Intel® Firmware Support Package
for Intel® Atom™ Processor
E3800 Product Family

Integration Guide

May 2015

Introduction

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter
disclosed herein

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Allinformation provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications
and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting:
http://www.intel.com/design/literature.htm

Intel, Atom, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015
2

http://www.intel.com/design/literature.htm

Introduction

Contents

May 2015

TN ErOdUCE ON e e e 6
1.1 PUIPOSE i e 6
1.2 Intelligent Systems and Embedded Ecosystem Overviewccccvevvieviinnnnnnn. 6
1.3 Intended AUdIENCEot e 6
1.4 U] F= 1 =Ta B Lo T U 1o g 1= o = PP 6
1.5 (©0e T 0 1Y 7= o o o =S 6
1.6 Acronyms and TerminolOgy «...iieiiiii i i e s e 7
RS Y S O Y72 oY1= PP 8
2.1 Design PhilOSOPNY ... 8
2.2 LIC=Te gL T Ter= | B @ AV 7= V=1 P 8
LS) (=Te =1 [o PP 9
3.1 Assumptions Used in this Document........c.ccoiiiiiii s 9
3.2 FSP IMage REVISION .iuiiiiiiiii i st s s s e e e s e e aens 9
[T o Yo ol = 101 PN 10
RS o = 1T o T=T YA o1 = P 11
5.1 LS S 1= Y [P 11
5.1.1 Finding the FSP Header ..o 12

5.1.2 FSP Header OffSet ...viiiiiiii i e 13

Y S a1 =T = Lol (S Y = 1) PP 14
6.1 Entry-Point Calling ASSUMPLIONS ..uuiviiiiiiiiiiii e e 14
6.2 Data Structure ConVENTION ...vviii i e e s 14
6.3 Entry-Point Calling Conventionooiiiiiiiiii e 14
6.4 EXIt CONVENEION Lo e 15
6.5 TemMPRAMINIEENTIY .o e e 15
6.5.1 Prototype (v 16

6.5.2 Param et ers e 16

6.5.3 Related Definitions. ... 16
6.5.3.1 RetUrn Values.....cviiiiii i aes 16

6.5.3.2 Sample Code. .ttt e 17

6.5.4 DESCHIPLION 1iviitii i 19

6.6 L]0] o = 1o Y 19
6.6.1 PrOtOtY P oo 20

6.6.2 Param et ersS e e 20

6.6.3 Related Definitions.ciiii i 20

6.6.4 REtUN ValUBS ..viiiiiiii i e e 22

6.6.5 SaAMPIE COU. it 23

6.6. DESCIIPLION 1.t 27

6.7 NOtIfYPRASEENTIY Lo 28
6.7.1 Prototype v 28

6.7.2 ParameEters . 28

6.7.2.1 Related Definitions....ocvviiii i e 28

6.7.3 RetUIN ValUEs ... e 29

6.7.4 SaAMPIE COU. ettt 29

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide
3

intel)

10

Appendix A
Appendix B

Figures

Figure 1.
Figure 2.

Tables

Table 1.
Table 2.
Table 3.
Table 4.

FSP Output .o

7.1 Boot Loader Temporary Memory
7.2 FSP Reserved Memory Resource

7.3 Non-Volatile Storage HOB..........
7.4 HOB Parsing Code...........ccuvneens

7.5 Hob Infrastructure Sample Code

FSP Configuration Firmware File

Other Host Boot Loader Concerns..........

10.1 Power Management..................
10.2 Bus Enumerationccovennen
10.3 SecCurity...ccooviiiiiiiiiiiiieans
10.4 64-bit Long Mode..........ceevuennns
10.5 Pre-0S Graphics.......cocvvnvnnne.

- HOB Parsing Sample Code
- Sample Code to Find FSP Header.......

BOOt FIOW .vvviiiiii i i v e r e
Data Structures.......ovvivviiiiiiiiiiiie e

FSP Header.....vviviiiiiiii i ninnes
Return Valuescvviiiiiiiiiiiiiiii e
Return Valuescoviiiiiiiiiiiiiicieenans
Return Valuescvviiiiiiiiiiiiiiii e

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide

4

Introduction

Data HOBccvvviiiiiiiv e 31
Descriptor HOB......coivviiiiiiiiii e 32

May 2015

Introduction

Revision History

Date Revision Description

May 2015 1.8 Updated for Gold 4 release.

July 2014 1.7 Updated for Gold 3 release.

March 2014 1.6 First public release.

November 2013 1.5 Updated to add configuration options to Section 8.

October 2013 1.4 Updated for Gold release.

September 2013 1.3 Updated for Beta 2 release.

August 2013 1.2 Updated for Beta release.

March 2013 1.1 Updated Related Documents section.

March 2013 1.0 Initial release.

§
Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family

May 2015 Integration Guide

5

i n tel : > Introduction

1 Introduction

1.1 Purpose

The purpose of this document is to describe the steps required to integrate the Intel®
FSP for the Intel® Atom™ Processor E3800 Product Family (formerly Bay Trail SoC)
into a boot loader solution.

1.2 Intelligent Systems and Embedded Ecosystem
Overview

Contrasting the PC ecosystem where hardware and software architecture are following
a set of industry standards, the Intelligent Systems (embedded) ecosystem often does
not adhere to the same industry standards. Design engineers for Intelligent Systems
and Embedded Systems frequently combine components from different vendors with a
set of very distinct functions in mind.

The criteria for picking the right boot loader are often based on boot speed and code
size. The boot loader also frequently has close ties with the OS from a functionality
perspective. To give freedom to customers to choose the best boot loader for their
applications, Intel provides the Firmware Support Package (FSP) to satisfy the needs
of design engineers.

1.3 Intended Audience

This document is targeted at all platform and system developers who need to
consume FSP binaries in their boot loader solutions. This includes, but is not limited
to: system BIOS developer, boot loader developer, system integrators, as well as end
users.

1.4 Related Documents

e Platform Initialization (PI) Specification located at
http://www.uefi.org/specifications/.

o Intel® Firmware Support Package: Introduction Guide - available at
http://www.intel.com/fsp

e Binary Configuration Tool for Intel® Firmware Support Package - available at
http://www.intel.com/fsp

1.5 Conventions

To illustrate some of the points better, the document will use code snippets. The code
snippets follow GNU C Compiler and GNU Assembler syntax.

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015
6

http://www.uefi.org/specifications/
http://www.intel.com/fsp
http://www.intel.com/fsp

Introduction

1.6

May 2015

Acronyms and Terminology

BSP Boot Strap Processor

BWG BIOS Writer’s Guide

CRB Customer Reference Board

FSP Firmware Support Package

FSP API Firmware Support Package Interface
FWG Firmware Writer’'s Guide

IVI In Vehicle Infotainment

NBSP Node BSP

RSM Resume to OS from SMM

SBSP System BSP

SMI System Management Interrupt

SMM System Management Mode

TSEG Memory Reserved at the Top of Memory to be used as SMRAM
TXE Trusted Execution Engine/Environment

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family

Integration Guide
7

i n te l ' > FSP Overview

2 FSP Overview

2.1 Design Philosophy

Intel recognizes that it holds the key programming information that is crucial for
initializing Intel silicon. After Intel provides the key information, most experienced
firmware engineers can make the rest of the system work by studying specifications,
porting guides, and reference code.

2.2 Technical Overview

The Intel® Firmware Support Package (FSP) provides chipset and processor
initialization in a format that can easily be incorporated into many existing boot
loaders.

The FSP will perform all the necessary initialization steps as documented in the BWG
including initialization of the CPU, memory controller, chipset and certain bus
interfaces, if necessary.

FSP is not a stand-alone boot loader; therefore it needs to be integrated into a host
boot loader to carry out other boot loader functions, such as: initializing non-Intel
components, conducting bus enumeration, and discovering devices in the system and
all industry standard initialization.

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015
8

FSP Integration -I n te l @)

3

FSP Integration

3.1

3.2

May 2015

The FSP binary can be integrated easily into many different boot loaders, such as
Coreboot, etc. and also into embedded OS directly.

Below are some required steps for the integration:

¢ Customizing

The static FSP configuration parameters are part of the FSP binary and can be
customized by external tools that will be provided by Intel.

¢ Rebasing

The FSP is not Position Independent Code (PIC) and the whole FSP has to be
rebased if it is placed at a location which is different from the preferred address
specified during building the FSP. When secure boot is enabled, the FSP will be
required to be placed at a fixed address in the memory space. Refer to the Secure
Boot Readme document for details.

e Placing

Once the FSP binary is ready for integration, the boot loader build process needs
to be modified to place this FSP binary at the specific rebasing location identified
above.

o Interfacing

The boot loader needs to add code to setup the operating environment for the
FSP, call the FSP with the correct parameters, and parse the FSP output to
retrieve the necessary information returned by the FSP.

Assumptions Used in this Document

The Intel® FSP for Intel® Atom™ Processor E3800 Product Family is built with a
preferred base address of OxFFFCO000 and so the reference code provided in the
document assumes that the FSP is placed at OxFFFCO000 after the final boot loader
build.

FSP Image Revision

To FSP information header contains an Image Revision field that provides the revision
of the FSP binary. This is an important field to consider while integrating the FSP as
API parameters could change over FSP revisions. The FSP API parameters documented
in this integration guide are applicable for the Image Revisions specified in this
document.

The current version of the Bay Trail FSP is Gold 04 and the ImageRevision in the FSP
Header is 00000304.

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide
9

4 Boot Flow

Boot Flow

Figure 1 shows the boot flow from the reset vector to the OS handoff for a typical boot
loader. The APIs are described in more detail in the following sections.

Figure 1. Boot Flow

% =) Reset Vector

Switch to
Protected Mode

Find FSP Header

Jump to
TempRamlnit API

Pre Memory
Initialization

Binary Configuration
Utility

TempRamlnit

- Load microcode
- Enable Temp Stack

Fspinit

- Init Policies based
on VPD/UPD

- Memory, CPU &
Chipset Init

NotifyPhase

- Complete Init
- Lock settings

Call Fsplnit API

Intel FSP Binary

Continuation Fn
(Parse FSP return
Data)

Bus and Devices
Init

Call NotifyPhase

(PostPciEnumeration)

Boot Device Init

Call NotifyPhase
(ReadyToBoot)

Load OS or
Payload

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide
10

May 2015

FSP Binary Format

5

FSP Binary Format

5.1

Table 1.

May 2015

The FSP is distributed in binary format. The FSP binary contains an FSP specific
FSP_INFO_HEADER structure, the initialization code/data needed by the Intel Silicon
supported by the FSP, and a configuration region that allows the boot loader
developer to customize some of the settings through a tool provided by Intel.

FSP Header

The FSP header conveys the information required by the boot loader to interface with
the FSP binary such as providing the addresses for the entry points, configuration
region address, etc.

