coreboot/src/northbridge/intel/sandybridge/raminit_common.c

2985 lines
74 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#include <assert.h>
#include <commonlib/helpers.h>
#include <console/console.h>
#include <cpu/intel/model_206ax/model_206ax.h>
#include <string.h>
#include <device/mmio.h>
#include <device/pci_ops.h>
#include <northbridge/intel/sandybridge/chip.h>
#include <device/pci_def.h>
#include <delay.h>
#include <types.h>
#include "raminit_native.h"
#include "raminit_common.h"
#include "raminit_tables.h"
#include "sandybridge.h"
/* FIXME: no support for 3-channel chipsets */
static void sfence(void)
{
asm volatile ("sfence");
}
/* Toggle IO reset bit */
static void toggle_io_reset(void)
{
u32 r32 = MCHBAR32(MC_INIT_STATE_G);
MCHBAR32(MC_INIT_STATE_G) = r32 | (1 << 5);
udelay(1);
MCHBAR32(MC_INIT_STATE_G) = r32 & ~(1 << 5);
udelay(1);
}
static u32 get_XOVER_CLK(u8 rankmap)
{
return rankmap << 24;
}
static u32 get_XOVER_CMD(u8 rankmap)
{
u32 reg;
/* Enable xover cmd */
reg = 1 << 14;
/* Enable xover ctl */
if (rankmap & 0x03)
reg |= (1 << 17);
if (rankmap & 0x0c)
reg |= (1 << 26);
return reg;
}
void dram_find_common_params(ramctr_timing *ctrl)
{
size_t valid_dimms;
int channel, slot;
dimm_info *dimms = &ctrl->info;
ctrl->cas_supported = (1 << (MAX_CAS - MIN_CAS + 1)) - 1;
valid_dimms = 0;
FOR_ALL_CHANNELS for (slot = 0; slot < 2; slot++) {
const dimm_attr *dimm = &dimms->dimm[channel][slot];
if (dimm->dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3)
continue;
valid_dimms++;
/* Find all possible CAS combinations */
ctrl->cas_supported &= dimm->cas_supported;
/* Find the smallest common latencies supported by all DIMMs */
ctrl->tCK = MAX(ctrl->tCK, dimm->tCK);
ctrl->tAA = MAX(ctrl->tAA, dimm->tAA);
ctrl->tWR = MAX(ctrl->tWR, dimm->tWR);
ctrl->tRCD = MAX(ctrl->tRCD, dimm->tRCD);
ctrl->tRRD = MAX(ctrl->tRRD, dimm->tRRD);
ctrl->tRP = MAX(ctrl->tRP, dimm->tRP);
ctrl->tRAS = MAX(ctrl->tRAS, dimm->tRAS);
ctrl->tRFC = MAX(ctrl->tRFC, dimm->tRFC);
ctrl->tWTR = MAX(ctrl->tWTR, dimm->tWTR);
ctrl->tRTP = MAX(ctrl->tRTP, dimm->tRTP);
ctrl->tFAW = MAX(ctrl->tFAW, dimm->tFAW);
ctrl->tCWL = MAX(ctrl->tCWL, dimm->tCWL);
ctrl->tCMD = MAX(ctrl->tCMD, dimm->tCMD);
}
if (!ctrl->cas_supported)
die("Unsupported DIMM combination. DIMMS do not support common CAS latency");
if (!valid_dimms)
die("No valid DIMMs found");
}
void dram_xover(ramctr_timing *ctrl)
{
u32 reg;
int channel;
FOR_ALL_CHANNELS {
/* Enable xover clk */
reg = get_XOVER_CLK(ctrl->rankmap[channel]);
printram("XOVER CLK [%x] = %x\n", GDCRCKPICODE_ch(channel), reg);
MCHBAR32(GDCRCKPICODE_ch(channel)) = reg;
/* Enable xover ctl & xover cmd */
reg = get_XOVER_CMD(ctrl->rankmap[channel]);
printram("XOVER CMD [%x] = %x\n", GDCRCMDPICODING_ch(channel), reg);
MCHBAR32(GDCRCMDPICODING_ch(channel)) = reg;
}
}
static void dram_odt_stretch(ramctr_timing *ctrl, int channel)
{
u32 addr, stretch;
stretch = ctrl->ref_card_offset[channel];
/*
* ODT stretch:
* Delay ODT signal by stretch value. Useful for multi DIMM setups on the same channel.
*/
if (IS_SANDY_CPU(ctrl->cpu) && IS_SANDY_CPU_C(ctrl->cpu)) {
if (stretch == 2)
stretch = 3;
addr = SCHED_SECOND_CBIT_ch(channel);
MCHBAR32_AND_OR(addr, ~(0xf << 10), (stretch << 12) | (stretch << 10));
printk(RAM_DEBUG, "OTHP Workaround [%x] = %x\n", addr, MCHBAR32(addr));
} else {
addr = TC_OTHP_ch(channel);
union tc_othp_reg tc_othp = {
.raw = MCHBAR32(addr),
};
tc_othp.odt_delay_d0 = stretch;
tc_othp.odt_delay_d1 = stretch;
MCHBAR32(addr) = tc_othp.raw;
printk(RAM_DEBUG, "OTHP [%x] = %x\n", addr, MCHBAR32(addr));
}
}
void dram_timing_regs(ramctr_timing *ctrl)
{
int channel;
/* BIN parameters */
const union tc_dbp_reg tc_dbp = {
.tRCD = ctrl->tRCD,
.tRP = ctrl->tRP,
.tAA = ctrl->CAS,
.tCWL = ctrl->CWL,
.tRAS = ctrl->tRAS,
};
/* Regular access parameters */
const union tc_rap_reg tc_rap = {
.tRRD = ctrl->tRRD,
.tRTP = ctrl->tRTP,
.tCKE = ctrl->tCKE,
.tWTR = ctrl->tWTR,
.tFAW = ctrl->tFAW,
.tWR = ctrl->tWR,
.tCMD = 3,
};
/* Other parameters */
const union tc_othp_reg tc_othp = {
.tXPDLL = ctrl->tXPDLL,
.tXP = ctrl->tXP,
.tAONPD = ctrl->tAONPD,
.tCPDED = 2,
.tPRPDEN = 1,
};
/*
* If tXP and tXPDLL are very high, we need to increase them by one.
* This can only happen on Ivy Bridge, and when overclocking the RAM.
*/
const union tc_dtp_reg tc_dtp = {
.overclock_tXP = ctrl->tXP >= 8,
.overclock_tXPDLL = ctrl->tXPDLL >= 32,
};
/*
* TC-Refresh timing parameters:
* The tREFIx9 field should be programmed to minimum of 8.9 * tREFI (to allow
* for possible delays from ZQ or isoc) and tRASmax (70us) divided by 1024.
*/
const u32 val32 = MIN((ctrl->tREFI * 89) / 10, (70000 << 8) / ctrl->tCK);
const union tc_rftp_reg tc_rftp = {
.tREFI = ctrl->tREFI,
.tRFC = ctrl->tRFC,
.tREFIx9 = val32 / 1024,
};
/* Self-refresh timing parameters */
const union tc_srftp_reg tc_srftp = {
.tXSDLL = tDLLK,
.tXS_offset = ctrl->tXSOffset,
.tZQOPER = tDLLK - ctrl->tXSOffset,
.tMOD = ctrl->tMOD - 8,
};
FOR_ALL_CHANNELS {
printram("DBP [%x] = %x\n", TC_DBP_ch(channel), tc_dbp.raw);
MCHBAR32(TC_DBP_ch(channel)) = tc_dbp.raw;
printram("RAP [%x] = %x\n", TC_RAP_ch(channel), tc_rap.raw);
MCHBAR32(TC_RAP_ch(channel)) = tc_rap.raw;
printram("OTHP [%x] = %x\n", TC_OTHP_ch(channel), tc_othp.raw);
MCHBAR32(TC_OTHP_ch(channel)) = tc_othp.raw;
if (IS_IVY_CPU(ctrl->cpu)) {
/* Debug parameters - only applies to Ivy Bridge */
MCHBAR32(TC_DTP_ch(channel)) = tc_dtp.raw;
}
dram_odt_stretch(ctrl, channel);
printram("REFI [%x] = %x\n", TC_RFTP_ch(channel), tc_rftp.raw);
MCHBAR32(TC_RFTP_ch(channel)) = tc_rftp.raw;
union tc_rfp_reg tc_rfp = {
.raw = MCHBAR32(TC_RFP_ch(channel)),
};
tc_rfp.oref_ri = 0xff;
MCHBAR32(TC_RFP_ch(channel)) = tc_rfp.raw;
printram("SRFTP [%x] = %x\n", TC_SRFTP_ch(channel), tc_srftp.raw);
MCHBAR32(TC_SRFTP_ch(channel)) = tc_srftp.raw;
}
}
void dram_dimm_mapping(ramctr_timing *ctrl)
{
int channel;
dimm_info *info = &ctrl->info;
FOR_ALL_CHANNELS {
dimm_attr *dimmA, *dimmB;
u32 reg = 0;
if (info->dimm[channel][0].size_mb >= info->dimm[channel][1].size_mb) {
dimmA = &info->dimm[channel][0];
dimmB = &info->dimm[channel][1];
reg |= (0 << 16);
} else {
dimmA = &info->dimm[channel][1];
dimmB = &info->dimm[channel][0];
reg |= (1 << 16);
}
if (dimmA && (dimmA->ranks > 0)) {
reg |= (dimmA->size_mb / 256) << 0;
reg |= (dimmA->ranks - 1) << 17;
reg |= (dimmA->width / 8 - 1) << 19;
}
if (dimmB && (dimmB->ranks > 0)) {
reg |= (dimmB->size_mb / 256) << 8;
reg |= (dimmB->ranks - 1) << 18;
reg |= (dimmB->width / 8 - 1) << 20;
}
/*
* Rank interleave: Bit 16 of the physical address space sets
* the rank to use in a dual single rank DIMM configuration.
