

Intel® Firmware Support Package
for 4th Generation Intel® Core™
Processors with Mobile Intel®
QM87 and HM86 Chipsets

Integration Guide

July 2014

1.3

Introduction

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in
personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL
APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE
DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND
REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL
INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS
PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel, Intel Core Processors, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014, Intel Corporation. All rights reserved.

Firmware Support Package Integration Guide July 2014
2 1.4

Introduction

Contents
1 Introduction .. 6

1.1 Purpose ... 6
1.2 Intelligent Systems and Embedded Ecosystem Overview 6
1.3 Intended Audience .. 6
1.4 Related Documents ... 7
1.5 Conventions ... 7
1.6 Acronyms and Terminology .. 7

2 FSP Overview .. 8
2.1 Design Philosophy ... 8
2.2 Technical Overview ... 8

3 FSP Integration ... 9
3.1 Assumptions Used in this Document .. 9
3.2 FSP Image ID and Revision .. 9

4 Boot Flow .. 10

5 FSP Binary Format .. 11
5.1 FSP Header ... 11

5.1.1 Finding the FSP Header ... 12
5.1.2 FSP Header Offset .. 14

6 FSP Interface (FSP API) ... 15
6.1 Entry-Point Calling Assumptions .. 15
6.2 Data Structure Convention .. 15
6.3 Entry-Point Calling Convention .. 15
6.4 Exit Convention ... 16
6.5 TempRamInitEntry ... 16
6.6 Return Status Code .. 17

6.6.1 Prototype .. 17
6.6.2 Parameters .. 18
6.6.3 Related Definitions .. 18
6.6.4 Return Values .. 19
6.6.5 Description .. 19
6.6.6 Sample Code.. 19

6.7 FspInitEntry .. 20
6.7.1 Prototype .. 20
6.7.2 Parameters .. 20
6.7.3 Related Definitions .. 21
6.7.4 Return Values .. 22
6.7.5 Description .. 23
6.7.6 Sample Code.. 23

6.8 NotifyPhaseEntry ... 23
6.8.1 Prototype .. 24
6.8.2 Parameters .. 24
6.8.3 Related Definitions .. 24
6.8.4 Return Values .. 25

July 2014 Firmware Support Package Integration Guide
1.3 3

Introduction

6.8.5 Description .. 25
6.8.6 Sample Code.. 25

7 FSP Output .. 26
7.1 Boot Loader Temporary Memory Data HOB ... 26
7.2 FSP Reserved Memory Resource Descriptor HOB .. 27
7.3 SMRAM Resource Descriptor HOB ... 27
7.4 Graphics Resource Descriptor HOB ... 27
7.5 Non-Volatile Storage HOB ... 28
7.6 HOB Parsing Sample Code .. 28

8 FSP Configuration Firmware File ... 29
8.1 VPD/UPD Data Structure ... 30

8.1.1 VPD Data Region .. 30
8.1.2 UPD Data Region .. 31

9 Tools ... 36

10 Other Host Boot Loader Concerns ... 37
10.1 Power Management .. 37
10.2 Bus Enumeration ... 37
10.3 Security .. 37
10.4 Pre-OS Graphics .. 37

Appendix A FSP Sample File List .. 38

Figures

Figure 1. Boot Flow .. 10
Figure 2. Data Structures .. 13

Tables

Table 1. Acronyms and Terminology ... 7
Table 2. FSP Header .. 11
Table 3. Return Values .. 19
Table 4. Return Values .. 22
Table 5. Return Values .. 25
Table 6. GPIO Encodings .. 34

Firmware Support Package Integration Guide July 2014
4 1.4

Introduction

Revision History

Date Revision Description

July 2014 1.4 Technical updates.

March 2014 1.3 First public release.

December 2013 1.2 Gold release.

November 2013 1.1 Beta release update.

October 2013 1.0 Initial Alpha release.

§

July 2014 Firmware Support Package Integration Guide
1.3 5

Introduction

1 Introduction

1.1 Purpose
The purpose of this document is to describe the steps required to integrate the Intel®
Firmware Support Package (FSP) for the 4th Generation Intel® Core™ Processors with
Mobile Intel® QM87 and HM86 Chipsets (formerly Shark Bay Mobile) into a boot loader
solution. It supports platforms with the Haswell processor and the Lynx Point Platform
Controller Hub (PCH).

1.2 Intelligent Systems and Embedded Ecosystem
Overview
Contrasting the PC ecosystem where hardware and software architecture are following
a set of industry standards, the Intelligent Systems (embedded) ecosystem often does
not adhere to the same industry standards. Design engineers for Intelligent Systems
and Embedded Systems frequently combine components from different vendors with a
set of very distinct functions in mind.

The criteria for picking the right boot loader are often based on boot speed and code
size. The boot loader also frequently has close ties with the OS from a functionality
perspective. To give freedom to customers to choose the best boot loader for their
applications, Intel provides the FSP to satisfy the needs of design engineers.

1.3 Intended Audience
This document is targeted at all platform and system developers who need to
consume FSP binaries in their boot loader solutions. This includes, but is not limited
to: system BIOS developers, boot loader developers, system integrators, as well as
end users.

Firmware Support Package Integration Guide July 2014
6 1.4

Introduction

1.4 Related Documents
• Platform Initialization (PI) Specification located at

http://www.uefi.org/specifications

• Intel® Firmware Support Package: Introduction Guide – available at
http://www.intel.com/fsp

• Binary Configuration Tool for Intel® Firmware Support Package – available at
www.intel.com/fsp

1.5 Conventions
To illustrate some of the points better, the document will use code snippets. The code
snippets follow the GNU C Compiler and GNU Assembler syntax.

1.6 Acronyms and Terminology

Table 1. Acronyms and Terminology

BCT Binary Configuration Tool

BSP Boot Strap Processor

BSF Boot Setting File

BWG BIOS Writer’s Guide

CRB Customer Reference Board

FSP Firmware Support Package

FSP API Firmware Support Package Interface

FWG Firmware Writer’s Guide

IVI In Vehicle Infotainment

NBSP Node BSP

RMT Rank Margin Tool

RSM Resume to Operating System (OS) from SMM

PCH Platform Controller Hub

SBSP System BSP

SMI System Management Interrupt

SMM System Management Mode

TSEG Memory Reserved at the Top of Memory to be used as SMRAM

TXE Trusted Execution Engine/Environment

UPD Updatable Product Data

VPD Vital Product Data

§

July 2014 Firmware Support Package Integration Guide
1.3 7

http://www.uefi.org/specifications
http://www.intel.com/fsp
http://www.intel.com/fsp

FSP Overview

2 FSP Overview

2.1 Design Philosophy
Intel recognizes that it holds the key programming information that is crucial for
initializing Intel silicon. After Intel provides the key information, most experienced
firmware engineers can make the rest of the system work by studying specifications,
porting guides, and reference code.