FSP Header
Byte Size Field Description
Offset in
Bytes
0 4 Signature ‘FSPH’. Signature for the FSP Information
Header.

4 4 HeaderLength Length of the header

8 3 Reserved Reserved

11 1 HeaderRevision Revision of the header

12 4 ImageRevision Revision of the FSP Binary.

The ImageRevision can be decoded as follows:
0..7 - Minor Version

8..15 - Major Version

16..31 - Reserved

16 8 Image Id 8-byte signature string that will help match the
FSP Binary to a supported hardware
configuration.

For Intel® FSP for Intel® Atom™ Processor
E3800 Product Family, the Imageld is
“VLYVIEWOQ"

24 4 ImageSize Size of the entire FSP Binary.

28 4 ImageBase FSP binary preferred base address. If the FSP
binary is located at an address different from the
preferred address, the rebasing tool is required
to relocate the base before the FSP binary
integration.

32 4 ImageAttribute Attributes of the FSP binary. This field is not
currently used.

36 4 CfgRegionOffset Offset of the configuration region. This offset is
relative to the FSP binary base address.

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family

Integration Guide
11

i n te l ' > FSP Binary Format

5.1.1

Byte Size Field Description
Offset in
Bytes
40 4 CfgRegionSize Size of the configuration region.
44 4 ApiEntryNum Number of API Entries this FSP supports. The

current design supports 3 APIs as given below.

48 4 TempRamlInitEntryOffset | The offset for the API to setup a temporary stack
till the memory is initialized.

52 4 FspInitEntryOffset The offset for the API to initialize the CPU and
the Chipset (SoC).

56 4 NotifyPhaseEntryOffset The offset for the API to inform the FSP about
the different stages in the boot process.

60 4 Reserved Reserved

Finding the FSP Header

The FSP binary follows the UEFI Platform Initialization Firmware Volume Specification
format. The Firmware Volume (FV) format is described in the Platform Initialization
(PI) specification - Volume 3: Shared Architectural Elements specification and can be
downloaded from http://www.uefi.org/specifications/

FV is a way to organize/structure binary components and enables a standardized way
to parse the binary and handle the individual binary components that make up the FV.

The FSP_INFO_HEADER is a firmware file and is placed as the first firmware file within
the firmware volume. All firmware files will have a GUID that can be used to identify
the files, including the FSP Header file. The FSP header firmware file GUID is defined
as 912740BE-2284-4734-B971-84B027353F0C.

The boot loader can find the offset of the FSP header within the FSP binary by the
following steps described below:

e Use EFI_FIRMWARE_VOLUME_HEADER to parse the FSP FV header and skip
the standard and extended FV header.

e The EFI_FFS_FILE_HEADER with the FSP_FFS_INFORMATION_FILE_GUID
is located at the 8-byte aligned offset following the FV header.

¢ The EFI_RAW_SECTION header follows the FFS File Header.

¢ Immediately following the EFI_RAW_SECTION header is the raw data. The
format of this data is defined in the FSP_INFO_HEADER structure.

e Please refer Appendix — B for a sample code snippet which does the above steps in
a stackless environment.

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015

12

http://www.uefi.org/specifications/

FSP Binary Format : -l n te l @:>

5.1.2 FSP Header Offset

To simplify the integration of the FSP binary with a boot loader, the offset of the FSP
header will be provided with the FSP binary documentation. In this case, the boot
loader may choose to skip the generic algorithm to find the FSP header as described
above, but instead use the hardcoded value for the FSP header offset. This approach
is easier to implement from the boot loader side.

For the Intel® FSP for_Intel® Atom™ Processor E3800 Product Family, the FSP header
is placed at an offset of 0x94. The FSP lies outside the IBB area. So, when secure
boot is enabled, there will be an additional step to verify the header itself by
comparing it with a copy of the header inside the IBB. Refer to the Secure Boot
Readme file for details.

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
May 2015 Integration Guide
13

i n tel ® > FSP Interface (FSP API)

FSP Interface (FSP API)

6.1

6.2

6.3

Entry-Point Calling Assumptions

There are some requirements regarding the operating environment for FSP execution.
It is the responsibility of the boot loader to set up this operating environment before
calling the FSP API. These conditions have to be met before calling any entry point or
the behavior is not determined. These conditions include:

e System is in flat 32-bit mode.
e Both the code and data selectors should have full 4GB access range.
e Interrupts should be turned off.

e The FSP API should be called only by the System BSP, unless otherwise noted.

Other requirements needed by individual FSP API will be covered in their respective
sections.

Data Structure Convention

All data structure definitions should be packed using compiler provided directives such
as #pragma pack (1) to avoid alignment mismatch between FSP and the boot loader.

Entry-Point Calling Convention

All FSP APIs defined in the FSP information header are 32-bit only. The FSP API
interface is similar to the default C ___cdecl convention. Like the default C __ cdecl
convention, with the FSP API interface:

e All parameters are pushed onto the stack in right-to-left order before the API is
called.

e The calling function needs to clean the stack up after the API returns.

e The return value is returned in the EAX register. All the other registers are
preserved.

There are, however, a couple of notable exceptions with the FSP API interface
convention. Please refer to individual API descriptions for any special notes and these
exceptions.

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015

14

FSP Interface (FSP API) : -l n te l ® >

6.4

6.5

May 2015

Exit Convention

The TempRamlInit API preserves all general purpose registers except EAX, ECX, and
EDX. Because this FSP API is executing in a stackless environment, the floating point
registers may be used by the FSP to save/return other general purpose registers to
the boot loader.

The FsplInit and the FspNotify interfaces will preserve all the general purpose registers
except EAX. The return status will be passed back through the EAX register.

The FSP reserves some memory for its internal use and the memory region that is
used by the FSP is passed back though a HOB. This is a Generic Resource HOB, but
the owner field of the HOB will identify the owner as FSP. Please refer to the FSP
Output section 7 for more details. The boot loader is expected to not use this memory
except to parse the HOB output. The boot loader is also expected to mark this
memory as reserved when constructing the memory map information to be passed to
the OS.

TempRamlInitEntry

This FSP API is called soon after coming out of reset and before memory and stack are
available. This FSP API will load the microcode update, enable code caching for the
region specified by the boot loader and also setup a temporary stack to be used till
main memory is initialized.

A hardcoded stack can be setup with the following values and the ESP register

initialized to point to this hardcoded stack:

1. The return address where the FSP will return control after setting up a temporary
stack.

2. A pointer to the input parameter structure.

However, since stack is in ROM and not writeable, this FSP API cannot be called using
the “call” instruction, but needs to be jumped to.

This API should be called only once after the system comes out reset, and it must be
called before any other FSP APIs. The system needs to go through a reset cycle before
this API can be called again. Otherwise, unexpected results may occur.

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide
15

6.5.1 Prototype
typedef

FSP_STATUS

FSP Interface (FSP API)

(FSPAPI *FSP_TEMP RAM INIT) (

IN FSP_TEMP RAM INIT PARAMS *TempRamInitParamPtr

)

6.5.2 Parameters
TempRaminitParamPtr

Address pointer to the FSP_TEMP_RAM INIT_ PARAMS structure. The structure
definition is provided below under Related Definitions. The structure has a pointer
to the base of a code region and the size of it. The FSP enables code caching for
this region. Enabling code caching for this region should not take more than one
MTRR pair. The structure also has a pointer to a microcode region and its size. The
microcode region may have multiple microcodes packed together one after the
other and the FSP will try to load all the microcodes that it finds in the region that
is compatible with the silicon it is supporting. This microcode region is
remembered by FSP so that it can be used to load microcode for all APs later on

during the Fsplnit API call.

6.5.3 Related Definitions
typedef struct {

UINT32
UINT32
UINT32
UINT32

MicrocodeRegionBase,
MicrocodeRegionLength,
CodeRegionBase,

CodeRegionLength

} FSP_TEMP RAM INIT PARAMS;

6.5.3.1 Return Values

If this function is successful, the FSP initializes the ECX and EDX registers to point to
a temporary but writeable memory range available to the boot loader and returns with
FSP_SUCCESS in register EAX. Register ECX points to the start of this temporary
memory range and EDX points to the end of the range. Boot loader is free to use the
whole range described. Typically the boot loader can reload the ESP register to point
to the end of this returned range so that it can be used as a standard stack.

Intel® FSP for Intel® Atom™ Processor E3800 Product Family

Integration Guide
16

May 2015

FSP Interface (FSP API)

intel)

Note: This returned range is just a sub-region of the whole temporary memory initialized by
the processor. FSP maintains and consumes the remaining temporary memory. It is
important for the boot loader not to access the temporary memory beyond the

Table 2.

May 2015

returned boundary.

Return Values

FSP_SUCCESS

Temp RAM was initialized successfully.

FSP_INVALID_PARAMETER

Input parameters are invalid.

FSP_NOT_FOUND

No valid microcode was found in the microcode region.

FSP_UNSUPPORTED

The FSP calling conditions were not met.

FSP_DEVICE_ERROR

Temp RAM initialization failed.

6.5.3.2 Sample Code

.global basic_init
basic _init:

Parse the FV to find the FSP INFO Header

If secure boot is enabled, verify if the header matches the
signed header in IBB.
Please refer the secure boot readme for details.

He o H o o

lea findFspHeaderStack, %esp # fsp rom start = 0xfffc0000
lea _fsp rom start, %eax
Jmp find fsp info header

findFspHeaderDone:
mov %eax, %ebp # save fsp header address in ebp
mov 0x30 (%ebp), S%Seax # TempRamInit offset in the header

add Oxlc (%ebp), %eax # add FSP base to get the API address

lea tempRamInitStack, %esp # initialize to a rom stack
#

call FSP PEI to setup temporary Stack

#

Jjmp *Feax

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide
17

i n tel ® FSP Interface (FSP API)

temp RamInit done:
addl $4, %esp

cmp 50, %$eax
jz continue
#
TempRamInit failed, dead loop
#
jmp
continue:
#
Save FSP_INFO HEADER in ebx
#
mov %ebp, %ebx
#
setup bootloader stack
ecx: stack base
edx: stack top
#
lea -4 (%edx), %esp
#

call C based early init to initialize meomry and chipset.
Pass the FSP INFO
Header address as a paramater

#

push Sebx

call early init

#

should never return here

#

jmp

.align 4
findFspHeaderStack:

.long findFspHeaderDone

tempRamInitParams:

.long ucode base # Microcode base address

.long ucode size # Microcode size

.long 0xf£f£00000 # Code Region Base

.long 0x00100000 # Code Region Length
tempRamInitStack:

.long temp RamInit done # return address

.long tempRamInitParams # pointer to parameters

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015
18

FSP Interface (FSP API) -l n te l ® >

6.5.4

6.6

May 2015

/** C Based Basic Initialization
*

* Platform configuration with Temp Stack starts here.
*
*/

void early init (FSP_INFO HEADER *fsp info)

{

/)
// Call FspInit API
//

Description

The entry to this function is in a stackless/memoryless environment. After the boot
loader completes its initial steps, it finds the address of the FSP information header
and then from the header finds the offset of the TempRamInit function. It then
converts the offset to an absolute address by adding the base of the FSP binary and
jumps to the TempRamInit function.