* That results in every 64KiB being interleaved between two ranks.
*/
reg |= 1 << 21;
/* Enhanced interleave */
reg |= 1 << 22;
if ((dimmA && (dimmA->ranks > 0)) || (dimmB && (dimmB->ranks > 0))) {
ctrl->mad_dimm[channel] = reg;
} else {
ctrl->mad_dimm[channel] = 0;
}
}
}
void dram_dimm_set_mapping(ramctr_timing *ctrl, int training)
{
int channel;
u32 ecc;
if (ctrl->ecc_enabled)
ecc = training ? (1 << 24) : (3 << 24);
else
ecc = 0;
FOR_ALL_CHANNELS {
MCHBAR32(MAD_DIMM(channel)) = ctrl->mad_dimm[channel] | ecc;
}
if (ctrl->ecc_enabled)
udelay(10);
}
void dram_zones(ramctr_timing *ctrl, int training)
{
u32 reg, ch0size, ch1size;
u8 val;
reg = 0;
val = 0;
if (training) {
ch0size = ctrl->channel_size_mb[0] ? 256 : 0;
ch1size = ctrl->channel_size_mb[1] ? 256 : 0;
} else {
ch0size = ctrl->channel_size_mb[0];
ch1size = ctrl->channel_size_mb[1];
}
if (ch0size >= ch1size) {
reg = MCHBAR32(MAD_ZR);
val = ch1size / 256;
reg = (reg & ~0xff000000) | val << 24;
reg = (reg & ~0x00ff0000) | (2 * val) << 16;
MCHBAR32(MAD_ZR) = reg;
MCHBAR32(MAD_CHNL) = 0x24;
} else {
reg = MCHBAR32(MAD_ZR);
val = ch0size / 256;
reg = (reg & ~0xff000000) | val << 24;
reg = (reg & ~0x00ff0000) | (2 * val) << 16;
MCHBAR32(MAD_ZR) = reg;
MCHBAR32(MAD_CHNL) = 0x21;
}
}
#define DEFAULT_PCI_MMIO_SIZE 2048
static unsigned int get_mmio_size(void)
{
const struct device *dev;
const struct northbridge_intel_sandybridge_config *cfg = NULL;
dev = pcidev_path_on_root(PCI_DEVFN(0, 0));
if (dev)
cfg = dev->chip_info;
/* If this is zero, it just means devicetree.cb didn't set it */
if (!cfg || cfg->pci_mmio_size == 0)
return DEFAULT_PCI_MMIO_SIZE;
else
return cfg->pci_mmio_size;
}
/*
* Returns the ECC mode the NB is running at. It takes precedence over ECC capability.
* The ME/PCU/.. has the ability to change this.
* Return 0: ECC is optional
* Return 1: ECC is forced
*/
bool get_host_ecc_forced(void)
{
/* read Capabilities A Register */
const u32 reg32 = pci_read_config32(HOST_BRIDGE, CAPID0_A);
return !!(reg32 & (1 << 24));
}
/*
* Returns the ECC capability.
* The ME/PCU/.. has the ability to change this.
* Return 0: ECC is disabled
* Return 1: ECC is possible
*/
bool get_host_ecc_cap(void)
{
/* read Capabilities A Register */
const u32 reg32 = pci_read_config32(HOST_BRIDGE, CAPID0_A);
return !(reg32 & (1 << 25));
}
void dram_memorymap(ramctr_timing *ctrl, int me_uma_size)
{
u32 reg, val, reclaim, tom, gfxstolen, gttsize;
size_t tsegbase, toludbase, remapbase, gfxstolenbase, mmiosize, gttbase;
size_t tsegsize, touudbase, remaplimit, mestolenbase, tsegbasedelta;
uint16_t ggc;
mmiosize = get_mmio_size();
ggc = pci_read_config16(HOST_BRIDGE, GGC);
if (!(ggc & 2)) {
gfxstolen = ((ggc >> 3) & 0x1f) * 32;
gttsize = ((ggc >> 8) & 0x3);
} else {
gfxstolen = 0;
gttsize = 0;
}
tsegsize = CONFIG_SMM_TSEG_SIZE >> 20;
tom = ctrl->channel_size_mb[0] + ctrl->channel_size_mb[1];
mestolenbase = tom - me_uma_size;
toludbase = MIN(4096 - mmiosize + gfxstolen + gttsize + tsegsize, tom - me_uma_size);
gfxstolenbase = toludbase - gfxstolen;
gttbase = gfxstolenbase - gttsize;
tsegbase = gttbase - tsegsize;
/* Round tsegbase down to nearest address aligned to tsegsize */
tsegbasedelta = tsegbase & (tsegsize - 1);
tsegbase &= ~(tsegsize - 1);
gttbase -= tsegbasedelta;
gfxstolenbase -= tsegbasedelta;
toludbase -= tsegbasedelta;
/* Test if it is possible to reclaim a hole in the RAM addressing */
if (tom - me_uma_size > toludbase) {
/* Reclaim is possible */
reclaim = 1;
remapbase = MAX(4096, tom - me_uma_size);
remaplimit = remapbase + MIN(4096, tom - me_uma_size) - toludbase - 1;
touudbase = remaplimit + 1;
} else {
/* Reclaim not possible */
reclaim = 0;
touudbase = tom - me_uma_size;
}
/* Update memory map in PCIe configuration space */
printk(BIOS_DEBUG, "Update PCI-E configuration space:\n");
/* TOM (top of memory) */
reg = pci_read_config32(HOST_BRIDGE, TOM);
val = tom & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", TOM, reg);
pci_write_config32(HOST_BRIDGE, TOM, reg);
reg = pci_read_config32(HOST_BRIDGE, TOM + 4);
val = tom & 0xfffff000;
reg = (reg & ~0x000fffff) | (val >> 12);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", TOM + 4, reg);
pci_write_config32(HOST_BRIDGE, TOM + 4, reg);
/* TOLUD (Top Of Low Usable DRAM) */
reg = pci_read_config32(HOST_BRIDGE, TOLUD);
val = toludbase & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", TOLUD, reg);
pci_write_config32(HOST_BRIDGE, TOLUD, reg);
/* TOUUD LSB (Top Of Upper Usable DRAM) */
reg = pci_read_config32(HOST_BRIDGE, TOUUD);
val = touudbase & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", TOUUD, reg);
pci_write_config32(HOST_BRIDGE, TOUUD, reg);
/* TOUUD MSB */
reg = pci_read_config32(HOST_BRIDGE, TOUUD + 4);
val = touudbase & 0xfffff000;
reg = (reg & ~0x000fffff) | (val >> 12);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", TOUUD + 4, reg);
pci_write_config32(HOST_BRIDGE, TOUUD + 4, reg);
if (reclaim) {
/* REMAP BASE */
pci_write_config32(HOST_BRIDGE, REMAPBASE, remapbase << 20);
pci_write_config32(HOST_BRIDGE, REMAPBASE + 4, remapbase >> 12);
/* REMAP LIMIT */
pci_write_config32(HOST_BRIDGE, REMAPLIMIT, remaplimit << 20);
pci_write_config32(HOST_BRIDGE, REMAPLIMIT + 4, remaplimit >> 12);
}
/* TSEG */
reg = pci_read_config32(HOST_BRIDGE, TSEGMB);
val = tsegbase & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", TSEGMB, reg);