2.2 Technical Overview
The Intel® Firmware Support Package (FSP) provides chipset and processor
initialization in a format that can easily be incorporated into many existing boot
loaders.

The FSP will perform all the necessary initialization steps as documented in the BWG
including initialization of the CPU, memory controller, chipset and certain bus
interfaces, if necessary.

FSP is not a stand-alone boot loader; therefore it needs to be integrated into a host
boot loader to carry out other boot loader functions, such as: initializing non-Intel
components, conducting bus enumeration, and discovering devices in the system and
all industry standard initialization.

§

Firmware Support Package Integration Guide July 2014
8 1.4

FSP Integration

3 FSP Integration
The FSP binary can be integrated easily into many different boot loaders, such as
Coreboot, etc. and also into the embedded OS directly.

Below are some required steps for the integration:

• Customizing

The static FSP configuration parameters are part of the FSP binary and can be
customized by external tools that will be provided by Intel.

• Rebasing

The FSP is not Position Independent Code (PIC) and the whole FSP has to be
rebased if it is placed at a location which is different from the preferred address
specified during building the FSP.

• Placing

Once the FSP binary is ready for integration, the boot loader build process needs
to be modified to place this FSP binary at the specific rebasing location identified
above.

• Interfacing

The boot loader needs to add code to setup the operating environment for the
FSP, call the FSP with the correct parameters and parse the FSP output to retrieve
the necessary information returned by the FSP.

3.1 Assumptions Used in this Document
The FSP for the 4th Generation Intel® Core™ Processors with Mobile Intel® QM87 and
HM86 Chipsets is built with a preferred base address of 0xFFF60000 and so the
reference code provided in the document assumes that the FSP is placed at
0xFFF60000 after the final boot loader build. If it is required to locate the FSP binary
at a different location other than 0xFFF60000, use the Binary Configuration Tool (BCT)
to rebase it before the integration.

3.2 FSP Image ID and Revision
The FSP information header contains an Image Id field and an Image Revision field
that provide the identification and revision information of the FSP binary. It is
important to verify these fields while integrating the FSP as API parameters could
change over different FSP IDs and revisions. The FSP API parameters documented in
this integration guide are applicable for the Image Id and Revision specified below.

The current FSP version for the 4th Generation Intel® Core™ Processors with Mobile
Intel® QM87 and HM86 Chipsets is the GOLD 02 release. The ImageId string in the
FSP information header is “HSW-LPT0” and the ImageRevision field is 0x00000302.

§

July 2014 Firmware Support Package Integration Guide
1.3 9

Boot Flow

4 Boot Flow
Figure 1 shows the boot flow from the reset vector to the OS handoff for a typical boot
loader. The APIs are described in more detail in the following sections.

Figure 1. Boot Flow

§

After PCI
Enumeration

Reset
Vector

Switch
to 32-bit

Mode

Load
Microcode

Temp Ram
Init

Mem Init

Remove
Temp RAM

CPU &
Companion

Chip init

Find FSP
Header

Parse Return
Data

Platform Init

Bus and Device
Init

Boot Device Init

Load OS
or other
payload

Intel® Firmware
Support Package
(Intel® FSP)

Param1 =
AfterPciEnumer
ation

Param2 =
ReadyToBoot

Call
FSPinit
Entry
Point

NotifyPhas
e

Ready to Boot

Param1

Param2

Jump to
TempRamIn

it Entry
Point

Firmware Support Package Integration Guide July 2014
10 1.4

FSP Binary Format

5 FSP Binary Format
The FSP is distributed in binary format. The FSP binary contains an FSP specific
FSP_INFORMATION_HEADER structure, the initialization code/data needed by the
Intel Silicon supported by the FSP and a configuration region that allows the boot
loader developer to customize some of the settings through the Binary Configuration
Tool (BCT) provided by Intel.

5.1 FSP Header
The FSP header conveys the information required by the boot loader to interface with
the FSP binary such as providing the addresses for the entry points, configuration
region address, etc.

Table 2. FSP Header

Byte
Offset

Size
in

Bytes

Field Description

0 4 Signature ‘FSPH’. Signature for the FSP information
header.

4 4 HeaderLength Length of the header

8 3 Reserved Reserved

11 1 HeaderRevision Revision of the header

12 4 ImageRevision Revision of the FSP binary.
The ImageRevision can be decoded as follows:
0..7 - Minor Version
8..15 - Major Version
16..31 - Reserved

16 8 Image Id An 8-byte signature string that will help match
the FSP binary to a supported hardware
configuration.

24 4 ImageSize Size of the entire FSP binary.

28 4 ImageBase FSP binary preferred base address. If the FSP
binary will be located at the address different
from the preferred address, the rebasing tool is
required to relocate the base before the FSP
binary integration.

32 4 ImageAttribute Attributes of the FSP binary. This field is not
currently used.

36 4 CfgRegionOffset Offset of the configuration region. This offset is
relative to the FSP binary base address.

40 4 CfgRegionSize Size of the configuration region.

July 2014 Firmware Support Package Integration Guide
1.3 11

FSP Binary Format

Byte
Offset

Size
in

Bytes

Field Description

44 4 ApiEntryNum Number of API entries this FSP supports. The
current design supports three APIs as given
below.

48 4 TempRamInitEntryOffset The offset for the API to setup a temporary
stack till the memory is initialized.

52 4 FspInitEntryOffset The offset for the API to initialize the CPU and
the chipset (SOC).

56 4 NotifyPhaseEntryOffset The offset for the API to inform the FSP about
the different stages in the boot process.

60 4 Reserved Reserved

5.1.1 Finding the FSP Header

The FSP binary follows the UEFI Platform Initialization Firmware Volume Specification
format. The Firmware Volume (FV) format is described in the Platform Initialization
(PI) Specification - Volume 3: Shared Architectural Elements specification and can be
downloaded from http://www.uefi.org/specifications.

FV is a way to organize/structure binary components and enables a standardized way
to parse the binary and handle the individual binary components that make up the FV.

The FSP_INFORMATION_HEADER is a firmware file and is placed as the first firmware
file within the firmware volume. All firmware files will have a GUID that can be used to
identify the files, including the FSP Header file. The FSP header firmware file GUID is
defined as 912740BE-2284-4734-B971-84B027353F0C.

The boot loader can find the offset of the FSP header within the FSP binary by the
following steps described below:

• Use EFI_FIRMWARE_VOLUME_HEADER to parse the FSP FV header and skip
the standard and extended FV header.

• The EFI_FFS_FILE_HEADER with the FSP_FFS_INFORMATION_FILE_GUID
is located at the 8-byte aligned offset following the FV header.

• The EFI_RAW_SECTION header follows the FFS File Header.

• Immediately following the EFI_RAW_SECTION header is the raw data. The
format of this data is defined in the FSP_INFORMATION_HEADER structure.

