return 0; } void free(void *data) { if (!data) return; int ret = malloc_pfree(virt_to_phys(data)); if (ret) warn_internalerror(); } // Find the amount of free space in a given zone. u32 malloc_getspace(struct zone_s *zone) { // XXX - doesn't account for ZoneLow being able to grow. // XXX - results not reliable when CONFIG_THREAD_OPTIONROMS u32 maxspace = 0; struct allocinfo_s *info; hlist_for_each_entry(info, &zone->head, node) { u32 space = info->range_end - info->range_start - info->alloc_size; if (space > maxspace) maxspace = space; } if (zone != &ZoneTmpHigh && zone != &ZoneTmpLow) return maxspace; // Account for space needed for PMM tracking. u32 reserve = ALIGN(sizeof(struct allocdetail_s), MALLOC_MIN_ALIGN); if (maxspace <= reserve) return 0; return maxspace - reserve; } // Set a handle associated with an allocation. void malloc_sethandle(u32 data, u32 handle) { ASSERT32FLAT(); struct allocinfo_s *info = alloc_find(data); if (!info || data == virt_to_phys(info) || !info->alloc_size) return; struct allocdetail_s *detail = container_of( info, struct allocdetail_s, datainfo); detail->handle = handle; } // Find the data block allocated with phys_alloc with a given handle. u32 malloc_findhandle(u32 handle) { int i; for (i=0; ihead, node) { if (info->range_start != virt_to_phys(info)) continue; struct allocdetail_s *detail = container_of( info, struct allocdetail_s, detailinfo); if (detail->handle == handle) return detail->datainfo.range_start; } } return 0; } /**************************************************************** * 0xc0000-0xf0000 management ****************************************************************/ static u32 RomEnd = BUILD_ROM_START; static struct allocinfo_s *RomBase; #define OPROM_HEADER_RESERVE 16 // Return the maximum memory position option roms may use. u32 rom_get_max(void) { if (CONFIG_MALLOC_UPPERMEMORY) return ALIGN_DOWN(RomBase->range_end - OPROM_HEADER_RESERVE , OPTION_ROM_ALIGN); return SYMBOL(final_readonly_start); } // Return the end of the last deployed option rom. u32 rom_get_last(void) { return RomEnd; } // Request space for an optionrom in 0xc0000-0xf0000 area. struct rom_header * rom_reserve(u32 size) { u32 newend = ALIGN(RomEnd + size, OPTION_ROM_ALIGN); if (newend > rom_get_max()) return NULL; if (CONFIG_MALLOC_UPPERMEMORY) { if (newend < SYMBOL(zonelow_base)) newend = SYMBOL(zonelow_base); RomBase->range_start = newend + OPROM_HEADER_RESERVE; } return (void*)RomEnd; } // Confirm space as in use by an optionrom. int rom_confirm(u32 size) { void *new = rom_reserve(size); if (!new) { warn_noalloc(); return -1; } RomEnd = ALIGN(RomEnd + size, OPTION_ROM_ALIGN); return 0; } /**************************************************************** * Setup ****************************************************************/ void malloc_preinit(void) { ASSERT32FLAT(); dprintf(3, "malloc preinit\n"); // Don't declare any memory between 0xa0000 and 0x100000 e820_remove(BUILD_LOWRAM_END, BUILD_BIOS_ADDR-BUILD_LOWRAM_END); // Mark known areas as reserved. e820_add(BUILD_BIOS_ADDR, BUILD_BIOS_SIZE, E820_RESERVED); // Populate temp high ram u32 highram_start = 0; u32 highram_size = 0; int i; for (i=e820_count-1; i>=0; i--) { struct e820entry *en = &e820_list[i]; u64 end = en->start + en->size; if (end < 1024*1024) break; if (en->type != E820_RAM || end > 0xffffffff) continue; u32 s = en->start, e = end; if (!highram_start) { u32 new_max = ALIGN_DOWN(e - BUILD_MAX_HIGHTABLE, MALLOC_MIN_ALIGN); u32 new_min = ALIGN_DOWN(e - BUILD_MIN_HIGHTABLE, MALLOC_MIN_ALIGN); if (new_max <= e && new_max >= s + BUILD_MAX_HIGHTABLE) { highram_start = e = new_max; highram_size = BUILD_MAX_HIGHTABLE; } else if (new_min <= e && new_min >= s) { highram_start = e = new_min; highram_size = BUILD_MIN_HIGHTABLE; } } alloc_add(&ZoneTmpHigh, s, e); } // Populate regions alloc_add(&ZoneTmpLow, BUILD_STACK_ADDR, BUILD_EBDA_MINIMUM); if (highram_start) { alloc_add(&ZoneHigh, highram_start, highram_start + highram_size); e820_add(highram_start, highram_size, E820_RESERVED); } } void malloc_csm_preinit(u32 low_pmm, u32 low_pmm_size, u32 hi_pmm, u32 hi_pmm_size) { ASSERT32FLAT(); if (hi_pmm_size > BUILD_MIN_HIGHTABLE) { u32 hi_pmm_end = hi_pmm + hi_pmm_size; alloc_add(&ZoneTmpHigh, hi_pmm, hi_pmm_end - BUILD_MIN_HIGHTABLE); alloc_add(&ZoneHigh, hi_pmm_end - BUILD_MIN_HIGHTABLE, hi_pmm_end); } else { alloc_add(&ZoneTmpHigh, hi_pmm, hi_pmm + hi_pmm_size); } alloc_add(&ZoneTmpLow, low_pmm, low_pmm + low_pmm_size); } u32 LegacyRamSize VARFSEG; // Calculate the maximum ramsize (less than 4gig) from e820 map. static void calcRamSize(void) { u32 rs = 0; int i; for (i=e820_count-1; i>=0; i--) { struct e820entry *en = &e820_list[i]; u64 end = en->start + en->size; u32 type = en->type; if (end <= 0xffffffff && (type == E820_ACPI || type == E820_RAM)) { rs = end; break; } } LegacyRamSize = rs >= 1024*1024 ? rs : 1024*1024; } // Update pointers after code relocation. void malloc_init(void) { ASSERT32FLAT(); dprintf(3, "malloc init\n"); if (CONFIG_RELOCATE_INIT) { // Fixup malloc pointers after relocation int i; for (i=0; ihead.first) zone->head.first->pprev = &zone->head.first; } } // Initialize low-memory region memmove(VSYMBOL(final_varlow_start), VSYMBOL(varlow_start) , SYMBOL(varlow_end) - SYMBOL(varlow_start)); if (CONFIG_MALLOC_UPPERMEMORY) { alloc_add(&ZoneLow, SYMBOL(zonelow_base) + OPROM_HEADER_RESERVE , SYMBOL(final_varlow_start)); RomBase = alloc_find_lowest(&ZoneLow); } else { alloc_add(&ZoneLow, ALIGN_DOWN(SYMBOL(final_varlow_start), 1024) , SYMBOL(final_varlow_start)); } // Add space available in f-segment to ZoneFSeg memset(VSYMBOL(zonefseg_start), 0 , SYMBOL(zonefseg_end) - SYMBOL(zonefseg_start)); alloc_add(&ZoneFSeg, SYMBOL(zonefseg_start), SYMBOL(zonefseg_end)); calcRamSize(); } void malloc_prepboot(void) { ASSERT32FLAT(); dprintf(3, "malloc finalize\n"); u32 base = rom_get_max(); memset((void*)RomEnd, 0, base-RomEnd); if (CONFIG_MALLOC_UPPERMEMORY) { // Place an optionrom signature around used low mem area. struct rom_header *dummyrom = (void*)base; dummyrom->signature = OPTION_ROM_SIGNATURE; int size = (BUILD_BIOS_ADDR - base) / 512; dummyrom->size = (size > 255) ? 255 : size; } // Reserve more low-mem if needed. u32 endlow = GET_BDA(mem_size_kb)*1024; e820_add(endlow, BUILD_LOWRAM_END-endlow, E820_RESERVED); // Clear unused f-seg ram. struct allocinfo_s *info = alloc_find_lowest(&ZoneFSeg); u32 size = info->range_end - info->range_start; memset(memremap(info->range_start, size), 0, size); dprintf(1, "Space available for UMB: %x-%x, %x-%x\n" , RomEnd, base, info->range_start, info->range_end); // Give back unused high ram. info = alloc_find_lowest(&ZoneHigh); if (info) { u32 giveback = ALIGN_DOWN(info->range_end-info->range_start, PAGE_SIZE); e820_add(info->range_start, giveback, E820_RAM); dprintf(1, "Returned %d bytes of ZoneHigh\n", giveback); } calcRamSize(); }