pci_write_config32(HOST_BRIDGE, TSEGMB, reg);
/* GFX stolen memory */
reg = pci_read_config32(HOST_BRIDGE, BDSM);
val = gfxstolenbase & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", BDSM, reg);
pci_write_config32(HOST_BRIDGE, BDSM, reg);
/* GTT stolen memory */
reg = pci_read_config32(HOST_BRIDGE, BGSM);
val = gttbase & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", BGSM, reg);
pci_write_config32(HOST_BRIDGE, BGSM, reg);
if (me_uma_size) {
reg = pci_read_config32(HOST_BRIDGE, MESEG_MASK + 4);
val = (0x80000 - me_uma_size) & 0xfffff000;
reg = (reg & ~0x000fffff) | (val >> 12);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", MESEG_MASK + 4, reg);
pci_write_config32(HOST_BRIDGE, MESEG_MASK + 4, reg);
/* ME base */
reg = pci_read_config32(HOST_BRIDGE, MESEG_BASE);
val = mestolenbase & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", MESEG_BASE, reg);
pci_write_config32(HOST_BRIDGE, MESEG_BASE, reg);
reg = pci_read_config32(HOST_BRIDGE, MESEG_BASE + 4);
val = mestolenbase & 0xfffff000;
reg = (reg & ~0x000fffff) | (val >> 12);
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", MESEG_BASE + 4, reg);
pci_write_config32(HOST_BRIDGE, MESEG_BASE + 4, reg);
/* ME mask */
reg = pci_read_config32(HOST_BRIDGE, MESEG_MASK);
val = (0x80000 - me_uma_size) & 0xfff;
reg = (reg & ~0xfff00000) | (val << 20);
reg = reg | ME_STLEN_EN; /* Set ME memory enable */
reg = reg | MELCK; /* Set lock bit on ME mem */
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", MESEG_MASK, reg);
pci_write_config32(HOST_BRIDGE, MESEG_MASK, reg);
}
}
static void write_reset(ramctr_timing *ctrl)
{
int channel, slotrank;
/* Choose a populated channel */
channel = (ctrl->rankmap[0]) ? 0 : 1;
wait_for_iosav(channel);
/* Choose a populated rank */
slotrank = (ctrl->rankmap[channel] & 1) ? 0 : 2;
iosav_write_zqcs_sequence(channel, slotrank, 3, 8, 0);
/* This is actually using the IOSAV state machine as a timer */
iosav_run_queue(channel, 1, 1);
wait_for_iosav(channel);
}
void dram_jedecreset(ramctr_timing *ctrl)
{
u32 reg;
int channel;
while (!(MCHBAR32(RCOMP_TIMER) & (1 << 16)))
;
do {
reg = MCHBAR32(IOSAV_STATUS_ch(0));
} while ((reg & 0x14) == 0);
/* Set state of memory controller */
reg = 0x112;
MCHBAR32(MC_INIT_STATE_G) = reg;
MCHBAR32(MC_INIT_STATE) = 0;
reg |= 2; /* DDR reset */
MCHBAR32(MC_INIT_STATE_G) = reg;
/* Assert DIMM reset signal */
MCHBAR32_AND(MC_INIT_STATE_G, ~(1 << 1));
/* Wait 200us */
udelay(200);
/* Deassert DIMM reset signal */
MCHBAR32_OR(MC_INIT_STATE_G, 1 << 1);
/* Wait 500us */
udelay(500);
/* Enable DCLK */
MCHBAR32_OR(MC_INIT_STATE_G, 1 << 2);
/* XXX Wait 20ns */
udelay(1);
FOR_ALL_CHANNELS {
/* Set valid rank CKE */
reg = ctrl->rankmap[channel];
MCHBAR32(MC_INIT_STATE_ch(channel)) = reg;
/* Wait 10ns for ranks to settle */
// udelay(0.01);
reg = (reg & ~0xf0) | (ctrl->rankmap[channel] << 4);
MCHBAR32(MC_INIT_STATE_ch(channel)) = reg;
/* Write reset using a NOP */
write_reset(ctrl);
}
}
/*
* DDR3 Rank1 Address mirror swap the following pins:
* A3<->A4, A5<->A6, A7<->A8, BA0<->BA1
*/
static void ddr3_mirror_mrreg(int *bank, u32 *addr)
{
*bank = ((*bank >> 1) & 1) | ((*bank << 1) & 2);
*addr = (*addr & ~0x1f8) | ((*addr >> 1) & 0xa8) | ((*addr & 0xa8) << 1);
}
static void write_mrreg(ramctr_timing *ctrl, int channel, int slotrank, int reg, u32 val)
{
wait_for_iosav(channel);
if (ctrl->rank_mirror[channel][slotrank])
ddr3_mirror_mrreg(&reg, &val);
const struct iosav_ssq sequence[] = {
/* DRAM command MRS */
[0] = {
.sp_cmd_ctrl = {
.command = IOSAV_MRS,
},
.subseq_ctrl = {
.cmd_executions = 1,
.cmd_delay_gap = 4,
.post_ssq_wait = 4,
.data_direction = SSQ_NA,
},
.sp_cmd_addr = {
.address = val,
.rowbits = 6,
.bank = reg,
.rank = slotrank,
},
},
/* DRAM command MRS */
[1] = {
.sp_cmd_ctrl = {
.command = IOSAV_MRS,
.ranksel_ap = 1,
},
.subseq_ctrl = {
.cmd_executions = 1,
.cmd_delay_gap = 4,
.post_ssq_wait = 4,
.data_direction = SSQ_NA,
},
.sp_cmd_addr = {
.address = val,
.rowbits = 6,
.bank = reg,
.rank = slotrank,
},
},
/* DRAM command MRS */
[2] = {
.sp_cmd_ctrl = {
.command = IOSAV_MRS,
},
.subseq_ctrl = {
.cmd_executions = 1,
.cmd_delay_gap = 4,
.post_ssq_wait = ctrl->tMOD,
.data_direction = SSQ_NA,
},
.sp_cmd_addr = {
.address = val,
.rowbits = 6,
.bank = reg,
.rank = slotrank,
},
},
};
iosav_write_sequence(channel, sequence, ARRAY_SIZE(sequence));
iosav_run_once_and_wait(channel);
}
/* Obtain optimal power down mode for current configuration */
static enum pdwm_mode get_power_down_mode(ramctr_timing *ctrl)
{
if (ctrl->tXP > 8)
return PDM_NONE;
if (ctrl->tXPDLL > 32)
return PDM_PPD;
if (CONFIG(RAMINIT_ALWAYS_ALLOW_DLL_OFF) || get_platform_type() == PLATFORM_MOBILE)
return PDM_DLL_OFF;
return PDM_APD_PPD;
}
static u32 make_mr0(ramctr_timing *ctrl, u8 rank)
{
u16 mr0reg, mch_cas, mch_wr;
static const u8 mch_wr_t[12] = { 1, 2, 3, 4, 0, 5, 0, 6, 0, 7, 0, 0 };
const enum pdwm_mode power_down = get_power_down_mode(ctrl);
const bool slow_exit = power_down == PDM_DLL_OFF || power_down == PDM_APD_DLL_OFF;
/* Convert CAS to MCH register friendly */
if (ctrl->CAS < 12) {
mch_cas = (u16) ((ctrl->CAS - 4) << 1);
} else {
mch_cas = (u16) (ctrl->CAS - 12);
mch_cas = ((mch_cas << 1) | 0x1);
}
/* Convert tWR to MCH register friendly */
mch_wr = mch_wr_t[ctrl->tWR - 5];
/* DLL Reset - self clearing - set after CLK frequency has been changed */