• Refer to the FindFspHeader() function in the sample code file fsp_support.c for a
code snippet which does the above steps in a stackless environment.

Firmware Support Package Integration Guide July 2014
12 1.4

http://www.uefi.org/specifications

FSP Binary Format

A pictorial representation of the data structures that is parsed in the above flow is
shown in Figure 2.

Figure 2. Data Structures

July 2014 Firmware Support Package Integration Guide
1.3 13

FSP Binary Format

5.1.2 FSP Header Offset

To simplify the integration of the FSP binary with a boot loader, the offset of the FSP
header will be provided with the FSP binary documentation. In this case, the boot
loader may choose to skip the generic algorithm to find the FSP header as described
above, but instead use the hardcoded value for the FSP header offset. This approach
is easier to implement from the boot loader side.

For the FSP binary of the 4th Generation Intel® Core™ Processors with Mobile Intel®
QM87 and HM86 Chipsets, the FSP information header structure is placed at offset
0x94.

§

Firmware Support Package Integration Guide July 2014
14 1.4

FSP Interface (FSP API)

6 FSP Interface (FSP API)

6.1 Entry-Point Calling Assumptions
There are some requirements regarding the operating environment for FSP execution.
The boot loader is responsible to set up this operating environment before calling the
FSP API. These conditions have to be met before calling any entry point or the
behavior is not determined. These conditions include:

• The system is in flat 32-bit mode.

• Both the code and data selectors should have full 4-GB access range.

• Interrupts should be turned off.

• The FSP API should be called only by the system BSP, unless otherwise noted.

Other requirements needed by individual FSP API will be covered in the respective
sections.

6.2 Data Structure Convention
All data structure definitions should be packed using compiler provided directives such
as #pragma pack(1) to avoid alignment mismatch between the FSP and the boot
loader.

6.3 Entry-Point Calling Convention
All FSP APIs defined in the FSP information header are 32-bit only. The FSP API
interface is similar to the default C __cdecl convention. Like the default C __cdecl
convention, with the FSP API interface:

• All parameters are pushed onto the stack in right-to-left order before the API is
called.

• The calling function needs to clean the stack up after the API returns.

• The return value is returned in the EAX register. All the other registers are
preserved.

There are, however, a couple of notable exceptions with the FSP API interface
convention. Refer to individual API descriptions for any special notes and these
exceptions.

July 2014 Firmware Support Package Integration Guide
1.3 15

FSP Interface (FSP API)

6.4 Exit Convention
The TempRamInit API preserves all general purpose registers except EAX, ECX, and
EDX. Because this FSP API is executing in a stackless environment, the floating point
registers may be used by the FSP to save/restore other general purpose registers to
the boot loader.

The FspInit and the FspNotify interfaces will preserve all the general purpose registers
except EAX. The return status will be passed back through the EAX register.

The FSP reserves some memory for its internal use and the memory region that is
used by the FSP is passed back though a HOB. This is a generic resource HOB, but the
owner field of the HOB will identify the owner as FSP. Refer to the FSP Output Section
7 for more details. The boot loader should not use this memory except for parsing the
HOB output. The boot loader should also mark this memory as reserved when passing
the memory map to the OS.

6.5 TempRamInitEntry
This FSP API is called soon after coming out of reset and before memory and stack is
available. This FSP API will load the microcode update, enable code caching for the
region specified by the boot loader and also setup a temporary stack to be used till
main memory is initialized.

A hardcoded stack can be setup with the following values, and the “esp” register
initialized to point to this hardcoded stack.
1. The return address where the FSP will return control after setting up a temporary

stack.
2. A pointer to the input parameter structure

However, since the stack is in ROM and not writeable, this FSP API cannot be called
using the “call” instruction, but needs to be jumped to.

This API should be called only once after the system comes out the reset, and it must
be called before any other FSP APIs. The system needs to go through a reset cycle
before this API can be called again. Otherwise, unexpected results may occur.

Firmware Support Package Integration Guide July 2014
16 1.4

FSP Interface (FSP API)

6.6 Return Status Code
All FSP APIs will return a status code to indicate the API execution result. FSP reuses a
subset of the standard status codes defined in EDK II defined. They are listed as
shown below.
#define FSP_SUCCESS 0x00000000

#define FSP_INVALID_PARAMETER 0x80000002

#define FSP_UNSUPPORTED 0x80000003

#define FSP_NOT_READY 0x80000006

#define FSP_DEVICE_ERROR 0x80000007

#define FSP_OUT_OF_RESOURCES 0x80000009

#define FSP_VOLUME_CORRUPTED 0x8000000A

#define FSP_NOT_FOUND 0x8000000E

#define FSP_TIMEOUT 0x80000012

#define FSP_ABORTED 0x80000015

#define FSP_ALREADY_STARTED 0x80000014

#define FSP_INCOMPATIBLE_VERSION 0x80000010

#define FSP_SECURITY_VIOLATION 0x8000001A

#define FSP_CRC_ERROR 0x8000001B

6.6.1 Prototype
typedef

FSP_STATUS

(FSPAPI *FSP_TEMP_RAM_INIT) (

 IN FSP_TEMP_RAM_INIT_PARAMS *TempRamInitParamPtr

);

July 2014 Firmware Support Package Integration Guide
1.3 17

FSP Interface (FSP API)

6.6.2 Parameters
TempRaminitParamPtr

Address pointer to the FSP_TEMP_RAM_INIT_PARAMS structure. The structure
definition is provided below under Related Definitions. The structure has a pointer
to the base of a code region and the size of it. The FSP enables code caching for
this region. Enabling code caching for this region should not take more than one
MTRR pair. The structure also has a pointer to a microcode region and its size. The
microcode region may have multiple microcodes packed together one after the
other and the FSP will try to load all the microcodes that it finds in the region that
is compatible with the silicon it is supporting. This microcode region is
remembered by FSP so that it can be used to load microcode for all APs later on
during the FspInit API call.

6.6.3 Related Definitions
typedef struct {

 UINT32 MicrocodeRegionBase,

 UINT32 MicrocodeRegionLength,

 UINT32 CodeRegionBase,

 UINT32 CodeRegionLength

} FSP_TEMP_RAM_INIT_PARAMS;

MicrocodeRegionBase Base address of the microcode region.

MicrocodeRegionLength Length of the microcode region.

CodeRegionBase Base address of the cacheable flash region.

CodeRegionLength Length of the cacheable flash region.

Firmware Support Package Integration Guide July 2014
18 1.4

FSP Interface (FSP API)

6.6.4 Return Values

If this function is successful, the FSP initializes the ECX and EDX registers to point to
a temporary but writeable memory range available to the boot loader and returns with
FSP_SUCCESS in register EAX. Register ECX points to the start of this temporary
memory range and EDX points to the end of the range. Boot loader is free to use the
whole range described. Typically the boot loader can reload the ESP register to point
to the end of this returned range so that it can be used as a standard stack.