This temporary memory is intended to be primarily used by the boot loader as a stack.
After this stack is available, the boot loader can switch to use C functions. This
temporary stack should be used to do only the minimal initialization that needs to be
done before memory can be initialized by the next call into the FSP.

The FSP will initialize the ECX and EDX registers to point to a temporary but writeable
memory range. Register ECX points to the start of this temporary memory range and
EDX points to the end of the range. The size of the temporary stack for the platform
can be calculated by taking the range between ECX and EDX.

FspInitEntry

This FSP API is called after TempRamInitEntry. This FSP API initializes the memory,
the CPU and the chipset to enable normal operation of these devices. This FSP API
accepts a pointer to a data structure that will be platform dependent and defined for
each FSP binary. This will be documented with each FSP release.

The boot loader provides a continuation function as a parameter when calling FspInit.
After Fsplnit completes its execution, it does not return to the boot loader from where
it was called, but instead returns control to the boot loader by calling the continuation
function.

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide
19

-I n tel ® > FSP Interface (FSP API)

6.6.1 Prototype
typedef

FSP_STATUS
(FSPAPI *FSP_FSP_INIT) (

INOUT FSP_INIT PARAMS *FspInitParamPtr
)
6.6.2 Parameters
FspInitParamPtr Address pointer to the FSP_INIT PARAMS
structure.

6.6.3 Related Definitions
typedef struct ({

VOID *NvsBufferPtr;

VOID *RtBufferPtr;

CONTINUATION PROC ContinuationFunc;
} FSP_INIT PARAMS;

NvsBufferPtr Pointer to the non-volatile storage data buffer.
RtBufferPtr Pointer to the runtime data buffer.

ContinuationFunc Pointer to a continuation function provided by the boot
loader.

typedef VOID (* CONTINUATION PROC) (
IN FSP_STATUS Status,
IN VOID *HobListPtr

)

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015
20

FSP Interface (FSP API) : 'l n te l ® >

Status Status of the FSP Init APL.
HobBufferPtr Pointer to the HOB data structure defined in the PI
specification.

The FSP_INIT RT BUFFER defined below has a pointer to a data structure
called UPD Data. Refer to Section 8 for details.

typedef struct ({

UINT32 *StackTop;
UINT32 BootMode;

VOID *UpdDataRegPtr;
UINT32 Reserved[7];

} FSP_INIT RT COMMON_BUFFER;

typedef struct ({
FSP_INIT_RT COMMON_ BUFFER Common ;
} FSP_INIT_RT BUFFER;

typedef struct {
UINT32 VendorDevicelId;
UINT16 SubSystemId;
UINTS8 RevisionId; /// OXFF applies to all
/// steppings
UINTS8 FrontPanelSupport;
UINT16 NumberOfRearJacks;
UINT16 NumberOfFrontJacks;
} PCH_AZALIA VERB TABLE HEADER;
typedef struct {
PCH_AZALIA VERB TABLE HEADER VerbTableHeader;
UINT32 *VerbTableData;
} PCH_AZALIA VERB_TABLE;

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
May 2015 Integration Guide
21

i n tel ® > FSP Interface (FSP API)

typedef struct ({

UINTS8 Pme :1; /// 0: Disable; 1l: Enable

UINTS DS :1; /// 0: Docking not supported;
/// 1l:Docking supported

UINTS DA :1; /// 0: Docking not attached;
/// 1l:Docking attached

UINTS HdmiCodec : 1; /// 0: Disable; 1l: Enable

UINTS AzaliaVCi : 1; /// 0: Disable; 1: Enable

UINTS Rsvdbits : 3;
UINTS8 AzaliaVerbTableNum; /// # of verb tables
PCH_AZALIA VERB TABLE *AzaliaVerbTable; /// Ptr to

/// the

/// actual

/// verb

/// table arrays
UINT16 ResetWaitTimer; /// The delay in uS after

/// Azalia reset
} PCH_AZALIA_CONFIG;

6.6.4 Return Values

Table 3. Return Values

FSP_SUCCESS FSP execution environment was initialized successfully.
FSP_INVALID_PARAMETER Input parameters are invalid.

FSP_UNSUPPORTED The FSP calling conditions were not met.
FSP_DEVICE_ERROR FSP initialization failed.

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015
22

FSP Interface (FSP API)

6.6.5

May 2015

Sample Code

#define FSPAPI attribute ((cdecl))
typedef FSP_STATUS (FSPAPI *FSP FSP INIT)
*FspInitParamPtr) ;

const UINT32 mAzaliaVerbTableDatal3[] = {
//
//ALC262 Verb Table - 10EC0262
//
//Pin Complex (NID 0x11)
0x01171CFO,
0x01171D11,
0x01171E11,
0x01171F41,
//Pin Complex (NID 0x12)
0x01271CFO,
0x01271D11,
0x01271E11,
0x01271F41,
//Pin Complex (NID 0x14)
0x01471C10,
0x01471D40,
0x01471E01,
0x01471F01,
//Pin Complex (NID 0x15)
0x01571CFO,
0x01571D11,
0x01571E11,
0x01571F41,
//Pin Complex (NID 0x16)
0x01671CFO,
0x01671D11,
0x01671E11,
0x01671F41,
//Pin Complex (NID 0x18)
0x01871C20,
0x01871D98,
0x01871EA1,
0x01871F01,
//Pin Complex (NID 0x19)
0x01971C21,
0x01971D98,
0x01971EA1,
0x01971Fr02,
//Pin Complex (NID Ox1A)
0x01A71C2F,
0x01A71D30,
0x01A71E81,
0x01A71F01,

intel)

(FSP_INIT PARAMS

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family

Integration Guide
23

-I n tel ® > FSP Interface (FSP API)

//Pin Complex (NID Ox1B)
0x01B71C1F,
0x01B71D40,
0x01B71E21,
0x01B71F02,
//Pin Complex (NID 0x1C)
0x01C71CFO0,
0x01Cc71D11,
0x01C71E11,
0x01C71F41,
//Pin Complex (NID Ox1D)
0x01D71CO01,
0x01D71DCo,
0x01D71E14,
0x01D71F40,
//Pin Complex (NID Ox1E)
0x01E71CFO,
0x01E71D11,
0x01E71E11,
0x01E71F41,
//Pin Complex (NID Ox1F)
0x01F71CFO,
0x01F71D11,
0x01F71E11,
0x01F71F41
}i

const PCH AZALIA VERB TABLE mAzaliaVerbTable[] = {
{
//
// VerbTable: (RealTek ALC262)
// Revision ID = 0xFF, support all steps
// Codec Verb Table For AZALIA
// Codec Address: CAd value (0/1/2)
// Codec Vendor: O0x10EC0262

//
{
0x10EC0262, // Vendor ID/Device ID
0x0000, // SubSystem ID
OxFF, // Revision ID
0x01, // Front panel support (l=yes, 2=no)
0x000B, // Number of Rear Jacks = 11
0x0002 // Number of Front Jacks = 2

b
(UINT32 *)mAzaliaVerbTableDatal3

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015
24

FSP Interface (FSP API)

May 2015

const PCH AZALIA CONFIG mAzaliaConfig = {

.Pme = 1,
.DS =1,
.DA = 0,
.HdmiCodec = 1,
.AzaliavCi = 1,

.Rsvdbits = 0,

.AzaliaVerbTableNum = 1,

.AzaliaVerbTable = (PCH AZALIA VERB TABLE *)mAzaliaVerbTable,
.ResetWaitTimer = 300

}i

typedef struct {
UPD DATA REGION fsp upd data;
} STAGE SHARED DATA;

void GetUpdDefaultFromFsp (FSP_INFO HEADER *FspInfo,
UPD DATA REGION *UpdData)
{

VPD DATA REGION *VpdDataRgnPtr;

UPD DATA REGION *UpdDataRgnPtr;

VpdDataRgnPtr = (VPD DATA REGION *) (UINT32) (FspInfo-
>CfgRegionOffset + FspInfo->ImageBase);
UpdDataRgnPtr = (UPD_DATA REGION *) (UINT32) (VpdDataRgnPtr-

>PcdUpdRegionOffset + FspInfo->ImageBase);
memcpy s ((void*)UpdData, sizeof (UPD _DATA REGION),
(void*)UpdDataRgnPtr, sizeof (UPD DATA REGION)) ;

}

void early init (FSP_INFO HEADER *fsp info, UINT32 stack base)
{

FSP _FSP INIT FspInitApi;
FSP_INIT PARAMS FspInitParams;
FSP_INIT PARAMS *FspInitParamsPtr;
FSP_INIT RT BUFFER FspRtBuffer;
UINTS8 BootMode;

STAGE SHARED DATA StageSharedData;
UINT32 SharedDataOff;

post code (0x10);

memset ((void*) &FspRtBuffer, 0, sizeof (FSP_INIT RT BUFFER));
memset ((void*) &StageSharedData, 0, sizeof (STAGE SHARED DATA));

/* Detect Boot Mode */
BootMode = getBootMode () ;

/* Initialize the UPD Data */

GetUpdDefaultFromFsp (fsp info, &StageSharedData.fsp upd data);

StageSharedData.fsp upd data.AzaliaConfigPtr = (UINT32)
&mAzaliaConfig;

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide
25

l n tel @ FSP Interface (FSP API)

/* Initialize the FsplInit Common parameters */

FspRtBuffer.Common.BootMode = BootMode;

FspRtBuffer.Common.UpdDataRegPtr =
&StageSharedData.fsp upd data;

if (BootMode == BOOT ON S3 RESUME) ({
FspRtBuffer.Common.StackTop = (UINT32 *) (permanentHeapBase +
permanentHeapSize);
} else {

FspRtBuffer.Common.StackTop = & stack top;
}

/* Initialize the FspInit Params */
FspInitParams.RtBufferPtr = (FSP_INIT RT BUFFER

*) &FspRtBuffer;
FspInitParams.ContinuationFunc =

(CONTINUATION PROC)continuation func;
FspInitParams.NvsBufferPtr = (void *)& nvram base;

/*
* Save fsp info in EBX so that we can get it back in
continuation func ()
* since FSP will preserve all registers but EAX

*/
FspInitApi = (FSP_FSP INIT) (fsp_info->ImageBase + fsp info-
>FspInitEntry) ;
SharedDataOff = (UINT32)&StageSharedData - stack base;

FspInitParamsPtr = &FspInitParams;

asm volatile (
"push %0;"
"call *%%eax;"
: "m" (FspInitParamsPtr), "a" (FspInitApi),
"b" (fsp_info), "c" (SharedDataOff));

/*
* Should never get here. Control will continue from
continuation func
* This line below is to prevent the compiler from optimizing
structure intialization
*/
FspInitApi (&FsplInitParams);

while (1);

void ContinuationFunc (EFI_STATUS Status, VOID *HobListPtr)
{

/* Update global variables */

FspHobListPtr = HobListPtr;

/* The FSP INFO HEADER is saved in EBX in early init */

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015
26

FSP Interface (FSP API) -l n te l ® >

6.6.6

May 2015

/* The Shared Data Offset is saved in ECX in early init */
asm_ volatile (
"movl %%ebx, %0\n\t"
"movl %$%ecx, %$1\n\t"
fsp info header, shared data off);

/* Get the HOB with the Temp Stack Data*/
GetTempRamStack (&étemp stack hob, &hobsize);

shared data =
shared data off);
upd data ptr =

(STAGE_SHARED DATA *) ((uint32 t)temp stack hob +
& (shared data->fsp upd data);

/* Continue the boot */
advancedInit ();

/* Should never return */
while (1);

Description

One important piece of data pointed by RtBufferPtr in the FSP_INIT_PARAMS structure is
the "StackTop". This passes the address of the stack top where the boot loader wants
to establish the stack after memory is initialized and available for use.