mr0reg = 1 << 8;
mr0reg |= (mch_cas & 0x1) << 2;
mr0reg |= (mch_cas & 0xe) << 3;
mr0reg |= mch_wr << 9;
/* Precharge PD - Use slow exit when DLL-off is used - mostly power-saving feature */
mr0reg |= !slow_exit << 12;
return mr0reg;
}
static void dram_mr0(ramctr_timing *ctrl, u8 rank, int channel)
{
write_mrreg(ctrl, channel, rank, 0, make_mr0(ctrl, rank));
}
static odtmap get_ODT(ramctr_timing *ctrl, int channel)
{
/* Get ODT based on rankmap */
int dimms_per_ch = (ctrl->rankmap[channel] & 1) + ((ctrl->rankmap[channel] >> 2) & 1);
if (dimms_per_ch == 1) {
return (const odtmap){60, 60};
} else {
return (const odtmap){120, 30};
}
}
static u32 encode_odt(u32 odt)
{
switch (odt) {
case 30:
return (1 << 9) | (1 << 2); /* RZQ/8, RZQ/4 */
case 60:
return (1 << 2); /* RZQ/4 */
case 120:
return (1 << 6); /* RZQ/2 */
default:
case 0:
return 0;
}
}
static u32 make_mr1(ramctr_timing *ctrl, u8 rank, int channel)
{
odtmap odt;
u32 mr1reg;
odt = get_ODT(ctrl, channel);
mr1reg = 2;
mr1reg |= encode_odt(odt.rttnom);
return mr1reg;
}
static void dram_mr1(ramctr_timing *ctrl, u8 rank, int channel)
{
u16 mr1reg;
mr1reg = make_mr1(ctrl, rank, channel);
write_mrreg(ctrl, channel, rank, 1, mr1reg);
}
static void dram_mr2(ramctr_timing *ctrl, u8 rank, int channel)
{
const u16 pasr = 0;
const u16 cwl = ctrl->CWL - 5;
const odtmap odt = get_ODT(ctrl, channel);
int srt = 0;
if (IS_IVY_CPU(ctrl->cpu) && ctrl->tCK >= TCK_1066MHZ)
srt = ctrl->extended_temperature_range && !ctrl->auto_self_refresh;
u16 mr2reg = 0;
mr2reg |= pasr;
mr2reg |= cwl << 3;
mr2reg |= ctrl->auto_self_refresh << 6;
mr2reg |= srt << 7;
mr2reg |= (odt.rttwr / 60) << 9;
write_mrreg(ctrl, channel, rank, 2, mr2reg);
/* Program MR2 shadow */
u32 reg32 = MCHBAR32(TC_MR2_SHADOW_ch(channel));
reg32 &= 3 << 14 | 3 << 6;
reg32 |= mr2reg & ~(3 << 6);
if (srt)
reg32 |= 1 << (rank / 2 + 6);
if (ctrl->rank_mirror[channel][rank])
reg32 |= 1 << (rank / 2 + 14);
MCHBAR32(TC_MR2_SHADOW_ch(channel)) = reg32;
}
static void dram_mr3(ramctr_timing *ctrl, u8 rank, int channel)
{
write_mrreg(ctrl, channel, rank, 3, 0);
}
void dram_mrscommands(ramctr_timing *ctrl)
{
u8 slotrank;
int channel;
FOR_ALL_POPULATED_CHANNELS {
FOR_ALL_POPULATED_RANKS {
/* MR2 */
dram_mr2(ctrl, slotrank, channel);
/* MR3 */
dram_mr3(ctrl, slotrank, channel);
/* MR1 */
dram_mr1(ctrl, slotrank, channel);
/* MR0 */
dram_mr0(ctrl, slotrank, channel);
}
}
const struct iosav_ssq zqcl_sequence[] = {
/* DRAM command NOP (without ODT nor chip selects) */
[0] = {
.sp_cmd_ctrl = {
.command = IOSAV_NOP & ~(0xff << 8),
},
.subseq_ctrl = {
.cmd_executions = 1,
.cmd_delay_gap = 4,
.post_ssq_wait = 15,
.data_direction = SSQ_NA,
},
.sp_cmd_addr = {
.address = 2,
.rowbits = 6,
.bank = 0,
.rank = 0,
},
},
/* DRAM command ZQCL */
[1] = {
.sp_cmd_ctrl = {
.command = IOSAV_ZQCS,
.ranksel_ap = 1,
},
.subseq_ctrl = {
.cmd_executions = 1,
.cmd_delay_gap = 4,
.post_ssq_wait = 400,
.data_direction = SSQ_NA,
},
.sp_cmd_addr = {
.address = 1 << 10,
.rowbits = 6,
.bank = 0,
.rank = 0,
},
.addr_update = {
.inc_rank = 1,
.addr_wrap = 20,
},
},
};
iosav_write_sequence(BROADCAST_CH, zqcl_sequence, ARRAY_SIZE(zqcl_sequence));
iosav_run_queue(BROADCAST_CH, 4, 0);
FOR_ALL_CHANNELS {
wait_for_iosav(channel);
}
/* Refresh enable */
MCHBAR32_OR(MC_INIT_STATE_G, 1 << 3);
FOR_ALL_POPULATED_CHANNELS {
MCHBAR32_AND(SCHED_CBIT_ch(channel), ~(1 << 21));
wait_for_iosav(channel);
slotrank = (ctrl->rankmap[channel] & 1) ? 0 : 2;
wait_for_iosav(channel);
iosav_write_zqcs_sequence(channel, slotrank, 4, 101, 31);
iosav_run_once_and_wait(channel);
}
}
static const u32 lane_base[] = {
LANEBASE_B0, LANEBASE_B1, LANEBASE_B2, LANEBASE_B3,
LANEBASE_B4, LANEBASE_B5, LANEBASE_B6, LANEBASE_B7,
LANEBASE_ECC
};
/* Maximum delay for command, control, clock */
#define CCC_MAX_PI (2 * QCLK_PI - 1)
void program_timings(ramctr_timing *ctrl, int channel)
{
u32 reg_roundtrip_latency, reg_io_latency;
int lane;
int slotrank, slot;
u32 ctl_delay[NUM_SLOTS] = { 0 };
int cmd_delay = 0;
/* Enable CLK XOVER */
u32 clk_pi_coding = get_XOVER_CLK(ctrl->rankmap[channel]);
u32 clk_logic_dly = 0;
/*
* Compute command timing as abs() of the most negative PI code
* across all ranks. Use zero if none of the values is negative.
*/
FOR_ALL_POPULATED_RANKS {
cmd_delay = MAX(cmd_delay, -ctrl->timings[channel][slotrank].pi_coding);
}
if (cmd_delay > CCC_MAX_PI) {
printk(BIOS_ERR, "C%d command delay overflow: %d\n", channel, cmd_delay);
cmd_delay = CCC_MAX_PI;
}
for (slot = 0; slot < NUM_SLOTS; slot++) {
const int pi_coding_0 = ctrl->timings[channel][2 * slot + 0].pi_coding;
const int pi_coding_1 = ctrl->timings[channel][2 * slot + 1].pi_coding;
const u8 slot_map = (ctrl->rankmap[channel] >> (2 * slot)) & 3;
if (slot_map & 1)
ctl_delay[slot] += pi_coding_0 + cmd_delay;
if (slot_map & 2)
ctl_delay[slot] += pi_coding_1 + cmd_delay;
/* If both ranks in a slot are populated, use the average */
if (slot_map == 3)
ctl_delay[slot] /= 2;
if (ctl_delay[slot] > CCC_MAX_PI) {
printk(BIOS_ERR, "C%dS%d control delay overflow: %d\n",
channel, slot, ctl_delay[slot]);
ctl_delay[slot] = CCC_MAX_PI;
}
}
FOR_ALL_POPULATED_RANKS {
int clk_delay = ctrl->timings[channel][slotrank].pi_coding + cmd_delay;
/*
* Clock is a differential signal, whereas command and control are not.
* This affects its timing, and it is also why it needs a magic offset.