Note: This returned range is just a sub-region of the whole temporary memory initialized by
the processor. The FSP maintains and consumes the remaining temporary memory.
The boot loader must not access the temporary memory beyond the returned
boundary.

Table 3. Return Values

FSP_SUCCESS Temp RAM was initialized successfully.

FSP_INVALID_PARAMETER Input parameters are invalid.

FSP_NOT_FOUND No valid microcode was found in the microcode
region.

FSP_UNSUPPORTED The FSP calling conditions were not meet.

FSP_DEVICE_ERROR Temp RAM initialization failed.

RETURN_ALREADY_STARTED Temp RAM already has been initialized.

6.6.5 Description

The entry to this function is in a stackless/memoryless environment. After the boot
loader completes its initial steps, it finds the address of the FSP INFO HEADER and
then from the header finds the offset of the TempRamInit function. It then converts
the offset to an absolute address by adding the base of the FSP binary and jumps to
the TempRamInit function.

This temporary memory is intended to be primarily used by the boot loader as a stack.
After this stack is available, the boot loader can switch to using C functions. This
temporary stack should be used to do only the minimal initialization that needs to be
done before memory can be initialized by the next call into the FSP.

The FSP will initialize the ECX and EDX registers to point to a temporary but writeable
memory range. Register ECX points to the start of this temporary memory range and
EDX points to the end of the range. The size of the temporary stack for the platform
can be calculated by taking the range between ECX and EDX.

6.6.6 Sample Code

Refer to the sample file fsp_support.inc for an ASM code snippet which illustrates how
to call TempRamInit function using a ROM based stack.

July 2014 Firmware Support Package Integration Guide
1.3 19

FSP Interface (FSP API)

6.7 FspInitEntry
This FSP API is called after TempRamInitEntry. This FSP API initializes the memory,
the CPU and the chipset to enable normal operation of these devices. This FSP API
accepts a pointer to a data structure that will be platform dependent and defined for
each FSP binary. This will be documented with each FSP release.

The boot loader provides a continuation function as a parameter when calling FspInit.
After FspInit completes its execution, it does not return to the boot loader from where
it was called but instead returns control to the boot loader by calling the continuation
function which is passed to the FspInit as an argument.

6.7.1 Prototype
typedef

FSP_STATUS

(FSPAPI *FSP_FSP_INIT) (

 INOUT FSP_INIT_PARAMS *FspInitParamPtr

);

6.7.2 Parameters
FspInitParamPtr Address pointer to the FSP_INIT_PARAMS
 structure.

Firmware Support Package Integration Guide July 2014
20 1.4

FSP Interface (FSP API)

6.7.3 Related Definitions
typedef struct {

 VOID *NvsBufferPtr;

 VOID *RtBufferPtr;

 CONTINUATION_PROC ContinuationFunc;

} FSP_INIT_PARAMS;

NvsBufferPtr Pointer to the non-volatile storage data buffer.

RtBufferPtr Pointer to the runtime data buffer
FSP_INIT_RT_BUFFER.

ContinuationFunc Pointer to a continuation function provided by the boot
loader.

typedef VOID (* CONTINUATION_PROC)(

 IN FSP_STATUS Status,

 IN VOID *HobListPtr

);

Status Status of the FSP INIT API.

HobBufferPtr Pointer to the HOB data structure defined in the PI
specification.

typedef struct {

 UINT32 *StackTop;

 UINT32 BootMode;

 VOID *UpdDataRgnPtr;

 UINT32 Reserved[7];

} FSP_INIT_RT_COMMON_BUFFER;

typedef struct {

 FSP_INIT_RT_COMMON_BUFFER Common;

} FSP_INIT_RT_BUFFER;

July 2014 Firmware Support Package Integration Guide
1.3 21

FSP Interface (FSP API)

StackTop Point to the desired boot loader stack top location in
memory after memory is initialized.

BootMode Current boot mode. Refer to sample code file
fsp_bootmode.h for the definitions. The current FSP for the
4th Generation Intel® Core™ Processors with Mobile
Intel® QM87 and HM86 Chipsets only supports
BOOT_WITH_FULL_CONFIGURATION and
BOOT_ON_S3_RESUME.

UpdDataRgnPtr Pointer to an updatable platform configuration data
structure UPD_DATA_REGION defined in sample code file
fsp_vpd.h. This structure contains options that can be
overridden by the boot loader at runtime. If this pointer is
NULL, it indicates the default built-in values in the FSP
binary will be used. Refer to Section 8 for details.

Reserved Reserved fields. Must be set to 0.

6.7.4 Return Values

Table 4. Return Values

FSP_SUCCESS FSP execution environment was initialized
successfully.

FSP_INVALID_PARAMETER Input parameters are invalid.

FSP_UNSUPPORTED The FSP calling conditions were not met.

FSP_DEVICE_ERROR FSP initialization failed.

Firmware Support Package Integration Guide July 2014
22 1.4

FSP Interface (FSP API)

6.7.5 Description

One important piece of data that will be part of the FSP_INIT_PARAMS structure will
be the StackTop defined in FSP_INIT_RT_COMMON_BUFFER. This passes the
address of the stack top where the boot loader wants to establish the stack after
memory is initialized and available for use.

ContinuationFunc is a function entry point that will be jumped to at the end of the
FspInit() to transfer control back to the boot loader.

Note that this FspInit API initializes the permanent memory and switches the stack
from the temporary memory to the permanent memory as specified by StackTop.
Sometimes switching the stack in a function can cause some unexpected execution
results because the compiler is not aware of the stack change during runtime and the
precompiled code may still refer to the old stack for data and pointers. A stack switch
therefore requires assembly code to go patch the data for the new stack location
which may lead to compatibility issues. To avoid such possible compatibility issues
introduced by different compilers and to ease the integration of FSP with a boot
loader, the API uses the ContinuationFunction parameter to continue the boot
loader execution flow rather than return as a normal C function. Although this API is
called as a normal C function, it never returns.

The FSP needs to get some parameters from the boot loader when it is initializing the
silicon. These parameters are passed from the boot loader to the FSP through the
FSP_INIT_RT_BUFFER structure pointer. Refer to Section 6.6.3 for the detailed
structure definitions.

A set of parameters that the FSP may need to initialize memory under special
circumstances such as during an S3 resume and during fast boot mode are returned
by the FSP to the boot loader during a normal boot. The boot loader is expected to
store these parameters in a non-volatile memory such as SPI flash and return a
pointer to this structure (through NvsBufferPtr) when it is requesting the FSP to
initialize the silicon under these special circumstances. Refer to Section 7.5 for the
details on how to get the returned NVS data from FSP.

This API should be called only once after the TempRamInit API.