ContinuationFunc is a function entry point that will be jumped to at the end of the
FspInit() to transfer control back to the boot loader.

Please note this FspInit API initializes the permanent memory and switches the stack
from the temporary memory to the permanent memory as specified by StackTop.
Sometimes switching the stack in a function can cause some unexpected execution
results because the compiler is not aware of the stack change during runtime and the
precompiled code may still refer to the old stack for data and pointers. A stack switch
therefore requires assembly code to go patch the data for the new stack location
which may lead to compatibility issues. To avoid such possible compatibility issues
introduced by different compilers and to ease the integration of FSP with a boot
loader, the API uses the “ContinuationFunction” parameter to continue the boot loader
execution flow rather than return as a normal C function. Although this API is called as
a normal C function, it never returns.

The FSP needs to get some parameters from the boot loader when it is initializing the
silicon. These parameters are passed from the boot loader to the FSP through the
RtBuffer structure pointer.

A set of parameters that the FSP may need to initialize memory under special
circumstances, such as during an S3 resume and during fast boot mode, are returned
by the FSP to the boot loader during a normal boot. The boot loader is expected to
store these parameters in a non-volatile memory such as SPI flash and return a
pointer to this structure (through NvsBufferPtr) when it is requesting the FSP to
initialize the silicon under these special circumstances.

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide
27

i n tel ® > FSP Interface (FSP API)

During execution the FSP builds a series of data structures containing information
useful to the boot loader, such as information on system memory.

This API should be called only once after the TempRamInit API.

6.7 NotifyPhaseEntry

This FSP API is used to notify the FSP about the different phases in the boot process.
This allows the FSP to take appropriate actions as needed during different initialization
phases. The phases will be platform dependent and will be documented with the FSP
release. Examples of boot phases include “post pci enumeration” and “ready to boot”.

The FSP will lock the configuration registers to enhance security as required by the
BWG when it is notified that the boot loader is ready to transfer control to the
operating system.

6.7.1 Prototype
typedef

FSP_STATUS
(FSPAPI *FSP_NOTFY PHASE) (
IN NOTIFY PHASE PARAMS *NotifyPhaseParamPtr

)

6.7.2 Parameters
NotifyPhaseParamPtr Address pointer to the NOTIFY PHASE PRAMS

6.7.2.1 Related Definitions
typedef enum {
EnumInitPhaseAfterPciEnumeration = 0x20,
EnumInitPhaseReadyToBoot = 0x40
} FSP_INIT PHASE;

typedef struct ({
FSP_INIT PHASE Phase;
} NOTIFY PHASE PARAMS;

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015
28

FSP Interface (FSP API) -l n te l ® >

EnumlInitPhaseAfterPciEnumeration
This stage is notified when the boot loader completes the PCI enumeration and the

resource allocation for the PCI devices is complete. FSP will use it to do some specific
initialization for processor and chipset that requires PCI resource assignment.

EnumInitPhaseReadyToBoot

This stage is notified just before the boot loader hands off to the OS loader. FSP will
use it to do some specific initialization for processor and chipset that is required before
control is transferred to the OS.

6.7.3 Return Values

Table 4. Return Values

FSP_SUCCESS The notification was handled successfully.
FSP_UNSUPPORTED The notification was not called in the proper order.
FSP_INVALID_PARAMETER The notification code is invalid.

6.7.4 Sample Code

#define FSPAPI _ attribute ((cdecl))

typedef UINT32 FSP_STATUS;
typedef FSP_STATUS (FSPAPI *FSP_NOTFY_PHASE)
(NOTIFY PHASE PARAMS *NotifyPhaseParamPtr);

typedef enum {
EnumInitPhaseAfterPciEnumeration = 0x20,
EnumInitPhaseReadyToBoot = 0x40

} FSP_INIT PHASE;

typedef struct {
FSP_INIT PHASE Phase;
} NOTIFY PHASE PARAMS;

void FspNotifyPhase (UINT32 Phase)
{

FSP _NOTFY PHASE NotifyPhaseProc;
NOTIFY PHASE PARAMS NotifyPhaseParams;
FSP_STATUS Status;

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
May 2015 Integration Guide
29

l n tel @ FSP Interface (FSP API)

/* call FSP PEI to Notify PostPciEnumeration */

NotifyPhaseProc = (FSP_NOTFY PHASE) (fsp info header-
>ImageBase + fsp info header->NotifyPhaseEntry);

NotifyPhaseParams.Phase = Phase;

Status = NotifyPhaseProc (&NotifyPhaseParams);

if (Status != 0) {

printf ("FSP API NotifyPhase failed for phase %d!\n",

Phase) ;

}

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015
30

FSP Output

intel)

FSP Output

7.1

May 2015

The FSP builds a series of data structures called the Hand-Off-Blocks (HOBs) as it
progresses through initializing the silicon. These data structures conform to the HOB
format as described in the Platform Initialization (PI) specification - Volume 3: Shared
Architectural Elements specification and can be downloaded from
http://www.uefi.org/specifications/.

The user of the FSP binary is strongly encouraged to go through the specification
mentioned above to understand the HOB design details and create a simple
infrastructure to parse the HOBs, because the same infrastructure can be reused with
different FSP across different platforms.

It's left to the boot loader developer to decide how to consume the information passed
through the HOBs produced by the FSP. For example, even the specification
mentioned above describes about 9 different HOBs; most of this information may not
be relevant to a particular boot loader. For example, a boot loader design may be
interested only in knowing the amount of memory populated and may not care about
any other information.

The section below describes the GUID HOBs that are produced by the FSP. GUID HOB
structures are non-architectural in the sense that the structure of the HOB needs is
not defined in the HOB specifications. So the GUID and the data structure are
documented below to enable the boot loader to consume these HOB data.

Please refer to the specification for details about the HOBs described in the Platform
Initialization (PI) specification - Volume 3: Shared Architectural Elements
specification.

Boot Loader Temporary Memory Data HOB

As described in the Fsplnit API, the system memory is initialized and the whole
temporary memory is destroyed during this API call. However, the sub region of the
temporary memory returned in the TempRamlInit API may still contain boot loader-
specific data which might be useful for the boot loader even after the Fsplnit call. So
before destroying the temporary memory, all contents in this sub region will be
migrated to the permanent memory, FSP builds a boot loader temporary memory data
HOB and the boot loader can use it to access the data saved in the temporary memory
after Fsplnit API if necessary. If the boot loader does not care about the previous
data, this HOB can be simply ignored.

This HOB follows the EFI_HOB_GUID_TYPE format with the name GUID defined as
below:

#define FSP_BOOTLOADER TEMPORARY MEMORY HOB GUID \

{ Oxbbcffd46c, 0xc8d3, 0x4113, { 0x89, 0x85, 0xb9, O0xd4, Oxf3,
0xb3, 0xf6, Ox4e } };

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide
31

http://www.uefi.org/specifications/

i n te l > FSP Output

7.2

7.3

7.4

FSP Reserved Memory Resource Descriptor HOB

The FSP reserves some memory for its internal use, and a descriptor for this memory
region used by the FSP is passed back though a HOB. This is a Generic Resource HOB,
but the owner field of the HOB identifies the owner as FSP.

#define FSP_HOB_RESOURCE_OWNER_FSP GUID \

{ 0x69a79759, 0x1373, 0x4367, { Oxa6, Oxc4d, Oxc7, 0xf5, O0x9e,
Oxfd, 0x98, Ox6e } }

Non-Volatile Storage HOB

#define FSP_NON_VOLATILE_STORAGE HOB_GUID \

{ 0x721lacf02, 0x4d77, O0x4c2a, { 0xb3, Oxdc, 0x27, O0xb, 0x7b,
0xa9, Oxe4, 0xb0 } }

The Non-Volatile Storage (NVS) HOB provides a mechanism for FSP to request the
boot loader to save the platform configuration data into non-volatile storage so that it
can be reused in many cases, such as S3 resume.

The boot loader needs to parse the HOB list to see if such a GUID HOB exists after
returning from the FspInit() API. If so, the boot loader should extract the data portion
from the HOB, and then save it into a platform-specific NVS device, such as flash,
EEPROM, etc. On the following boot flow the boot loader should load the data block
back from the NVS device to temporary memory and populate the buffer pointer into
FSP_INIT_PARAMS.NvsBufferPtr field before calling into the FspInit() APIL. If the NVS
device is memory mapped, the boot loader can initialize the buffer pointer directly to
the buffer.