*/
clk_delay += ctrl->pi_code_offset;
/* Can never happen with valid values */
if (clk_delay < 0) {
printk(BIOS_ERR, "C%dR%d clock delay underflow: %d\n",
channel, slotrank, clk_delay);
clk_delay = 0;
}
/* Clock can safely wrap around because it is a periodic signal */
clk_delay %= CCC_MAX_PI + 1;
clk_pi_coding |= (clk_delay % QCLK_PI) << (6 * slotrank);
clk_logic_dly |= (clk_delay / QCLK_PI) << slotrank;
}
/* Enable CMD XOVER */
union gdcr_cmd_pi_coding_reg cmd_pi_coding = {
.raw = get_XOVER_CMD(ctrl->rankmap[channel]),
};
cmd_pi_coding.cmd_pi_code = cmd_delay % QCLK_PI;
cmd_pi_coding.cmd_logic_delay = cmd_delay / QCLK_PI;
cmd_pi_coding.ctl_pi_code_d0 = ctl_delay[0] % QCLK_PI;
cmd_pi_coding.ctl_pi_code_d1 = ctl_delay[1] % QCLK_PI;
cmd_pi_coding.ctl_logic_delay_d0 = ctl_delay[0] / QCLK_PI;
cmd_pi_coding.ctl_logic_delay_d1 = ctl_delay[1] / QCLK_PI;
MCHBAR32(GDCRCMDPICODING_ch(channel)) = cmd_pi_coding.raw;
MCHBAR32(GDCRCKPICODE_ch(channel)) = clk_pi_coding;
MCHBAR32(GDCRCKLOGICDELAY_ch(channel)) = clk_logic_dly;
reg_io_latency = MCHBAR32(SC_IO_LATENCY_ch(channel));
reg_io_latency &= ~0xffff;
reg_roundtrip_latency = 0;
FOR_ALL_POPULATED_RANKS {
reg_io_latency |= ctrl->timings[channel][slotrank].io_latency << (4 * slotrank);
reg_roundtrip_latency |=
ctrl->timings[channel][slotrank].roundtrip_latency << (8 * slotrank);
FOR_ALL_LANES {
const u16 rcven = ctrl->timings[channel][slotrank].lanes[lane].rcven;
const u8 dqs_p = ctrl->timings[channel][slotrank].lanes[lane].rx_dqs_p;
const u8 dqs_n = ctrl->timings[channel][slotrank].lanes[lane].rx_dqs_n;
const union gdcr_rx_reg gdcr_rx = {
.rcven_pi_code = rcven % QCLK_PI,
.rx_dqs_p_pi_code = dqs_p,
.rcven_logic_delay = rcven / QCLK_PI,
.rx_dqs_n_pi_code = dqs_n,
};
MCHBAR32(lane_base[lane] + GDCRRX(channel, slotrank)) = gdcr_rx.raw;
const u16 tx_dqs = ctrl->timings[channel][slotrank].lanes[lane].tx_dqs;
const int tx_dq = ctrl->timings[channel][slotrank].lanes[lane].tx_dq;
const union gdcr_tx_reg gdcr_tx = {
.tx_dq_pi_code = tx_dq % QCLK_PI,
.tx_dqs_pi_code = tx_dqs % QCLK_PI,
.tx_dqs_logic_delay = tx_dqs / QCLK_PI,
.tx_dq_logic_delay = tx_dq / QCLK_PI,
};
MCHBAR32(lane_base[lane] + GDCRTX(channel, slotrank)) = gdcr_tx.raw;
}
}
MCHBAR32(SC_ROUNDT_LAT_ch(channel)) = reg_roundtrip_latency;
MCHBAR32(SC_IO_LATENCY_ch(channel)) = reg_io_latency;
}
static void test_rcven(ramctr_timing *ctrl, int channel, int slotrank)
{
wait_for_iosav(channel);
/* Send a burst of 16 back-to-back read commands (4 DCLK apart) */
iosav_write_read_mpr_sequence(channel, slotrank, ctrl->tMOD, 1, 3, 15, ctrl->CAS + 36);
iosav_run_once_and_wait(channel);
}
static int does_lane_work(ramctr_timing *ctrl, int channel, int slotrank, int lane)
{
u32 rcven = ctrl->timings[channel][slotrank].lanes[lane].rcven;
return (MCHBAR32(lane_base[lane] +
GDCRTRAININGRESULT(channel, (rcven / 32) & 1)) >> (rcven % 32)) & 1;
}
struct run {
int middle;
int end;
int start;
int all;
int length;
};
static struct run get_longest_zero_run(int *seq, int sz)
{
int i, ls;
int bl = 0, bs = 0;
struct run ret;
ls = 0;
for (i = 0; i < 2 * sz; i++)
if (seq[i % sz]) {
if (i - ls > bl) {
bl = i - ls;
bs = ls;
}
ls = i + 1;
}
if (bl == 0) {
ret.middle = sz / 2;
ret.start = 0;
ret.end = sz;
ret.length = sz;
ret.all = 1;
return ret;
}
ret.start = bs % sz;
ret.end = (bs + bl - 1) % sz;
ret.middle = (bs + (bl - 1) / 2) % sz;
ret.length = bl;
ret.all = 0;
return ret;
}
#define RCVEN_COARSE_PI_LENGTH (2 * QCLK_PI)
static void find_rcven_pi_coarse(ramctr_timing *ctrl, int channel, int slotrank, int *upperA)
{
int rcven;
int statistics[NUM_LANES][RCVEN_COARSE_PI_LENGTH];
int lane;
for (rcven = 0; rcven < RCVEN_COARSE_PI_LENGTH; rcven++) {
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].rcven = rcven;
}
program_timings(ctrl, channel);
test_rcven(ctrl, channel, slotrank);
FOR_ALL_LANES {
statistics[lane][rcven] =
!does_lane_work(ctrl, channel, slotrank, lane);
}
}
FOR_ALL_LANES {
struct run rn = get_longest_zero_run(statistics[lane], RCVEN_COARSE_PI_LENGTH);
ctrl->timings[channel][slotrank].lanes[lane].rcven = rn.middle;
upperA[lane] = rn.end;
if (upperA[lane] < rn.middle)
upperA[lane] += 2 * QCLK_PI;
printram("rcven: %d, %d, %d: % 4d-% 4d-% 4d\n",
channel, slotrank, lane, rn.start, rn.middle, rn.end);
}
}
static void fine_tune_rcven_pi(ramctr_timing *ctrl, int channel, int slotrank, int *upperA)
{
int rcven_delta;
int statistics[NUM_LANES][51] = {0};
int lane, i;
for (rcven_delta = -25; rcven_delta <= 25; rcven_delta++) {
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].rcven
= upperA[lane] + rcven_delta + QCLK_PI;
}
program_timings(ctrl, channel);
for (i = 0; i < 100; i++) {
test_rcven(ctrl, channel, slotrank);
FOR_ALL_LANES {
statistics[lane][rcven_delta + 25] +=
does_lane_work(ctrl, channel, slotrank, lane);
}
}
}
FOR_ALL_LANES {
int last_zero, first_all;
for (last_zero = -25; last_zero <= 25; last_zero++)
if (statistics[lane][last_zero + 25])
break;
last_zero--;
for (first_all = -25; first_all <= 25; first_all++)
if (statistics[lane][first_all + 25] == 100)
break;
printram("lane %d: %d, %d\n", lane, last_zero, first_all);
ctrl->timings[channel][slotrank].lanes[lane].rcven =
(last_zero + first_all) / 2 + upperA[lane];
printram("Aval: %d, %d, %d: % 4d\n", channel, slotrank,
lane, ctrl->timings[channel][slotrank].lanes[lane].rcven);
}
}
/*
* Once the DQS high phase has been found (for each DRAM) the next stage
* is to find out the round trip latency, by locating the preamble cycle.
* This is achieved by trying smaller and smaller roundtrip values until
* the strobe sampling is done on the preamble cycle.
*/
static int find_roundtrip_latency(ramctr_timing *ctrl, int channel, int slotrank, int *upperA)
{
int works[NUM_LANES];
int lane;
while (1) {
int all_works = 1, some_works = 0;
program_timings(ctrl, channel);
test_rcven(ctrl, channel, slotrank);
FOR_ALL_LANES {
works[lane] = !does_lane_work(ctrl, channel, slotrank, lane);
if (works[lane])
some_works = 1;
else
all_works = 0;
}
/* If every lane is working, exit */
if (all_works)
return 0;
/*
* If all bits are one (everyone is failing), decrement
* the roundtrip value by two, and do another iteration.
*/
if (!some_works) {
/* Guard against roundtrip latency underflow */
if (ctrl->timings[channel][slotrank].roundtrip_latency < 2) {
printk(BIOS_EMERG, "Roundtrip latency underflow: %d, %d\n",
channel, slotrank);
return MAKE_ERR;
}
ctrl->timings[channel][slotrank].roundtrip_latency -= 2;
printram("4024 -= 2;\n");
continue;
}
/*
* Else (if some lanes are failing), increase the rank's
* I/O latency by 2, and increase rcven logic delay by 2
* on the working lanes, then perform another iteration.