6.7.6 Sample Code

Refer to the function implementation of FspInitWrapper() in sample code file
fsp_support.c for a code snippet which illustrates how to setup the input parameters,
how to call the FspInit API and how to implement a continuation function.

6.8 NotifyPhaseEntry
This FSP API is used to notify the FSP about the different phases in the boot process.
This allows the FSP to take appropriate actions as needed during different initialization
phases. The phases will be platform dependent and will be documented with the FSP
release. The current FSP supports two notification phases:

• Post PCI Enumeration

• Ready to Boot

July 2014 Firmware Support Package Integration Guide
1.3 23

FSP Interface (FSP API)

6.8.1 Prototype
typedef

FSP_STATUS

(FSPAPI *FSP_NOTFY_PHASE) (

 IN NOTIFY_PHASE_PARAMS *NotifyPhaseParamPtr

);

6.8.2 Parameters
NotifyPhaseParamPtr Address pointer to the NOTIFY_PHASE_PRAMS

6.8.3 Related Definitions
typedef enum {

 EnumInitPhaseAfterPciEnumeration = 0x20,

 EnumInitPhaseReadyToBoot = 0x40

} FSP_INIT_PHASE;

typedef struct {

 FSP_INIT_PHASE Phase;

 } NOTIFY_PHASE_PARAMS;

EnumInitPhaseAfterPciEnumeration

This stage is notified when the boot loader completed the PCI enumeration and the
resource allocation for the PCI devices is complete. FSP will use it to do some specific
initialization for processor and chipset that requires PCI resource assignment.

EnumInitPhaseReadyToBoot

This stage is notified just before the boot loader hands off to the OS loader. FSP will
use it to do some specific initialization for processor and chipset that is required before
control is transferred to the OS.

Firmware Support Package Integration Guide July 2014
24 1.4

FSP Interface (FSP API)

6.8.4 Return Values

Table 5. Return Values

FSP_SUCCESS The notification was handled successfully.

FSP_UNSUPPORTED The notification was not called in the proper order.

FSP_INVALID_PARAMETER The notification code is invalid.

6.8.5 Description

The FSP will lock the configuration registers to enhance security as required by the
BWG when it is notified that the boot loader is ready to transfer control to the
operating system.

Therefore, this API should only be called after the FspInit API, and each notification
code should be called only once in the predefined order. For example, the
EnumInitPhaseAfterPciEnumeration notification needs to be called before
the EnumInitPhaseReadyToBoot notification. Once the
EnumInitPhaseReadyToBoot is notified, the whole FSP flow is considered to be
completed and no further FSP API call is allowed.

6.8.6 Sample Code

Refer to FspNotifyWrapper () function in the sample code file fsp_support.c for a code
snippet which illustrates how to call the NotifyPhase API.

§

July 2014 Firmware Support Package Integration Guide
1.3 25

FSP Output

7 FSP Output
The FSP builds a series of data structures called the Hand-Off-Blocks (HOBs) as it
progresses through initializing the silicon. These data structures conform to the HOB
format as described in the Platform Initialization (PI) Specification - Volume 3: Shared
Architectural Elements specification and can be downloaded from
http://www.uefi.org/specifications

The user of the FSP binary is strongly encouraged to go through the specification
mentioned above to understand the HOB design details and create a simple
infrastructure to parse the HOBs, because the same infrastructure can be reused with
different FSP across different platforms

The boot loader developer must decide on how to consume the information passed
through the HOBs produced by the FSP. For example, even the specification
mentioned above describes about 9 different HOBs; most of this information may not
be relevant to a particular boot loader. For example, a boot loader design may be
interested only in knowing the amount of memory populated and may not care about
any other information.

The section below describes the GUID HOBs that are produced by the FSP. GUID HOB
structures are non-architectural in the sense that the structure of the HOB needs is
not defined in the HOB specifications. So the GUID and the data structure are
documented below to enable the boot loader to consume these HOB data.

Refer to the specification for details about the HOBs described in the Platform
Initialization (PI) Specification - Volume 3: Shared Architectural Elements
specification.

7.1 Boot Loader Temporary Memory Data HOB
As described in the FspInit API, the system memory is initialized and the whole
temporary memory is destroyed during this API call. However, the sub region of the
temporary memory returned in the TempRamInit API may still contain boot loader-
specific data which might be useful for the boot loader even after the FspInit call. So
before destroying the temporary memory, all contents in this sub region will be
migrated to the permanent memory, FSP builds a boot loader temporary memory data
HOB and the boot loader can use it to access the data saved in the temporary memory
after FspInit API if necessary. If the boot loader does not care about the previous data
in stack, this HOB can be simply ignored.

This HOB follows the EFI_HOB_GUID_TYPE format with the name GUID defined as
below:

#define FSP_BOOTLOADER_TEMPORARY_MEMORY_HOB_GUID \

{ 0xbbcff46c, 0xc8d3, 0x4113, { 0x89, 0x85, 0xb9, 0xd4, 0xf3,
0xb3, 0xf6, 0x4e } };

Firmware Support Package Integration Guide July 2014
26 1.4

FSP Output

To retrieve this HOB data, refer the GetBootloaderTempMemoryBuffer () function in
the sample file, fsp_support.c, which illustrates how to get the boot loader temporary
memory back from the FSP HOB.

7.2 FSP Reserved Memory Resource Descriptor HOB
The FSP reserves some memory for its internal use and a descriptor for this memory
region used by the FSP is passed back through a HOB. This is a generic resource HOB,
but the owner field of the HOB identifies the owner as FSP. This FSP reserved memory
region must be preserved by the boot loader and reported as reserved memory to the
OS.

#define FSP_HOB_RESOURCE_OWNER_FSP GUID \

{ 0x69a79759, 0x1373, 0x4367, { 0xa6, 0xc4, 0xc7, 0xf5, 0x9e,
0xfd, 0x98, 0x6e } }

To retrieve this HOB data, refer to the GetFspReservedMemory() function in the
sample file fsp_support.c which illustrates how to get the FSP reserved memory from
the HOB.

7.3 SMRAM Resource Descriptor HOB
The FSP will report the system SMRAM T-SEG range through a generic resource HOB if
T-SEG is enabled. The owner field of the HOB identifies the owner as T-SEG.

#define FSP_HOB_RESOURCE_OWNER_TSEG_GUID \

{ 0xd038747c, 0xd00c, 0x4980, { 0xb3, 0x19, 0x49, 0x01, 0x99,
0xa4, 0x7d, 0x55 } }

7.4 Graphics Resource Descriptor HOB
The FSP will report the system integrated graphics data stolen memory range through
a generic resource HOB if it is enabled. The owner field of the HOB identifies the
owner as graphics data stolen memory resource.