HOB Parsing Code

VOID

GetLowMemorySize (
UINT32 *LowMemoryLength
)

{
EFI_PEI HOB POINTERS Hob;

*LowMemoryLength = 0x100000;

//
// Get the HOB list for processing

//
Hob.Raw = GetHobList () ;

//
// Collect memory ranges

//

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015

32

FSP Output l n te l

while (!END OF HOB LIST (Hob)) {
if (Hob.Header->HobType == EFI _HOB TYPE RESOURCE DESCRIPTOR) {
if (Hob.ResourceDescriptor->ResourceType ==
EFI_RESOURCE SYSTEM MEMORY) {
//
// Need memory above 1IMB to be collected here
//
if (Hob.ResourceDescriptor->PhysicalStart >= 0x100000 &&
Hob.ResourceDescriptor->PhysicalStart <
(EFI_PHYSICAL ADDRESS) 0x100000000) {
*LowMemoryLength += (UINT32) (Hob.ResourceDescriptor-
>Resourcelength) ;
}
}

}
Hob.Raw = GET NEXT HOB (Hob);

return;
}
VOID
GetHighMemorySize (
UINT64 *HighMemoryLength
)
{
EFI_PEI HOB POINTERS Hob;

*HighMemoryLength = 0x0;

//
// Get the HOB list for processing
//
Hob.Raw = GetHobList () ;
//
// Collect memory ranges
//
while (!END OF HOB LIST (Hob)) {
if (Hob.Header->HobType == EFI _HOB TYPE RESOURCE DESCRIPTOR)

{
if (Hob.ResourceDescriptor->ResourceType ==
EFI_RESOURCE_SYSTEM MEMORY) ({
//
// Need memory above 4GB to be collected here
//
if (Hob.ResourceDescriptor->PhysicalStart >=
(EFI_PHYSICAL ADDRESS) 0x100000000) {
*HighMemoryLength += (UINT64) (Hob.ResourceDescriptor-
>Resourcelength) ;
}
}

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
May 2015 Integration Guide
33

l n tel : FSP Output

Hob.Raw = GET NEXT HOB (Hob);

return;
}
VOID
GetFspReservedMemoryFromGuid (
UINT32 *FspMemoryBase,
UINT32 *FspMemoryLength,
EFI _GUID FspReservedMemoryGuid
)
{
EFI_PEI HOB POINTERS Hob;
//
// Get the HOB list for processing
//
Hob.Raw = GetHobList () ;
*FspMemoryBase = 0;

*FspMemoryLength = 0;

//
// Collect memory ranges
//
while (!END OF HOB LIST (Hob)) {
if (Hob.Header->HobType == EFI _HOB TYPE RESOURCE DESCRIPTOR)

if (Hob.ResourceDescriptor->ResourceType ==
EFI RESOURCE MEMORY RESERVED) {
if (CompareGuid (&Hob.ResourceDescriptor->Owner,
&FspReservedMemoryGuid)) {

*FspMemoryBase = (UINT32) (Hob.ResourceDescriptor-
>PhysicalStart);
*FspMemoryLength = (UINT32) (Hob.ResourceDescriptor-
>Resourcelength) ;
break;

}

}
Hob.Raw = GET NEXT HOB (Hob);

return;

}

VOID

GetFspNVStorageMemory (
VOID **FspNVStorageHob,
UINT16 *DataSize

)

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015
34

FSP Output l n te l :

EFI _GUID FspNVStorageHobGuid =
FSP _NON VOLATILE STORAGE HOB GUID;
UINTS8 *GuidHob;

EFI_HOB_GENERIC HEADER *GuidHobHdr;

GuidHob = GetFirstGuidHob (&FspNVStorageHobGuid) ;
if (!GuidHob) {
*FspNVStorageHob = 0;

*DataSize = 0;
} else {
*FspNVStorageHob = GET GUID HOB DATA (GuidHob);
GuidHobHdr = (EFI_HOB GENERIC HEADER *)GuidHob;
*DataSize = GET _GUID HOB DATA SIZE (GuidHobHdr) ;
}
}
VOID
GetTempRamStack (
VOID **TempRamStackPtr,
UINT16 *DataSize
)
{
EFI GUID FspBootloaderTemporaryMemoryHobGuid =
FSP_BOOTLOADER TEMPORARY MEMORY HOB GUID;
UINTS8 *GuidHob;

EFI HOB GENERIC HEADER *GuidHobHdr;

GuidHob = GetFirstGuidHob (&FspBootloaderTemporaryMemoryHobGuid) ;
if (!GuidHob) {
*TempRamStackPtr = 0;

*DataSize = 0;

} else {
*TempRamStackPtr = GET GUID HOB DATA (GuidHob);

GuidHobHdr = (EFI_HOB GENERIC HEADER *)GuidHob;
*DataSize = GET GUID HOB DATA SIZE (GuidHobHdr);

}

}
7.5 Hob Infrastructure Sample Code

Please refer to the Appendix - A for sample code.

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
May 2015 Integration Guide
35

l n te l) FSP Configuration Firmware File

8

FSP Configuration Firmware
File

The FSP binary contains a configurable data region which will be used by the FSP
during the initialization. The configurable data region has two sets of data:

e VPD - Vital Product Data, which can be configured statically.

e UPD - Updatable Product Data, which can be configured statically for default
values, but also can be overridden during boot.

Both the VPD and the UPD parameters can be statically customized using a separate
tool called the Binary Configuration Tool as explained in the tools section. The tool will
use a Binary Setting File (BSF) to understand the layout of the configuration region
within the FSP.

In addition to static configuration, the UPD data can be overridden by the boot loader
during runtime. The UPD data is organized as a structure. The Fsplnit API parameter
includes a pointer which can be initialized to point to the UPD data structure. If this
pointer is initialized to NULL when calling the FspInit API, the FSP will use the default
UPD data that is available in the FSP configuration region. However, if the boot loader
wishes to override any of the UPD parameters, it has to copy the UPD structure to
memory, override the parameters and initialize the pointer in the FspInit API input
parameter to the address of the UPD structure with updated data in memory and call
FspInit API. The FSP will use this data structure instead of the default configuration
region data.

When calling the Fsplnit API, the stack is in temporary RAM where the UPD data
structure is copied, updated, and passed to the FSP API. When permanent memory is
initialized, the FSP will set up a new stack in the permanent memory. However, the
FSP will save the stack that was in the Temporary Memory in a HOB. If the boot loader
wishes to refer to the modified UPD Data, it can be done by parsing the HOB which
has the Temporary Stack’s data.

Both the VPD and the UPD structure definition is provided below. As mentioned above,
to update these configuration regions statically using the Binary Configuration Tool, a
BSF file will be provided separately.

Special attention should be paid to the AzaliaConfigPtr variable in the UPD Data
structure below. This is a pointer to the PCH_AZALIA_CONFIG data structure. If the
PCH_AZALIA_CONFIG data structure is in the temporary stack and AzaliaConfigPtr is
pointing to an address in the temporary stack, it may be valid when FsplInit API is
called, but by the time FSP uses this variable, the temporary stack would have been
destroyed after relocation and AzaliaConfigPtr would still be pointing to an address in
the old temporary stack region and thus be pointing to an incorrect address. To avoid
this problem, the PCH_AZALIA_CONFIG data structure should be declared a constant
and placed uncompressed in the flash memory and AzaliaConfigPtr should be
initialized to point to this address in the flash memory. This will guarantee that the

AzaliaConfigPtr will still be valid when FSP uses it.
#pragma pack (1)

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015

36

FSP Configuration Firmware File

May 2015

typedef struct {
EnableMemoryDown;

UINTS8
UINTS8
UINTS8
UINTS8
UINTS8
UINTS8
UINTS8
UINTS8
UINTS8
UINTS8
UINTS8
UINTS8
UINTS8
UINTS8
UINTS8
UINTS8

DRAMSpeed;
DRAMType ;
DIMMOEnable;
DIMM1Enable;
DIMMDWidth;
DIMMDensity;
DIMMBusWidth;
DIMMSides;
DIMMtCL;
DIMMtRPtRCD;
DIMMtWR;
DIMMtWTR;
DIMMtRRD;
DIMMtRTP;
DIMMtFAW;

} MEMORY DOWN DATA;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

DRAM Speed */
DRAM Type */
DIMM 0 Enable */
DIMM 1 Enable */

DRAM device data width */
DRAM device data density */

DIMM Bus Width */
Ranks Per DIMM */
tCL */

tRP and tRCD in DRAM clk - 5:12.5ns, 6:1

tWR in DRAM clk */
tWTR in DRAM clk */
tRRD in DRAM clk */
tRTP in DRAM clk */
tFAW in DRAM clk */

typedef struct _UPD_DATA REGION {

UINT64
UINTS8
UINT16
UINT16
UINTS8
UINTS8
UINTS8
UINTS
UINTS8
UINTS8
UINTS8
UINTS8
UINTS8
UINTS
UINTS8
UINTS8
UINT32
UINTS
UINTS8
UINTS8
UINTS
UINTS
UINTS8
UINTS8
UINTS
UINTS
UINTS
UINTS8
UINTS8
UINTS
UINTS
UINTS8
UINTS8
UINTS
UINTS
UINTS8
UINTS8
UINTS
UINTS
UINTS
UINTS8
UINTS

Signature;
ReservedUpdSpace0[24];
PcdMrcInitTsegSize;
PcdMrcInitMmioSize;
PcdMrcInitSPDAddrl;
PcdMrcInitSPDAddr2;
PcdeMMCBootMode;
PcdEnableSdio;
PcdEnableSdcard;
PcdEnableHsuartO;
PcdEnableHsuartl;
PcdEnableSpi;
ReservedUpdSpacel;
PcdEnableSata;
PcdSataMode;
PcdEnableAzalia;
AzaliaConfigPtr;
PcdEnableXhci;
PcdEnablelpe;

PcdLpssSioEnablePciMode;

PcdEnableDmal;
PcdEnableDmal;
PcdEnableI2CO;
PcdEnableI2Cl;
PcdEnableI2C2;
PcdEnableI2C3;
PcdEnableI2C4;
PcdEnableI2C5;
PcdEnableI2C6;
PcdEnablePwm0;
PcdEnablePwml;
PcdEnableHsi;
PcdIgdDvmt50PreAlloc;
PcdApertureSize;
PcdGttSize;
ReservedUpdSpace2[5];
PcdMrcDebugMsg;
ISPEnable;
PcdSccEnablePciMode;
IgdRenderStandby;
TxeUmaEnable;
PcdOsSelection;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset
Offset

5ns, etc.

0x0000
0x0008
0x0020
0x0022
0x0024
0x0025
0x0026
0x0027
0x0028
0x0029
0x002A
0x002B
0x002C
0x002D
0x002E
0x002F
0x0030
0x0034
0x0035
0x0036
0x0037
0x0038
0x0039
0x003A
0x003B
0x003C
0x003D
0x003E
0x003F
0x0040
0x0041
0x0042
0x0043
0x0044
0x0045
0x0046
0x004B
0x004C
0x004D
0x004E
0x004F
0x0050

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide

37

FSP Configuration Firmware File

UINTS8 eMMC45DDR50Enabled; /* Offset 0x0051 */
UINTS8 eMMC45HS200Enabled; /* Offset 0x0052 */
UINTS8 eMMC45RetuneTimerValue; /* Offset 0x0053 */
UINTS8 PcdEnableIgd; /* Offset 0x0054 */
UINTS8 UnusedUpdSpacel [155]; /* Offset 0x0055 */
MEMORY DOWN_ DATA PcdMemoryParameters; /* Offset 0x00F0 */
UINT16 PcdRegionTerminator; /* Offset 0x0100 */

} UPD DATA REGION;

#define VPD_ IMAGE ID 0x3157454956594C56 /* "VLYVIEW1' */
#define VPD_IMAGE REV ~ 0x00000304

typedef struct _VPD DATA REGION {

UINT64 PcdVpdRegionSign; /* Offset 0x0000 */
UINT32 PcdImageRevision; /* Offset 0x0008 */
UINT32 PcdUpdRegionOffset; /* Offset 0x000C */
UINTS8 UnusedVpdSpace0[16]; /* Offset 0x0010 */
UINT32 PcdFspReservedMemoryLength; /* Offset 0x0020 */
UINTS8 PcdPlatformType; /* Offset 0x0024 */
UINTS8 PcdEnableSecureBoot; /* Offset 0x0025 */

} VPD DATA REGION;

#pragma pack ()

PcdPlatformType - This is a static configuration option and can be set only through the
Binary Configuration Tool. The valid options for this configuration item are Non-ECC
Memory Platform and ECC Memory Platform. The default for this configuration option
is Non-ECC Memory Platform.