*/
ctrl->timings[channel][slotrank].io_latency += 2;
printram("4028 += 2;\n");
/* Guard against I/O latency overflow */
if (ctrl->timings[channel][slotrank].io_latency >= 16) {
printk(BIOS_EMERG, "I/O latency overflow: %d, %d\n",
channel, slotrank);
return MAKE_ERR;
}
FOR_ALL_LANES if (works[lane]) {
ctrl->timings[channel][slotrank].lanes[lane].rcven += 2 * QCLK_PI;
upperA[lane] += 2 * QCLK_PI;
printram("increment %d, %d, %d\n", channel, slotrank, lane);
}
}
return 0;
}
static int get_logic_delay_delta(ramctr_timing *ctrl, int channel, int slotrank)
{
int lane;
u16 logic_delay_min = 7;
u16 logic_delay_max = 0;
FOR_ALL_LANES {
const u16 logic_delay = ctrl->timings[channel][slotrank].lanes[lane].rcven >> 6;
logic_delay_min = MIN(logic_delay_min, logic_delay);
logic_delay_max = MAX(logic_delay_max, logic_delay);
}
if (logic_delay_max < logic_delay_min) {
printk(BIOS_EMERG, "Logic delay max < min (%u < %u): %d, %d\n",
logic_delay_max, logic_delay_min, channel, slotrank);
}
assert(logic_delay_max >= logic_delay_min);
return logic_delay_max - logic_delay_min;
}
static int align_rt_io_latency(ramctr_timing *ctrl, int channel, int slotrank, int prev)
{
int latency_offset = 0;
/* Get changed maxima */
const int post = get_logic_delay_delta(ctrl, channel, slotrank);
if (prev < post)
latency_offset = +1;
else if (prev > post)
latency_offset = -1;
else
latency_offset = 0;
ctrl->timings[channel][slotrank].io_latency += latency_offset;
ctrl->timings[channel][slotrank].roundtrip_latency += latency_offset;
printram("4024 += %d;\n", latency_offset);
printram("4028 += %d;\n", latency_offset);
return post;
}
static void compute_final_logic_delay(ramctr_timing *ctrl, int channel, int slotrank)
{
u16 logic_delay_min = 7;
int lane;
FOR_ALL_LANES {
const u16 logic_delay = ctrl->timings[channel][slotrank].lanes[lane].rcven >> 6;
logic_delay_min = MIN(logic_delay_min, logic_delay);
}
if (logic_delay_min >= 2) {
printk(BIOS_WARNING, "Logic delay %u greater than 1: %d %d\n",
logic_delay_min, channel, slotrank);
}
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].rcven -= logic_delay_min << 6;
}
ctrl->timings[channel][slotrank].io_latency -= logic_delay_min;
printram("4028 -= %d;\n", logic_delay_min);
}
int receive_enable_calibration(ramctr_timing *ctrl)
{
int channel, slotrank, lane;
int err;
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
int all_high, some_high;
int upperA[NUM_LANES];
int prev;
wait_for_iosav(channel);
iosav_write_prea_sequence(channel, slotrank, ctrl->tRP, 0);
iosav_run_once_and_wait(channel);
const union gdcr_training_mod_reg training_mod = {
.receive_enable_mode = 1,
.training_rank_sel = slotrank,
.odt_always_on = 1,
};
MCHBAR32(GDCRTRAININGMOD) = training_mod.raw;
ctrl->timings[channel][slotrank].io_latency = 4;
ctrl->timings[channel][slotrank].roundtrip_latency = 55;
program_timings(ctrl, channel);
find_rcven_pi_coarse(ctrl, channel, slotrank, upperA);
all_high = 1;
some_high = 0;
FOR_ALL_LANES {
if (ctrl->timings[channel][slotrank].lanes[lane].rcven >= QCLK_PI)
some_high = 1;
else
all_high = 0;
}
if (all_high) {
ctrl->timings[channel][slotrank].io_latency--;
printram("4028--;\n");
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].rcven -= QCLK_PI;
upperA[lane] -= QCLK_PI;
}
} else if (some_high) {
ctrl->timings[channel][slotrank].roundtrip_latency++;
ctrl->timings[channel][slotrank].io_latency++;
printram("4024++;\n");
printram("4028++;\n");
}
program_timings(ctrl, channel);
prev = get_logic_delay_delta(ctrl, channel, slotrank);
err = find_roundtrip_latency(ctrl, channel, slotrank, upperA);
if (err)
return err;
prev = align_rt_io_latency(ctrl, channel, slotrank, prev);
fine_tune_rcven_pi(ctrl, channel, slotrank, upperA);
prev = align_rt_io_latency(ctrl, channel, slotrank, prev);
compute_final_logic_delay(ctrl, channel, slotrank);
align_rt_io_latency(ctrl, channel, slotrank, prev);
printram("4/8: %d, %d, % 4d, % 4d\n", channel, slotrank,
ctrl->timings[channel][slotrank].roundtrip_latency,
ctrl->timings[channel][slotrank].io_latency);
printram("final results:\n");
FOR_ALL_LANES
printram("Aval: %d, %d, %d: % 4d\n", channel, slotrank, lane,
ctrl->timings[channel][slotrank].lanes[lane].rcven);
MCHBAR32(GDCRTRAININGMOD) = 0;
toggle_io_reset();
}
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
return 0;
}
static void test_tx_dq(ramctr_timing *ctrl, int channel, int slotrank)
{
int lane;
FOR_ALL_LANES {
MCHBAR32(IOSAV_By_ERROR_COUNT_ch(channel, lane)) = 0;
MCHBAR32(IOSAV_By_BW_SERROR_C_ch(channel, lane));
}
wait_for_iosav(channel);
iosav_write_misc_write_sequence(ctrl, channel, slotrank,
MAX(ctrl->tRRD, (ctrl->tFAW >> 2) + 1), 4, 4, 500, 18);
iosav_run_once_and_wait(channel);
iosav_write_prea_act_read_sequence(ctrl, channel, slotrank);
iosav_run_once_and_wait(channel);
}
static void tx_dq_threshold_process(int *data, const int count)
{
int min = data[0];
int max = min;
int i;
for (i = 1; i < count; i++) {
if (min > data[i])
min = data[i];
if (max < data[i])
max = data[i];
}
int threshold = min / 2 + max / 2;
for (i = 0; i < count; i++)
data[i] = data[i] > threshold;
printram("threshold=%d min=%d max=%d\n", threshold, min, max);
}
static int tx_dq_write_leveling(ramctr_timing *ctrl, int channel, int slotrank)
{
int tx_dq;
int stats[NUM_LANES][MAX_TX_DQ + 1];
int lane;
wait_for_iosav(channel);
iosav_write_prea_sequence(channel, slotrank, ctrl->tRP, 18);
iosav_run_once_and_wait(channel);
for (tx_dq = 0; tx_dq <= MAX_TX_DQ; tx_dq++) {
FOR_ALL_LANES ctrl->timings[channel][slotrank].lanes[lane].tx_dq = tx_dq;
program_timings(ctrl, channel);
test_tx_dq(ctrl, channel, slotrank);
FOR_ALL_LANES {
stats[lane][tx_dq] = MCHBAR32(IOSAV_By_ERROR_COUNT_ch(channel, lane));
}
}
FOR_ALL_LANES {
struct run rn = get_longest_zero_run(stats[lane], ARRAY_SIZE(stats[lane]));
if (rn.all || rn.length < 8) {
printk(BIOS_EMERG, "tx_dq write leveling failed: %d, %d, %d\n",
channel, slotrank, lane);
/*
* With command training not being done yet, the lane can be erroneous.
* Take the average as reference and try again to find a run.