#define FSP_HOB_RESOURCE_OWNER_GRAPHICS_GUID \

{ 0x9c7c3aa7, 0x5332, 0x4917, { 0x82, 0xb9, 0x56, 0xa5, 0xf3,
0xe6, 0x2a, 0x07 } }

July 2014 Firmware Support Package Integration Guide
1.3 27

FSP Output

7.5 Non-Volatile Storage HOB
#define FSP_NON_VOLATILE_STORAGE_HOB_GUID \

{ 0x721acf02, 0x4d77, 0x4c2a, { 0xb3, 0xdc, 0x27, 0xb, 0x7b,
0xa9, 0xe4, 0xb0 } }

The Non-Volatile Storage (NVS) HOB provides a mechanism for FSP to request the
boot loader to save the platform configuration data into non-volatile storage so that it
can be reused in many cases, such as S3 resume.

The boot loader needs to parse the HOB list to see if such a GUID HOB exists after
returning from the FspInit() API. If so, the boot loader should extract the data portion
from the HOB, and then save it into a platform-specific NVS device, such as flash,
EEPROM, etc. On the following boot flow the boot loader should load the data block
back from the NVS device to temporary memory and populate the buffer pointer into
FSP_INIT_PARAMS.NvsBufferPtr field before calling into the FspInit() API. If the NVS
device is memory mapped, the boot loader can initialize the buffer pointer directly to
the buffer.

To retrieve this HOB data, refer to the function implementation of
GetFspNvsDataBuffer () in sample file fsp_support.c for a code snippet which
illustrates how to get the FSP NVS data that needs to be saved by the boot loader.

7.6 HOB Parsing Sample Code
Refer to the GetUsableLowMemTop (), GetUsableHighMemTop () and
GetFspReservedMemoryFromGuid() in the sample file fsp_support.c which illustrates
how to parse and filter the HOB data records to get the useful information.

§

Firmware Support Package Integration Guide July 2014
28 1.4

FSP Configuration Firmware File

8 FSP Configuration Firmware
File
The FSP binary contains a configurable data region which will be used by the FSP
during the initialization. The configurable data region has two sets of data

 VPD – Vital Product Data, which can only be configured statically

 UPD – Updatable Product Data, which can be configured statically for default
values, but also can be overridden during boot at runtime.

Both the VPD and the UPD parameters can be statically customized using a separate
tool called the Binary Configuration Tool (BCT) as explained in the tools section. The
tool will use a Boot Setting File (BSF) to understand the layout of the configuration
region within the FSP.

In addition to static configuration, the UPD data can be overridden by the boot loader
during runtime. The UPD data is organized as a structure. The FspInit API parameter
includes an UpdDataRgnPtr pointer which can be initialized to point to the UPD
data structure. If this pointer is initialized to NULL when calling the FspInit API, the
FSP will use the default built-in UPD configuration data in the FSP binary. However, if
the boot loader wishes to override any of the UPD parameters, it has to copy the
whole UPD structure from flash to memory, override the parameters and initialize the
UpdDataRgnPtr pointer to the address of the UPD structure with updated data in
memory and call FspInit API. The FSP will use this data structure instead of the default
configuration region data for platform initialization. The UPD data structure pointed by
pointer UpdDataRgnPtr is a project specific structure. Refer to Section 8.1 for the
details of this structure.

When calling the FspInit API, the stack is in temporary memory where the UPD data
structure is copied, updated, and passed to the FSP API. When permanent memory is
initialized, the FSP will set up a new stack in the permanent memory and tear down
the temporary memory. However, the FSP will save the whole boot loader temporary
memory region in a GUID HOB. If the boot loader wishes to access the old data in the
temporary memory, it can be done by parsing the HOB to retrieve the previous
temporary memory data.

Note: The migrated temporary memory contains an identical copy of the original data. If
pointers are stored in this region, they need to be fixed to point to the new migrated
region before using. For more details, refer to the FspInitWrapper() and
BlContinuationFunc() defined in the sample file fsp_support.c. It demonstrates how to
access a data structure (refer SHARED_DATA in the sample code) declared in the
temporary stack and copied to the Boot Loader Temporary Memory Data HOB when
FSP deconstructs the temporary memory after permanent memory is initialized.

Both the VPD and the UPD structure definitions are provided in sample file fsp_vpd.h.
To update these configuration options statically using the BCT, a BSF file will be
required. This file contains the detailed information on all configurable options,

July 2014 Firmware Support Package Integration Guide
1.3 29

FSP Configuration Firmware File

including description, help information, valid value range and the default value. Refer
to the LavaCanyonFsp.bsf file in the release package for more information.

8.1 VPD/UPD Data Structure
As stated above, the VPD/UPD data structure and related structure definitions are
provided in the sample file fsp_vpd.h. The basic information for each option is
provided in the BCT configuration file LavaCanyonFsp.bsf. The user can use the BCT
tool to load this BSF file to get the detailed configuration option information.

8.1.1 VPD Data Region

This VPD data region (VPD_DATA_REGION) can only be configured statistically by the
BCT tool, and only very limited options in this region can be configured. Most of the
configurable options are provided in the UPD data region.

Below is some additional information for some of the fields in VPD_DATA_REGION.

PcdVpdRegionSign

This field is not an option and is a signature for the VPD data region. It can be used by
the boot loader to validate the VPD region. This field will not change across different
FSP releases for the same silicon set. For example, this field will be the same
(HSWLPT-V) for the Alpha, Beta and Gold FSP releases of the 4th Generation Intel®
Core™ Processors with Mobile Intel® QM87 and HM86 Chipsets.

PcdImageRevision

This field is not an option and is a revision ID for the FSP release. It can be used by
the boot loader to validate the VPD/UPD region. If the value in this field is changed for
an FSP release, the boot loader should not assume the same layout for the
UPD_DATA_REGION/VPD_DATA_REGION data structure. Instead it should use the
new fsp_vpd.h coming with the FSP release package.

PcdUpdRegionOffset

This field is not an option and contains the offset of the UPD data region within the
FSP release image. The boot loader can use it to find the location of
UPD_DATA_REGION. Refer to the FspInitWrapper() function in the sample file
fsp_support.c on how to locate the UPD_DATA_REGION in the FSP image.

PcdFspReservedMemoryLength

This option is used to specify the reserved memory size for the FSP usage. FSP will
consume certain memory resource during the initialization, and this memory range
must be reserved. This range will be reported through the GUIDed HOB mentioned in
Section 7.2. In most of the cases, it does not need to be changed.

Firmware Support Package Integration Guide July 2014
30 1.4

FSP Configuration Firmware File

PcdPort80Route

This option specifies the destination (LPC bus or PCIe* bus) for I/O port 80h. By
default, PCH will forward I/O port 80h cycles to the LPC bus. For platforms with a
debug card on the PCIe bus, this option needs to be changed.