PcdLpssSioEnablePciMode - This configuration option selects the operating mode for
the Serial IO controllers like I2C and HSUART in the Intel® Atom™ Processor E3800
Product Family. These controllers can operate in (i) PCI mode, in which they will be
visible to the OS through their PCI configuration space and in (ii) ACPI mode, in which
they will be visible to the OS as ACPI devices. In ACPI configuration, to avoid conflict
in resource windows, the boot loader should allocate the resources for these SIO
controllers from a separate resource pool which is not covered by the ACPI PCI Host
Bridge's resources as reported in the _CRS method.

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015
38

Tools l@

9 Tools

A Binary Configuration Tool (BCT) will be provided with the FSP binary that can be
used on the FSP binary to allow a user to modify certain well-defined configuration
values in the FSP binary. The BCT will typically provide a graphical user interface
(GUI). The Binary Configuration Tool (BCT) will be provided with separate
documentation that explains the usage of the tool.

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family

Integration Guide
39

May 2015

l n tel / > Other Host Boot Loader Concerns

10 Other Host Boot Loader
Concerns

10.1 Power Management
Intel® FSP does not provide power management functions besides making power

management features available to the host boot loader. ACPI is an independent
component of the boot loader, and it will not be included in Intel® FSP.

10.2 Bus Enumeration

Intel® FSP will initialize the CPU and the companion chips to a state that all bus
topology can be discovered by the host boot loader.

10.3 Security

Intel® FSP supports secure boot mechanism as supported by the Intel® Atom™
Processor E3800 Product Family. Please refer to the Secure Boot Implementation in
the Sample Boot Loader using Intel® FSP for Intel® Atom™ Processor E3800 Product
Family Platforms README (#528703) for details.

10.4 64-bit Long Mode

Intel® FSP operates in 32-bit mode; it is the responsibility of the host boot loader to
transition to 64-bit Long Mode if desired.

10.5 Pre-0OS Graphics

Intel® FSP does not include graphics initialization function. For pre-OS graphics
initialization solutions, please contact your Intel representative.

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015
40

Other Host Boot Loader Concerns i n te l : >

Appendix A- HOB Parsing Sample
Code

May 2015

The sample code provided here was derived from the EDK2 source available for
download at

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=EDK2

///

/// 8-byte unsigned value.

//7/

typedef unsigned long long UINT64;

///

/// 8-byte signed value.

///

typedef long long INT64;

//7/

/// 4-byte unsigned value.

///

typedef unsigned int UINT32;

//7/

/// 4-byte signed value.

///

typedef int INT32;

///

/// 2-byte unsigned value.

//7/

typedef unsigned short UINT16;

///

/// 2-byte Character. Unless otherwise specified all strings are
/// stored in the UTF-16 encoding format as defined by Unicode
/// 2.1 and ISO/IEC 10646 standards.

///

typedef unsigned short CHAR16;

///

/// 2-byte signed value.

//7/

typedef short INT16;

/]/

/// Logical Boolean. l-byte value containing 0 for FALSE or a 1
/// for TRUE. Other values are undefined.
///

typedef unsigned char BOOLEAN;

]/

/// l-byte unsigned value.

///

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide
41

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=EDK2

intel)

typedef unsigned char
///

/// 1l-byte Character
//7/

typedef char

///

/// l-byte signed value
///

typedef char

typedef void

typedef UINT64

Other Host Boot Loader Concerns

UINTS;

CHARS;

INTS8;

VOID;

EFI PHYSICAL ADDRESS;

typedef struct {

UINT32 Datal;
UINT1l6 DataZ2;
UINT16 Data3;
UINTS8 Datad[8];

} EFI_GUID;

#define CONST const
#define STATIC static
#define TRUE ((BOOLEAN) (1==1))
#define FALSE ((BOOLEAN) (0==1))

static inline wvoid DebugDeadLoop (void) {

for (;7):
}
#define FSPAPI _ attribute ((cdecl))
#define EFIAPI _ attribute ((cdecl))
#define ASSERT (Expression) DebugDeadLoop ()
#define ASSERT (Expression) \
do { \
if (! (Expression)) { \
_ASSERT (Expression); \
} \
} while (FALSE)
typedef UINT32 FSP_STATUS;
typedef UINT32 EFI_STATUS;
//
// HobType of EFI_HOB GENERIC HEADER.
//

#define EFI HOB TYPE MEMORY ALLOCATION
#define EFI_HOB TYPE RESOURCE DESCRIPTOR
#define EFI_HOB TYPE GUID EXTENSION

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide
42

0x0002
0x0003
0x0004

May 2015

Other Host Boot Loader Concerns i n te l : >

May 2015

#define EFI_HOB_TYPE UNUSED OXFFFE
#define EFI _HOB_TYPE END OF HOB LIST OXFFFF
/77

/// Describes the format and size of the data inside the HOB.
/// All HOBs must contain this generic HOB header.

///

typedef struct {

}

//7/

/// Identifies the HOB data structure type.
///

UINT16 HobType;

///

/// The length in bytes of the HOB.

//7/

UINT16 HobLength;

///

/// This field must always be set to zero.
//7/

UINT32 Reserved;

EFI HOB GENERIC HEADER;

/7

/// Enumeration of memory types introduced in UEFI.
/17

typedef enum {

///

/// Not used.

//7/

EfiReservedMemoryType,

///

/// The code portions of a loaded application.

/// (Note that UEFI OS loaders are UEFI applications.)

//7/

EfilLoaderCode,

///

/// The data portions of a loaded application and the default
/// data allocation type used by an application to allocate
/// pool memory.

//7/

EfiloaderData,

///

/// The code portions of a loaded Boot Services Driver.

//7/

EfiBootServicesCode,

]/

/// The data portions of a loaded Boot Serves Driver, and the
/// default data allocation type used by a Boot Services Driver
/// to allocate pool memory.

/117

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide
43

l n tel) Other Host Boot Loader Concerns

EfiBootServicesData,

///

/// The code portions of a loaded Runtime Services Driver.

//7/

EfiRuntimeServicesCode,

///

/// The data portions of a loaded Runtime Services Driver and
/// the default data allocation type used by a Runtime Services
/// Driver to allocate pool memory.

/17

EfiRuntimeServicesData,

/7

/// Free (unallocated) memory.

/17

EfiConventionalMemory,

/7

/// Memory in which errors have been detected.
/7

EfiUnusableMemory,

/17

/// Memory that holds the ACPI tables.

/7

EfiACPIReclaimMemory,

/17

/// Address space reserved for use by the firmware.
/7

EfiACPIMemoryNVS,

/7

/// Used by system firmware to request that a memory-mapped IO

/// region be mapped by the OS to a virtual address so it can

/// be accessed by EFI runtime services.

/77

EfiMemoryMappedIO,

/17

/// System memory-mapped IO region that is used to translate
memory

/// cycles to IO cycles by the processor.

/17

EfiMemoryMappedIOPortSpace,

/17

/// Address space reserved by the firmware for code that is

/// part of the processor.

/17

EfiPalCode,

EfiMaxMemoryType
} EFI_MEMORY TYPE;

/17

/// EFI_HOB MEMORY ALLOCATION HEADER describes the

/// various attributes of the logical memory allocation. The type
/// field will be used for subsequent inclusion in the UEFI

/// memory map.

/177

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015
44

| | ®
Other Host Boot Loader Concerns l n tel

May 2015

typedef struct {

///

/// A GUID that defines the memory allocation region's type and
/// purpose, as well as other fields within the memory

/// allocation HOB. This GUID is used to define the

/// additional data within the HOB that may be present for the
/// memory allocation HOB.

/// Type EFI GUID is defined in InstallProtocolInterface() in
/// the UEFI 2.0 specification.

//7/

EFI GUID Name;

///

/// The base address of memory allocated by this HOB. Type
/// EFI_PHYSICAL ADDRESS is defined in AllocatePages () in the
/// UEFI 2.0specification.

///

EFI PHYSICAL ADDRESS MemoryBaseAddress;

//7/

/// The length in bytes of memory allocated by this HOB.
///

UINT64 MemoryLength;

/17

/// Defines the type of memory allocated by this HOB. The
/// memory type definition follows the EFI MEMORY TYPE
/// definition. Type EFI_MEMORY TYPE is defined

/// in AllocatePages () in the UEFI 2.0 specification.

/17

EFI MEMORY TYPE MemoryType;

/17

/// Padding for Itanium processor family
/17

UINTS Reserved[4];

} EFI_HOB MEMORY ALLOCATION HEADER;

/17

/// Describes all memory ranges used during the HOB producer

/// phase that exist outside the HOB list. This HOB type

/// describes how memory is used, not the physical attributes of

/// memory.
/77

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide
45

l n tel) Other Host Boot Loader Concerns

typedef struct {
///
/// The HOB generic header. Header.HobType =
/// EFI_HOB TYPE MEMORY ALLOCATION.
//7/
EFI HOB GENERIC HEADER Header;
///
/// An instance of the EFI_HOB MEMORY ALLOCATION HEADER that
/// describes the various attributes of the logical memory
/// allocation.
///
EFI HOB MEMORY ALLOCATION HEADER AllocDescriptor;
//
// Additional data pertaining to the "Name" Guid memory
// may go here.
//
} EFI_HOB MEMORY ALLOCATION;

//7/

/// The resource type.

///

typedef UINT32 EFI RESOURCE TYPE;

//

// Value of ResourceType in EFI HOB RESOURCE DESCRIPTOR.
//

#define EFI_RESOURCE_ SYSTEM MEMORY 0x00000000
#define EFI RESOURCE MEMORY MAPPED IO 0x00000001
#define EFI_RESOURCE IO 0x00000002
#define EFI RESOURCE FIRMWARE DEVICE 0x00000003
#define EFI_RESOURCE MEMORY MAPPED IO PORT 0x00000004
#define EFI_RESOURCE MEMORY RESERVED 0x00000005
#define EFI RESOURCE IO RESERVED 0x00000006
#define EFI RESOURCE MAX MEMORY TYPE 0x00000007

/7

/// A type of recount attribute type.