*/
tx_dq_threshold_process(stats[lane], ARRAY_SIZE(stats[lane]));
rn = get_longest_zero_run(stats[lane], ARRAY_SIZE(stats[lane]));
if (rn.all || rn.length < 8) {
printk(BIOS_EMERG, "tx_dq recovery failed\n");
return MAKE_ERR;
}
}
ctrl->timings[channel][slotrank].lanes[lane].tx_dq = rn.middle;
printram("tx_dq: %d, %d, %d: % 4d-% 4d-% 4d\n",
channel, slotrank, lane, rn.start, rn.middle, rn.end);
}
return 0;
}
static int get_precedening_channels(ramctr_timing *ctrl, int target_channel)
{
int channel, ret = 0;
FOR_ALL_POPULATED_CHANNELS if (channel < target_channel)
ret++;
return ret;
}
/* Each cacheline is 64 bits long */
static void program_wdb_pattern_length(int channel, const unsigned int num_cachelines)
{
MCHBAR8(IOSAV_DATA_CTL_ch(channel)) = num_cachelines / 8 - 1;
}
static void fill_pattern0(ramctr_timing *ctrl, int channel, u32 a, u32 b)
{
unsigned int j;
unsigned int channel_offset = get_precedening_channels(ctrl, channel) * 64;
for (j = 0; j < 16; j++)
write32((void *)(0x04000000 + channel_offset + 4 * j), j & 2 ? b : a);
sfence();
program_wdb_pattern_length(channel, 8);
}
static int num_of_channels(const ramctr_timing *ctrl)
{
int ret = 0;
int channel;
FOR_ALL_POPULATED_CHANNELS ret++;
return ret;
}
static void fill_pattern1(ramctr_timing *ctrl, int channel)
{
unsigned int j;
unsigned int channel_offset = get_precedening_channels(ctrl, channel) * 64;
unsigned int channel_step = 64 * num_of_channels(ctrl);
for (j = 0; j < 16; j++)
write32((void *)(0x04000000 + channel_offset + j * 4), 0xffffffff);
for (j = 0; j < 16; j++)
write32((void *)(0x04000000 + channel_offset + channel_step + j * 4), 0);
sfence();
program_wdb_pattern_length(channel, 16);
}
#define TX_DQS_PI_LENGTH (2 * QCLK_PI)
static int write_level_rank(ramctr_timing *ctrl, int channel, int slotrank)
{
int tx_dqs;
int statistics[NUM_LANES][TX_DQS_PI_LENGTH];
int lane;
const union gdcr_training_mod_reg training_mod = {
.write_leveling_mode = 1,
.training_rank_sel = slotrank,
.enable_dqs_wl = 5,
.odt_always_on = 1,
.force_drive_enable = 1,
};
MCHBAR32(GDCRTRAININGMOD) = training_mod.raw;
u32 mr1reg = make_mr1(ctrl, slotrank, channel) | 1 << 7;
int bank = 1;
if (ctrl->rank_mirror[channel][slotrank])
ddr3_mirror_mrreg(&bank, &mr1reg);
wait_for_iosav(channel);
iosav_write_jedec_write_leveling_sequence(ctrl, channel, slotrank, bank, mr1reg);
for (tx_dqs = 0; tx_dqs < TX_DQS_PI_LENGTH; tx_dqs++) {
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].tx_dqs = tx_dqs;
}
program_timings(ctrl, channel);
iosav_run_once_and_wait(channel);
FOR_ALL_LANES {
statistics[lane][tx_dqs] = !((MCHBAR32(lane_base[lane] +
GDCRTRAININGRESULT(channel, (tx_dqs / 32) & 1)) >>
(tx_dqs % 32)) & 1);
}
}
FOR_ALL_LANES {
struct run rn = get_longest_zero_run(statistics[lane], TX_DQS_PI_LENGTH);
/*
* tx_dq is a direct function of tx_dqs's 6 LSBs. Some tests increment the value
* of tx_dqs by a small value, which might cause the 6-bit value to overflow if
* it's close to 0x3f. Increment the value by a small offset if it's likely
* to overflow, to make sure it won't overflow while running tests and bricks
* the system due to a non matching tx_dq.
*
* TODO: find out why some tests (edge write discovery) increment tx_dqs.
*/
if ((rn.start & 0x3f) == 0x3e)
rn.start += 2;
else if ((rn.start & 0x3f) == 0x3f)
rn.start += 1;
ctrl->timings[channel][slotrank].lanes[lane].tx_dqs = rn.start;
if (rn.all) {
printk(BIOS_EMERG, "JEDEC write leveling failed: %d, %d, %d\n",
channel, slotrank, lane);
return MAKE_ERR;
}
printram("tx_dqs: %d, %d, %d: % 4d-% 4d-% 4d\n",
channel, slotrank, lane, rn.start, rn.middle, rn.end);
}
return 0;
}
static int get_dqs_flyby_adjust(u64 val)
{
int i;
/* DQS is good enough */
if (val == 0xffffffffffffffffLL)
return 0;
if (val >= 0xf000000000000000LL) {
/* DQS is late, needs negative adjustment */
for (i = 0; i < 8; i++)
if (val << (8 * (7 - i) + 4))
return -i;
} else {
/* DQS is early, needs positive adjustment */
for (i = 0; i < 8; i++)
if (val >> (8 * (7 - i) + 4))
return i;
}
return 8;
}
static void train_write_flyby(ramctr_timing *ctrl)
{
int channel, slotrank, lane, old;
const union gdcr_training_mod_reg training_mod = {
.dq_dqs_training_res = 1,
};
MCHBAR32(GDCRTRAININGMOD) = training_mod.raw;
FOR_ALL_POPULATED_CHANNELS {
fill_pattern1(ctrl, channel);
}
FOR_ALL_POPULATED_CHANNELS FOR_ALL_POPULATED_RANKS {
/* Reset read and write WDB pointers */
MCHBAR32(IOSAV_DATA_CTL_ch(channel)) = 0x10001;
wait_for_iosav(channel);
iosav_write_misc_write_sequence(ctrl, channel, slotrank, 3, 1, 3, 3, 31);
iosav_run_once_and_wait(channel);
const struct iosav_ssq rd_sequence[] = {
/* DRAM command PREA */
[0] = {
.sp_cmd_ctrl = {
.command = IOSAV_PRE,
.ranksel_ap = 1,
},
.subseq_ctrl = {
.cmd_executions = 1,
.cmd_delay_gap = 3,
.post_ssq_wait = ctrl->tRP,
.data_direction = SSQ_NA,
},
.sp_cmd_addr = {
.address = 1 << 10,
.rowbits = 6,
.bank = 0,
.rank = slotrank,
},
.addr_update = {
.addr_wrap = 18,
},
},
/* DRAM command ACT */
[1] = {
.sp_cmd_ctrl = {
.command = IOSAV_ACT,
.ranksel_ap = 1,
},
.subseq_ctrl = {
.cmd_executions = 1,
.cmd_delay_gap = 3,
.post_ssq_wait = ctrl->tRCD,
.data_direction = SSQ_NA,
},
.sp_cmd_addr = {
.address = 0,
.rowbits = 6,
.bank = 0,
.rank = slotrank,
},
},
/* DRAM command RDA */
[2] = {
.sp_cmd_ctrl = {
.command = IOSAV_RD,
.ranksel_ap = 3,
},
.subseq_ctrl = {
.cmd_executions = 1,
.cmd_delay_gap = 3,
.post_ssq_wait = ctrl->tRP +
ctrl->timings[channel][slotrank].roundtrip_latency +
ctrl->timings[channel][slotrank].io_latency,
.data_direction = SSQ_RD,
},
.sp_cmd_addr = {
.address = 8,
.rowbits = 6,
.bank = 0,
.rank = slotrank,
},
},
};
iosav_write_sequence(channel, rd_sequence, ARRAY_SIZE(rd_sequence));
iosav_run_once_and_wait(channel);
FOR_ALL_LANES {
u64 res = MCHBAR32(lane_base[lane] + GDCRTRAININGRESULT1(channel));
res |= ((u64) MCHBAR32(lane_base[lane] +
GDCRTRAININGRESULT2(channel))) << 32;
old = ctrl->timings[channel][slotrank].lanes[lane].tx_dqs;
ctrl->timings[channel][slotrank].lanes[lane].tx_dqs +=
get_dqs_flyby_adjust(res) * QCLK_PI;
printram("High adjust %d:%016llx\n", lane, res);
printram("Bval+: %d, %d, %d, % 4d -> % 4d\n", channel, slotrank, lane,
old, ctrl->timings[channel][slotrank].lanes[lane].tx_dqs);
}
}
MCHBAR32(GDCRTRAININGMOD) = 0;
}
static void disable_refresh_machine(ramctr_timing *ctrl)
{
int channel;
FOR_ALL_POPULATED_CHANNELS {
/* choose an existing rank */
const int slotrank = !(ctrl->rankmap[channel] & 1) ? 2 : 0;
iosav_write_zqcs_sequence(channel, slotrank, 4, 4, 31);
iosav_run_once_and_wait(channel);
MCHBAR32_OR(SCHED_CBIT_ch(channel), 1 << 21);
}
/* Refresh disable */
MCHBAR32_AND(MC_INIT_STATE_G, ~(1 << 3));
FOR_ALL_POPULATED_CHANNELS {
/* Execute the same command queue */
iosav_run_once_and_wait(channel);
}
}
/*
* Compensate the skew between CMD/ADDR/CLK and DQ/DQS lanes.
*
* Since DDR3 uses a fly-by topology, the data and strobes signals reach the chips at different
* times with respect to command, address and clock signals. By delaying either all DQ/DQS or
* all CMD/ADDR/CLK signals, a full phase shift can be introduced. It is assumed that the
* CLK/ADDR/CMD signals have the same routing delay.