8.1.2 UPD Data Region

This UPD data region (UPD_DATA_REGION) can not only be configured statistically by
the BCT tool in the same way as VPD data region, but also can be overridden by the
boot loader at runtime. This provides more flexibility for the boot loader to customize
these options dynamically as needed.

Below is some additional information for some of the fields in UPD_DATA_REGION.

Signature

This field is not an option and is a signature for the UPD data region. It can be used by
boot loader to validate the UPD region. The boot loader should never override this
field.

PcdEnableXhci

This field disables or enables the XHCI controller in PCH. If it is enabled, all the USB
shareable ports will be routed to the xHCI controller. As a result, two EHCI controllers
will be disabled automatically to save power. This option also supports Auto and Smart
Auto. If Auto is enabled, both the xHCI and EHCI controllers will be enabled in the
pre-boot environment. The shareable ports will be routed to EHCI by default, and the
OS ACPI code should provide a mechanism to reroute the ports to xHCI. Similar to
Auto, if Smart Auto is enabled, it adds the capability to route the ports to xHCI or
EHCI according to the settings used in previous boots (for non-G3 boot) in the pre-
boot environment.

SerialDebugPortAddress/SerialDebugPortType

These fields configure the serial port. Once the serial port is configured properly, all
the FSP debug messages are sent through the serial port. Setting the
SerialDebugPortType to NONE disables the debug message output. FSP supports the
standard UART16550 compatible serial port device through either I/O or MMIO access.
The boot loader should enable the I/O or MMIO decoding to the serial port device prior
to the FspInit API call. The FSP will then configure the standard serial port with the
settings (115200 baud rate, 8-bit data, 1-bit start, 1-bit stop and no parity) for the
debug message output.

July 2014 Firmware Support Package Integration Guide
1.3 31

FSP Configuration Firmware File

PcdMrcDebugMsg

This field controls the MRC debug message level. To allow the MRC debug message
print out, this option should be configured to any level other than NEVER.

Note: This option depends on the serial port debug output settings. Therefore,
SerialDebugPortAddress and SerialDebugPortType should be configured properly to
capture the MRC debug messages from the serial port.

PcdEnableLan

This field enables or disables the Ethernet controller in PCH.

Note: Changing this option may trigger a platform reset during the FspInit call depending on
the current GbE status, the intended GbE enabling and current ME status.

PcdEnableRmt

This field disables or enables the MRC Rank Margin Tool (RMT). If enabled, the MRC
will print out the rank margining information which is used by the RMT to analyze the
platform memory sub-system margining. To enable this option, the PcdFastBoot
option should be disabled because the MRC fast boot path will skip normal memory
training steps. To capture the RMT log from the serial console, configure
PcdMrcDebugMsg to level ALL, and also enable serial debug port properly.

PcdFastBoot

This field disables or enables fast boot path in MRC. Once enabled, all boots except
the initial boot after firmware update will use the pre-saved MRC data to improve the
boot performance. However, if any memory configuration changes are detected the
normal boot path will be applied instead.

PcdUserCrbBoardType

This field configures the board type. Select the closest Customer Reference Board
(CRB) design that the target platform followed. Supported board types include the
mobile, desktop, or embedded CRB type.

SaHdaVerbTablePtr

This field provides a pointer to the codec verb table for the System Agent High
Definition Audio controller (Bus 0, Device 3, Function 0). If it is NULL, the FSP will use
the default codec verb table inside the FSP.

Note: This table must be stored in the flash memory. Refer to the sample code file,
fsp_configs.c, for details on how to initialize such a data structure.

Firmware Support Package Integration Guide July 2014
32 1.4

FSP Configuration Firmware File

AzaliaVerbTablePtr

This field provides a pointer to the code verb table for the PCH High Definition Audio
controller (Bus 0, Device 27, Function 0). If it is NULL, the FSP will use the default
codec verb table inside the FSP.

Note: This table must be stored in the flash memory. Refer to the sample code file,
fsp_configs.c, for details on how to initialize a data structure.

PcdMemoryDownSpdPtr

The field provides a pointer for the memory down SPD data block. If it is NULL, it
indicates the board uses the normal DIMMs, and the MRC will use the standard
mechanism to read the SPD data from the DIMMs. Otherwise, it indicates the board
uses hardcoded SPD data pointed by PcdMemoryDownSpdPtr.

Note: This table must be stored in the flash memory. Refer to the sample code file,
fsp_configs.c, for details on how to initialize such a data structure.

PcdDDRVoltageSelectionWithCustomizedGpio

This is used to define the DIMM voltage GPIO configuration.

If None is selected, the DIMM voltage is not selectable and is tied to a fixed voltage
determined by the board design.

If CRB is selected, the DIMM voltage selection GPIO configuration is the same as the
Intel Customer Reference Board (CRB) default setting, which is a specific board-type
configuration based on PcdUserCrbBoardType. Refer to the Intel CRB schematics for
details.

If None and CRB are selected, the settings for
PcdDDRVoltageSelectionGpioX/PcdDDRVoltageSelectionGpioXActive will be ignored.

If Custom is selected, the DIMM voltage GPIO configuration selection is based on the
definition of PcdDDRVoltageSelectionGpioX and PcdDDRVoltageSelectionGpioXActive.
The details of these settings are defined below.

PcdDDRVoltageSelectionGpioX/PcdDDRVoltageSelectionGpioXActi
ve(X=0, 1, 2)

This is used to define the DIMM voltage GPIO configuration selection when
PcdDDRVoltageSelectionWithCustomizedGpio is set to Custom.

The FSP for the 4th Generation Intel® Core™ Processors with Mobile Intel® QM87 and
HM86 Chipsets defines up to three GPIOs for the DDR voltage selection; the different
GPIO setting selects a different DDR voltage.

July 2014 Firmware Support Package Integration Guide
1.3 33

FSP Configuration Firmware File

Table 6 shows how the GPIO encodings are mapped into a specific DIMM voltage.

Table 6. GPIO Encodings

Voltage/Bits GPIOBit2 GPIOBit1 GPIOBit0

1.65V 0 0 0

1.60V 0 0 1

1.55V 0 1 0

1.50V 0 1 1

1.50V 1 0 0

1.45V 1 0 1

1.40V 1 1 0

1.35V 1 1 1

The GPIO pin number, defined by PcdDDRVoltageSelectionGpioX, should be in range 0
~ 75. If the GPIO pin number is greater than 75, it indicates this GPIO bit is not
implemented by the platform, and the relevant bit value comes from
PcdDDRVoltageSelectionGpioXActive.

If the GPIO active level, defined by PcdDDRVoltageSelectionGpioXActive, is set to 1,
the relevant bit of the DIMM voltage selection is the output level of the relevant GPIO.
If the GPIO active level is set to 0, the relevant bit of the DIMM voltage selection is
inverted as the output level of the relevant GPIO.

PcdPegResetGpio/PcdPegResetGpioActive

This is used to define the PEG device/slot resetting GPIO configuration.