/77

typedef UINT32 EFI_RESOURCE ATTRIBUTE TYPE;

//

// These types can be ORed together as needed.

//

// The first three enumerations describe settings

//

#define EFI RESOURCE ATTRIBUTE PRESENT 0x00000001
#define EFI RESOURCE ATTRIBUTE INITIALIZED 0x00000002
#define EFI_RESOURCE ATTRIBUTE TESTED 0x00000004
//

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015
46

®
Other Host Boot Loader Concerns l n tel

May 2015

// The rest of the settings describe capabilities

//
#define EFI RESOURCE ATTRIBUTE SINGLE BIT ECC

0x00000008

#define EFI_RESOURCE_ATTRIBUTE MULTIPLE BIT ECC
0x00000010

#define EFI_RESOURCE ATTRIBUTE ECC_RESERVED 1
0x00000020

#define EFI_RESOURCE_ATTRIBUTE ECC_RESERVED 2
0x00000040

#define EFI_RESOURCE ATTRIBUTE READ PROTECTED
0x00000080

#define EFI_RESOURCE ATTRIBUTE WRITE PROTECTED
0x00000100

#define EFI_RESOURCE ATTRIBUTE EXECUTION PROTECTED
0x00000200

#define EFI_RESOURCE ATTRIBUTE UNCACHEABLE
0x00000400

#define EFI_RESOURCE ATTRIBUTE WRITE COMBINEABLE
0x00000800

#define EFI_RESOURCE ATTRIBUTE WRITE THROUGH CACHEABLE
0x00001000

#define EFI_RESOURCE ATTRIBUTE WRITE BACK CACHEABLE
0x00002000

#define EFI_RESOURCE ATTRIBUTE 16 BIT IO

0x00004000

#define EFI_RESOURCE ATTRIBUTE 32 BIT IO

0x00008000

#define EFI_RESOURCE ATTRIBUTE 64 BIT IO

0x00010000

#define EFI_RESOURCE ATTRIBUTE UNCACHED EXPORTED
0x00020000

//7/
/// Describes the resource properties of all fixed,
/// nonrelocatable resource ranges found on the processor
/// host bus during the HOB producer phase.
//7/
typedef struct {
//7/
/// The HOB generic header. Header.HobType =
EFI_HOB TYPE RESOURCE DESCRIPTOR.
//7/
EFI_HOB GENERIC HEADER Header;
//7/
/// A GUID representing the owner of the resource. This GUID is
/// used by HOB consumer phase components to correlate device
/// ownership of a resource.
///
EFI GUID Owner;
]/

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide
47

®
l n tel Other Host Boot Loader Concerns

/// The resource type enumeration as defined by
/// EFI_RESOURCE TYPE.

/7

EFI RESOURCE TYPE ResourceType;

/17

/// Resource attributes as defined by

/// EFI_RESOURCE ATTRIBUTE TYPE.

///

EFI RESOURCE ATTRIBUTE TYPE ResourceAttribute;

//7/

/// The physical start address of the resource region.
///

EFI PHYSICAL ADDRESS PhysicalStart;

//7/

/// The number of bytes of the resource region.

///

UINTG64 Resourcelength;

} EFI_HOB_ RESOURCE DESCRIPTOR;

//7/
/// Allows writers of executable content in the HOB producer
/// phase to maintain and manage HOBs with specific GUID.
///
typedef struct {

//7/

/// The HOB generic header. Header.HobType =

/// EFI_HOB TYPE GUID EXTENSION.

///

EFI_HOB_ GENERIC HEADER Header;

//7/

/// A GUID that defines the contents of this HOB.

///

EFI_GUID Name;

//

// Guid specific data goes here

//
} EFI_HOB GUID TYPE;

/17

/// Union of all the possible HOB Types.

/7

typedef union {
EFI_HOB_GENERIC HEADER *Header;
EFI HOB MEMORY ALLOCATION *MemoryAllocation;
EFI HOB RESOURCE DESCRIPTOR *ResourceDescriptor;
EFI_HOB GUID TYPE *Guid;
UINTS *Raw;

} EFI_PEI HOB POINTERS;

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015
48

Other Host Boot Loader Concerns

intel.

/**
Returns the type of a HOB.

This macro returns the HobType field from the HOB header for
the HOB specified by HobStart.

@param HobStart A pointer to a HOB.
@return HobType.

**/
#define GET HOB TYPE (HobStart) \
((* (EFI_HOB_GENERIC_HEADER **) & (HobStart))->HobType)

/**
Returns the length, in bytes, of a HOB.

This macro returns the HobLength field from the HOB header for
the HOB specified by HobStart.

@param HobStart A pointer to a HOB.
@return HobLength.

**/
#define GET_ HOB LENGTH (HobStart) \
((* (EFI_HOB_GENERIC HEADER **) g (HobStart))->HobLength)

/**
Returns a pointer to the next HOB in the HOB list.

This macro returns a pointer to HOB that follows the
HOB specified by HobStart in the HOB List.

@param HobStart A pointer to a HOB.

@return A pointer to the next HOB in the HOB list.

**/
#define GET NEXT HOB (HobStart) \
(VOID *) (* (UINT8 **)& (HobStart) + GET_ HOB LENGTH (HobStart))

/**
Determines if a HOB is the last HOB in the HOB list.

This macro determine if the HOB specified by HobStart is the
last HOB in the HOB list. If HobStart is last HOB in the HOB
list, then TRUE is returned. Otherwise, FALSE is returned.

@param HobStart A pointer to a HOB.

@retval TRUE The HOB specified by HobStart is the last
HOB in the HOB list.

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family

Integration Guide
49

May 2015

®
l n tel Other Host Boot Loader Concerns

@retval FALSE The HOB specified by HobStart is not the
last HOB in the HOB list.
**/
#define END OF HOB LIST (HobStart) (GET HOB TYPE (HobStart) ==

(UINT16)EFI_HOB_TYPE END OF HOB LIST)

/**
Returns a pointer to data buffer from a HOB of type
EFI_HOB TYPE GUID EXTENSION.

This macro returns a pointer to the data buffer in a HOB
specified by HobStart.

HobStart is assumed to be a HOB of type

EFI HOB TYPE GUID EXTENSION.

@param GuidHob A pointer to a HOB.

@return A pointer to the data buffer in a HOB.

**/
#define GET_GUID HOB_DATA (HobStart) \
(VOID *) (* (UINT8 **)§& (HobStart) + sizeof (EFI_HOB GUID TYPE))

/**
Returns the size of the data buffer from a HOB of type
EFI_HOB TYPE GUID EXTENSION.

This macro returns the size, in bytes, of the data buffer in a
HOB specified by HobStart.

HobStart is assumed to be a HOB of type
EFI_HOB TYPE GUID EXTENSION.

@param GuidHob A pointer to a HOB.
@return The size of the data buffer.

**/

#define GET_GUID HOB DATA SIZE (HobStart) \
(UINT16) (GET_HOB LENGTH (HobStart) - sizeof

(EFI_HOB GUID TYPE))

/**
Returns the pointer to the HOB list.

This function returns the pointer to first HOB in the list.
If the pointer to the HOB list is NULL, then ASSERT() .
@return The pointer to the HOB list.

**/

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015
50

®
Other Host Boot Loader Concerns l n tel

May 2015

VOID *
EFIAPI
GetHobList (
VOID
) ;

/**
Returns the next instance of a HOB type from the starting HOB.

This function searches the first instance of a HOB type from
the starting HOB pointer.

If there does not exist such HOB type from the starting HOB
pointer, it will return NULL.

In contrast with macro GET NEXT HOB(), this function does not
skip the starting HOB pointer

unconditionally: it returns HobStart back if HobStart itself
meets the requirement;

caller is required to use GET NEXT HOB() if it wishes to skip
current HobStart.

If HobStart is NULL, then ASSERT() .

@param Type The HOB type to return.
@param HobStart The starting HOB pointer to search from.

@return The next instance of a HOB type from the starting HOB.

**/

VOID *

EFIAPI

GetNextHob (
UINT16 Type,
CONST VOID *HobStart
)

/**
Returns the first instance of a HOB type among the whole HOB
list.
This function searches the first instance of a HOB type among
the whole HOB list.
If there does not exist such HOB type in the HOB list, it will
return NULL.
If the pointer to the HOB list is NULL, then ASSERT () .
@param Type The HOB type to return.

@return The next instance of a HOB type from the starting HOB.

**/

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide
51

Other Host Boot Loader Concerns

VOID *
EFIAPI
GetFirstHob (
UINT16
) ;

Type

/**
Returns the next instance of the matched GUID HOB from the
starting HOB.

This function searches the first instance of a HOB from the
starting HOB pointer.

Such HOB should satisfy two conditions:

its HOB type is EFI_HOB TYPE GUID EXTENSION and its GUID Name
equals to the input Guid.

If there does not exist such HOB from the starting HOB pointer,
it will return NULL.

Caller is required to apply GET GUID HOB DATA () and

GET GUID HOB DATA SIZE ()to extract the data section and its
size info respectively.

In contrast with macro GET NEXT HOB(),
skip the starting HOB pointer
unconditionally: it returns HobStart back if HobStart itself
meets the requirement; caller is required to use GET NEXT HOB()
if it wishes to skip current HobStart.

this function does not

If Guid is NULL, then ASSERT() .
If HobStart is NULL, then ASSERT() .

The GUID to match with in the HOB list.
A pointer to a Guid.

Guid
HobStart

@param
@param

@return The next instance of the matched GUID HOB from the
starting HOB.

**/

VOID *

EFIAPI

GetNextGuidHob (
CONST EFI GUID
CONST VOID
)

*Guid,
*HobStart

/**
Returns the first instance of the matched GUID HOB among the
whole HOB list.

This function searches the first instance of a HOB among the
whole HOB list.

Such HOB should satisfy two conditions:

its HOB type is EFT HOB TYPE GUID EXTENSION and its GUID Name
equals to the input Guid.

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide
52

May 2015

| | ®
Other Host Boot Loader Concerns l n tel

If there does not exist such HOB from the starting HOB pointer,
it will return NULL.

Caller is required to apply GET GUID HOB DATA () and

GET GUID HOB DATA SIZE ()

to extract the data section and its size info respectively.

If the pointer to the HOB list is NULL, then ASSERT().
If Guid is NULL, then ASSERT ().

@param Guid The GUID to match with in the HOB list.

@return The first instance of the matched GUID HOB among the
whole HOB list.