The GPIO pin number, defined by PcdPegResetGpio, should be in range 0 ~ 75. If the
GPIO pin number is larger than 75, it indicates the PEG reset signal is not directly
controlled by a platform GPIO.

If the PEG device/slot reset signal will be asserted while the GPIO is set to high, the
GPIO active level, defined by PcdPegResetGpioActive, should then be set to 1.
Similarly, if the PEG device/slot reset signal will be asserted while the GPIO is set to
low, PcdPegResetGpioActive should be set to 0.

PcdRegionTerminator

This field is not an option and is a termination field at the end of the data structure.
The boot loader should never override this field.

Firmware Support Package Integration Guide July 2014
34 1.4

FSP Configuration Firmware File

Reserved/Unused

The UPD_DATA_REGION may contain some reserved or unused fields in the data
structure. These fields are required to use the default values provided in the FSP
binary. Intel always recommends copying the whole UPD_DATA_REGION from the
flash to the local structure in the stack before overriding any field.

§

July 2014 Firmware Support Package Integration Guide
1.3 35

Tools

9 Tools
A Binary Configuration Tool (BCT) will be provided with the FSP binary to allow a user
to modify certain well defined configuration values in the FSP binary. The BCT will
typically provide a Graphical User Interface (GUI). The BCT will be provided with
separate documentation that explains the usage of the tool. Refer to Section 1.4 for
the BCT documentation information.

§

Firmware Support Package Integration Guide July 2014
36 1.4

Other Host Boot Loader Concerns

10 Other Host Boot Loader
Concerns

10.1 Power Management
Intel® FSP does not provide power management functions besides making power
management features available to the host boot loader. ACPI is an independent
component of the boot loader, and it will not be included in the Intel® FSP.

10.2 Bus Enumeration
Intel® FSP will initialize the CPU and the companion chips to a state that all bus
topology can be discovered by the host boot loader.

10.3 Security
The FSP for the 4th Generation Intel® Core™ Processors with Mobile Intel® QM87 and
HM86 Chipsets will follow the BWG to set the necessary registers for security
concerns. However, some other security features, such as secure boot, is not covered
by the current FSP. If the secure boot feature is required, contact the local Intel
representative.

10.4 Pre-OS Graphics
The FSP for the 4th Generation Intel® Core™ Processors with Mobile Intel® QM87 and
HM86 Chipsets does not include graphics initialization function. For pre-OS graphics
initialization solutions, contact the local Intel representative.

§

July 2014 Firmware Support Package Integration Guide
1.3 37

Other Host Boot Loader Concerns

Appendix A FSP Sample File List
To simplify the FSP integration, a set of FSP interface sample code files are provided
under BSD license to assist the boot loader development. These files show examples
for boot loader on how to interface with FSP APIs and how to consume the data
returned from the FSP.

These files have been tested within Coreboot using GCC 4.8.1 tool chain. Intel
recommends using this GCC version for the development.

fsp_api.h

Contains the declarations for the FSP API prototype and the input parameter data
structures.

fsp_bootmode.h

Contains the UEFI compatible FSP boot mode definitions.

fsp_ffs.h

Contains the UEFI PI firmware file system related data type and constant
definitions.

fsp_fv.h

Contains the UEFI PI firmware volume related data type and constant definitions.

fsp_hob.h

Contains the UEFI PI HOB related data type and constant definitions.

fsp_infoheader.h

Contains the FSP information header data structure definitions.

fsp_platform.h

Contains the platform-specific data structures.

fsp_configs.c

Contains the platform-specific UPD option initialization code.

fsp_support.c

Contains the FSP-specific sample support functions, including the API wrapper,
HOB parsing, etc.

Firmware Support Package Integration Guide July 2014
38 1.4

Other Host Boot Loader Concerns

fsp_support.h

Contains the FSP-specific sample support prototype declarations.

fsp_support.inc

Contains an ASM include file to demonstrate how to locate the FSP header and
how to call the TempRamInit API before the stack is available.

fsp_types.h

Contains the UEFI and FSP basic data types and constant definitions.

fsp_vpd.h

Contains the configuration data structure definitions of UPD_DATA_REGION,
VPD_DATA_REGION, and related other definitions.

§

July 2014 Firmware Support Package Integration Guide
1.3 39

	1 Introduction
	1.1 Purpose
	1.2 Intelligent Systems and Embedded Ecosystem Overview
	1.3 Intended Audience
	1.4 Related Documents
	1.5 Conventions
	1.6 Acronyms and Terminology

	2 FSP Overview
	2.1 Design Philosophy
	2.2 Technical Overview

	3 FSP Integration
	3.1 Assumptions Used in this Document
	3.2 FSP Image ID and Revision

	4 Boot Flow
	5 FSP Binary Format
	5.1 FSP Header
	5.1.1 Finding the FSP Header
	5.1.2 FSP Header Offset

	6 FSP Interface (FSP API)
	6.1 Entry-Point Calling Assumptions
	6.2 Data Structure Convention
	6.3 Entry-Point Calling Convention
	6.4 Exit Convention
	6.5 TempRamInitEntry
	6.6 Return Status Code
	6.6.1 Prototype
	6.6.2 Parameters
	6.6.3 Related Definitions
	6.6.4 Return Values
	6.6.5 Description
	6.6.6 Sample Code

	6.7 FspInitEntry
	6.7.1 Prototype
	6.7.2 Parameters
	6.7.3 Related Definitions
	6.7.4 Return Values
	6.7.5 Description
	6.7.6 Sample Code

	6.8 NotifyPhaseEntry
	6.8.1 Prototype
	6.8.2 Parameters
	6.8.3 Related Definitions
	6.8.4 Return Values
	6.8.5 Description
	6.8.6 Sample Code

	7 FSP Output
	7.1 Boot Loader Temporary Memory Data HOB
	7.2 FSP Reserved Memory Resource Descriptor HOB
	7.3 SMRAM Resource Descriptor HOB
	7.4 Graphics Resource Descriptor HOB
	7.5 Non-Volatile Storage HOB
	7.6 HOB Parsing Sample Code

	8 FSP Configuration Firmware File
	8.1 VPD/UPD Data Structure
	8.1.1 VPD Data Region
	8.1.2 UPD Data Region

	9 Tools
	10 Other Host Boot Loader Concerns
	10.1 Power Management
	10.2 Bus Enumeration
	10.3 Security
	10.4 Pre-OS Graphics

	Appendix A FSP Sample File List
	fsp_api.h
	fsp_bootmode.h
	fsp_ffs.h
	fsp_fv.h
	fsp_hob.h
	fsp_infoheader.h
	fsp_platform.h
	fsp_configs.c
	fsp_support.c
	fsp_support.h
	fsp_support.inc
	fsp_types.h
	fsp_vpd.h