**/

VOID *

EFIAPI

GetFirstGuidHob (
CONST EFI_GUID *Guid
)7

//

// Pointer to the HOB should be initialized with the output of
FSP INIT PARAMS

//

extern volatile void *FspHobListPtr;

/**

Reads a 64-bit value from memory that may be unaligned.

This function returns the 64-bit value pointed to by Buffer.
The function guarantees that the read operation does not
produce an alignment fault.

If the Buffer is NULL, then ASSERT().

@param Buffer Pointer to a 64-bit value that may be
unaligned.

@return The 64-bit value read from Buffer.

**/

UINTG64

EFIAPI

ReadUnalignedo64d (
CONST UINTo64 *Buffer
)

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
May 2015 Integration Guide
53

l n tel) Other Host Boot Loader Concerns

ASSERT (Buffer != NULL);

return *Buffer;

}

/**
Compares two GUIDs.

This function compares Guidl to Guid2. If the GUIDs are
identical then TRUE is returned.

If there are any bit differences in the two GUIDs, then FALSE
is returned.

If Guidl is NULL, then ASSERT() .
If Guid2 is NULL, then ASSERT() .

@param Guidl A pointer to a 128 bit GUID.
@param Guid2 A pointer to a 128 bit GUID.
@retval TRUE Guidl and Guid2 are identical.
@retval FALSE Guidl and Guid2 are not identical.

**/

BOOLEAN

EFIAPT

CompareGuid (

CONST EFI_GUID *Guidl,
CONST EFI _GUID *Guid2
)

UINT64 LowPartOfGuidl;
UINT64 LowPartOfGuid2;
UINT64 HighPartOfGuidl;
UINT64 HighPartOfGuid2;

LowPartOfGuidl = ReadUnaligned64 ((CONST UINT64*) Guidl);

LowPartOfGuid2 = ReadUnaligned64 ((CONST UINT64*) Guid?);

HighPartOfGuidl = ReadUnaligned64 ((CONST UINT64*) Guidl + 1);
(()

HighPartOfGuid2 = ReadUnaligned64 CONST UINT64*) Guid2 + 1);

return (BOOLEAN) (LowPartOfGuidl == LowPartOfGuid2 &&
HighPartOfGuidl == HighPartOfGuid2) ;
}
/**
Returns the pointer to the HOB list.
**/

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015
54

®
Other Host Boot Loader Concerns l n tel

May 2015

VOID *
EFIAPI
GetHobList (

}

VOID
)

ASSERT (FspHobListPtr != NULL);
return ((VOID *)FspHobListPtr);

/**

Returns the next instance of a HOB type from the starting HOB.

**/

VOID *
EFIAPI
GetNextHob (

}

UINT16 Type,
CONST VOID *HobStart
)

EFI_PEI HOB POINTERS Hob;

ASSERT (HobStart != NULL);
Hob.Raw = (UINT8 *) HobStart;
//

// Parse the HOB list until end of list or matching type is
// found.
//
while (!END OF HOB LIST (Hob)) {

if (Hob.Header->HobType == Type) {

return Hob.Raw;
}
Hob.Raw = GET NEXT HOB (Hob);

}
return NULL;

/**

Returns the first instance of a HOB type among the whole HOB
list.

**/

VOID *

EFIAPI
GetFirstHob (

UINT16 Type
)

VOID *HobList;

HobList = GetHobList ();
return GetNextHob (Type, HobList);

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide

55

Other Host Boot Loader Concerns

/**
Returns the next instance of the matched GUID HOB from the
starting HOB.
**/
VOID *
EFIAPI
GetNextGuidHob (
CONST EFI GUID *Guid,
CONST VOID *HobStart

)
EFI_PEI HOB POINTERS GuidHob;

GuidHob.Raw = (UINT8 *) HobStart;
while ((GuidHob.Raw = GetNextHob (EFI_HOB_TYPE_GUID_EXTENSION,
GuidHob.Raw)) != NULL) {
if (CompareGuid (Guid, &GuidHob.Guid->Name)) {
break;

}

GuidHob.Raw = GET NEXT HOB (GuidHob) ;
}

return GuidHob.Raw;

}

/**
Returns the first instance of the matched GUID HOB among the
whole HOB list.

**/

VOID *

EFIAPIT

GetFirstGuidHob (
CONST EFI GUID *Guid
)

{
VOID *HobList;

HobList = GetHobList ()
return GetNextGuidHob (Guid, HobList);

Intel® FSP for Intel® Atom™ Processor E3800 Product Family
Integration Guide May 2015

56

| | ®
Other Host Boot Loader Concerns l n tel >

Appendix B - Sample Code to Find
FSP Header

The sample code provided below parses the FSP binary and finds the address of the
FSP Header within it.

As the FV parsing has to be done before stack is available, a mix of assembly
language code and C code is used. The C code is used to parse the data structures
and find the FSP information header. However, since the compiler will add prolog or
epilog code to the C function, inline assembly is used to bypass those portions of the C
code.

The sample code provided here uses header files derived from the EDK2 source
available for download at

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=EDK2

#include "PiFirmwareVolume.h"
#include "PiFirmwareFile.h"

void attribute ((optimize ("00"))) find fsp entry func ()
{

volatile register UINT8 *ptr asm ("eax");

// This label will be called directly using a

// ROM based stack since the temporary memory is not available
// yet. In order to make it work, C function prologue has to be
// skipped and only register variable can be used.

// EAX needs to point to the FSP base address before the call.
// On return, the EAX will point to the FSP INFO header if

// successful.If mulitple FVs are used for the FSP, the EAX

// should point to the FV base address and this function will
// try to locate the FSP INFO header inside this FV. On return,
// the EAX will point to the FSP INFO header inside the boot FV
// if the header is found and valid. Otherwise, NULL will be

// returned in EAX.

asm__ volatile (
".global find fsp entry\n\t"
"find fsp entry:\n\t"

)i

//
// Validate FV signature FVH
//

if (((EFI_FIRMWARE VOLUME HEADER *)ptr)-> Signature !=
0x4856465F) {

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family
May 2015 Integration Guide
57

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=EDK2

intel)

Other Host Boot Loader Concerns

ptr = 0;
goto NotFound;
}

//
// Add the Ext Header size to the Ext Header base to go to the
// end of FV header

//

ptr += ((EFI_FIRMWARE VOLUME HEADER *)ptr)->ExtHeaderOffset;
ptr += ((EFI_FIRMWARE VOLUME EXT HEADER *)ptr)->ExtHeaderSize;
//

// Align the end of FV header address to 8 bytes

//
ptr = (UINT8 *) (((UINT32)ptr + 7) & OXFFFFFFF8);

//
// Now ptr is pointing to thr FFS Header. Verify if the GUID
// matches the FSP_INFO HEADER GUID

//
if ((((UINT32 *)&(((EFI_FFS FILE HEADER *)ptr)->Name)) [0] !=
0x912740BE) ||
(((UINT32 *)&(((EFI_FFS FILE HEADER *)ptr)->Name))[l] !=
0x47342284) ||
(((UINT32 *)&(((EFI_FFS FILE HEADER *)ptr)->Name)) [2] !=
0xB08471BY9) ||
(((UINT32 *)&(((EFI_FFS FILE HEADER *)ptr)->Name)) [3] !=
0x0C3F3527)) {
ptr = 0;
goto NotFound;
}
//

// Add the FFS Header size to the base to find the Raw section
// Header

//

ptr += sizeof (EFI_FFS FILE HEADER);

if (((EFI_RAW SECTION *)ptr)->Type != EFI SECTION RAW) {
ptr = 0;
goto NotFound;

}

//

// Add the Raw Header size to the base to find the FSP INFO
// Header

//
ptr += sizeof (EFI_RAW SECTION);

NotFound:

asm volatile ("ret");

Intel® FSP for Intel® Atom™ Processor E3800 Product Family

Integration Guide
58

May 2015

Other Host Boot Loader Concerns

intel)

Now, call this function using a temporary ROM stack containing the return address and

bypass the prolog or epilog code of the C function like below.

lea findFspHeaderStack, %esp
Jjmp find fsp entry

findFspHeaderStack:
.align 4
.long findFspHeaderDone

findFspHeaderDone:

A pictorial representation of the data structures that we parse in the above code is

given in Figure 2. Data Structures

Figure 2. Data Structures

Intel® FSP Binary

May 2015

Firmware Yolume
Header
+-——————————— . .
Firmware Yolume A Firmware File A Hﬁ.w
Extended Header // Header Section
: d Header
8 Byte Alignment s " —
L
. i Firmware File RAW Data
Firmware File 1 Section has the
[Type RAW) E5P INFO
Header
———————————
. _ u .
Firrriware File 2
Firmware
File
System O —mmm e

More Firmware Files

Intel® FSP for Intel® FSP for Intel® Atom™ Processor E3800 Product Family

Integration Guide
59

	1 Introduction
	1.1 Purpose
	1.2 Intelligent Systems and Embedded Ecosystem Overview
	1.3 Intended Audience
	1.4 Related Documents
	1.5 Conventions
	1.6 Acronyms and Terminology

	2 FSP Overview
	2.1 Design Philosophy
	2.2 Technical Overview

	3 FSP Integration
	3.1 Assumptions Used in this Document
	3.2 FSP Image Revision

	4 Boot Flow
	5 FSP Binary Format
	5.1 FSP Header
	5.1.1 Finding the FSP Header
	5.1.2 FSP Header Offset

	6 FSP Interface (FSP API)
	6.1 Entry-Point Calling Assumptions
	6.2 Data Structure Convention
	6.3 Entry-Point Calling Convention
	6.4 Exit Convention
	6.5 TempRamInitEntry
	6.5.1 Prototype
	6.5.2 Parameters
	6.5.3 Related Definitions
	6.5.3.1 Return Values
	6.5.3.2 Sample Code

	6.5.4 Description

	6.6 FspInitEntry
	6.6.1 Prototype
	6.6.2 Parameters
	6.6.3 Related Definitions
	6.6.4 Return Values
	6.6.5 Sample Code
	6.6.6 Description

	6.7 NotifyPhaseEntry
	6.7.1 Prototype
	6.7.2 Parameters
	6.7.2.1 Related Definitions

	6.7.3 Return Values
	6.7.4 Sample Code

	7 FSP Output
	7.1 Boot Loader Temporary Memory Data HOB
	7.2 FSP Reserved Memory Resource Descriptor HOB
	7.3 Non-Volatile Storage HOB
	7.4 HOB Parsing Code
	7.5 Hob Infrastructure Sample Code

	8 FSP Configuration Firmware File
	9 Tools
	10 Other Host Boot Loader Concerns
	10.1 Power Management
	10.2 Bus Enumeration
	10.3 Security
	10.4 64-bit Long Mode
	10.5 Pre-OS Graphics

	Appendix A – HOB Parsing Sample Code
	Appendix B – Sample Code to Find FSP Header