*
* To find the required phase shift the DRAM is placed in "write leveling" mode. In this mode,
* the DRAM-chip samples the CLK on every DQS edge and feeds back the sampled value on the data
* lanes (DQ).
*/
static int jedec_write_leveling(ramctr_timing *ctrl)
{
int channel, slotrank;
disable_refresh_machine(ctrl);
/* Enable write leveling on all ranks
Disable all DQ outputs
Only NOP is allowed in this mode */
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS
write_mrreg(ctrl, channel, slotrank, 1,
make_mr1(ctrl, slotrank, channel) | 1 << 12 | 1 << 7);
/* Needs to be programmed before I/O reset below */
const union gdcr_training_mod_reg training_mod = {
.write_leveling_mode = 1,
.enable_dqs_wl = 5,
.odt_always_on = 1,
.force_drive_enable = 1,
};
MCHBAR32(GDCRTRAININGMOD) = training_mod.raw;
toggle_io_reset();
/* Set any valid value for tx_dqs, it gets corrected later */
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
const int err = write_level_rank(ctrl, channel, slotrank);
if (err)
return err;
}
/* Disable write leveling on all ranks */
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS
write_mrreg(ctrl, channel, slotrank, 1, make_mr1(ctrl, slotrank, channel));
MCHBAR32(GDCRTRAININGMOD) = 0;
FOR_ALL_POPULATED_CHANNELS
wait_for_iosav(channel);
/* Refresh enable */
MCHBAR32_OR(MC_INIT_STATE_G, 1 << 3);
FOR_ALL_POPULATED_CHANNELS {
MCHBAR32_AND(SCHED_CBIT_ch(channel), ~(1 << 21));
MCHBAR32(IOSAV_STATUS_ch(channel));
wait_for_iosav(channel);
iosav_write_zqcs_sequence(channel, 0, 4, 101, 31);
iosav_run_once_and_wait(channel);
}
toggle_io_reset();
return 0;
}
int write_training(ramctr_timing *ctrl)
{
int channel, slotrank;
int err;
/*
* Set the DEC_WRD bit, required for the write flyby algorithm.
* Needs to be done before starting the write training procedure.
*/
FOR_ALL_POPULATED_CHANNELS
MCHBAR32_OR(TC_RWP_ch(channel), 1 << 27);
printram("CPE\n");
err = jedec_write_leveling(ctrl);
if (err)
return err;
printram("CPF\n");
FOR_ALL_POPULATED_CHANNELS {
fill_pattern0(ctrl, channel, 0xaaaaaaaa, 0x55555555);
}
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
err = tx_dq_write_leveling(ctrl, channel, slotrank);
if (err)
return err;
}
FOR_ALL_POPULATED_CHANNELS
program_timings(ctrl, channel);
/* measure and adjust tx_dqs timings */
train_write_flyby(ctrl);
FOR_ALL_POPULATED_CHANNELS
program_timings(ctrl, channel);
return 0;
}
static int test_command_training(ramctr_timing *ctrl, int channel, int slotrank)
{
struct ram_rank_timings saved_rt = ctrl->timings[channel][slotrank];
int tx_dq_delta;
int lanes_ok = 0;
int ctr = 0;
int lane;
for (tx_dq_delta = -5; tx_dq_delta <= 5; tx_dq_delta++) {
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].tx_dq =
saved_rt.lanes[lane].tx_dq + tx_dq_delta;
}
program_timings(ctrl, channel);
FOR_ALL_LANES {
MCHBAR32(IOSAV_By_ERROR_COUNT(lane)) = 0;
}
/* Reset read WDB pointer */
MCHBAR32(IOSAV_DATA_CTL_ch(channel)) = 0x1f;
wait_for_iosav(channel);
iosav_write_command_training_sequence(ctrl, channel, slotrank, ctr);
/* Program LFSR for the RD/WR subsequences */
MCHBAR32(IOSAV_n_ADDRESS_LFSR_ch(channel, 1)) = 0x389abcd;
MCHBAR32(IOSAV_n_ADDRESS_LFSR_ch(channel, 2)) = 0x389abcd;
iosav_run_once_and_wait(channel);
FOR_ALL_LANES {
u32 r32 = MCHBAR32(IOSAV_By_ERROR_COUNT_ch(channel, lane));
if (r32 == 0)
lanes_ok |= 1 << lane;
}
ctr++;
if (lanes_ok == ((1 << ctrl->lanes) - 1))
break;
}
ctrl->timings[channel][slotrank] = saved_rt;
return lanes_ok != ((1 << ctrl->lanes) - 1);
}
static void fill_pattern5(ramctr_timing *ctrl, int channel, int patno)
{
unsigned int i, j;
unsigned int offset = get_precedening_channels(ctrl, channel) * 64;
unsigned int step = 64 * num_of_channels(ctrl);
if (patno) {
u8 base8 = 0x80 >> ((patno - 1) % 8);
u32 base = base8 | (base8 << 8) | (base8 << 16) | (base8 << 24);
for (i = 0; i < 32; i++) {
for (j = 0; j < 16; j++) {
u32 val = use_base[patno - 1][i] & (1 << (j / 2)) ? base : 0;
if (invert[patno - 1][i] & (1 << (j / 2)))
val = ~val;
write32((void *)((1 << 26) + offset + i * step + j * 4), val);
}
}
} else {
for (i = 0; i < ARRAY_SIZE(pattern); i++) {
for (j = 0; j < 16; j++) {
const u32 val = pattern[i][j];
write32((void *)((1 << 26) + offset + i * step + j * 4), val);
}
}
sfence();
}
program_wdb_pattern_length(channel, 256);
}
static void reprogram_320c(ramctr_timing *ctrl)
{
disable_refresh_machine(ctrl);
/* JEDEC reset */
dram_jedecreset(ctrl);
/* MRS commands */
dram_mrscommands(ctrl);
toggle_io_reset();
}
#define CT_MIN_PI (-CCC_MAX_PI)
#define CT_MAX_PI (+CCC_MAX_PI + 1)
#define CT_PI_LENGTH (CT_MAX_PI - CT_MIN_PI + 1)
#define MIN_C320C_LEN 13
static int try_cmd_stretch(ramctr_timing *ctrl, int channel, int cmd_stretch)
{
struct ram_rank_timings saved_timings[NUM_CHANNELS][NUM_SLOTRANKS];
int slotrank;
int command_pi;
int stat[NUM_SLOTRANKS][CT_PI_LENGTH];
int delta = 0;
printram("Trying cmd_stretch %d on channel %d\n", cmd_stretch, channel);
FOR_ALL_POPULATED_RANKS {
saved_timings[channel][slotrank] = ctrl->timings[channel][slotrank];
}
ctrl->cmd_stretch[channel] = cmd_stretch;
const union tc_rap_reg tc_rap = {
.tRRD = ctrl->tRRD,
.tRTP = ctrl->tRTP,
.tCKE = ctrl->tCKE,
.tWTR = ctrl->tWTR,
.tFAW = ctrl->tFAW,
.tWR = ctrl->tWR,
.tCMD = ctrl->cmd_stretch[channel],
};
MCHBAR32(TC_RAP_ch(channel)) = tc_rap.raw;
if (ctrl->cmd_stretch[channel] == 2)
delta = 2;
else if (ctrl->cmd_stretch[channel] == 0)
delta = 4;
FOR_ALL_POPULATED_RANKS {
ctrl->timings[channel][slotrank].roundtrip_latency -= delta;
}
for (command_pi = CT_MIN_PI; command_pi < CT_MAX_PI; command_pi++) {
FOR_ALL_POPULATED_RANKS {
ctrl->timings[channel][slotrank].pi_coding = command_pi;
}
program_timings(ctrl, channel);
reprogram_320c(ctrl);
FOR_ALL_POPULATED_RANKS {
stat[slotrank][command_pi - CT_MIN_PI] =
test_command_training(ctrl, channel, slotrank);
}
}
FOR_ALL_POPULATED_RANKS {
struct run rn = get_longest_zero_run(stat[slotrank], CT_PI_LENGTH - 1);
ctrl->timings[channel][slotrank].pi_coding = rn.middle + CT_MIN_PI;
printram("cmd_stretch: %d, %d: % 4d-% 4d-% 4d\n",
channel, slotrank, rn.start, rn.middle, rn.end);
if (rn.all || rn.length < MIN_C320C_LEN) {
FOR_ALL_POPULATED_RANKS {
ctrl->timings[channel][slotrank] =
saved_timings[channel][slotrank];
}
return MAKE_ERR;
}
}
return 0;
}
/*
* Adjust CMD phase shift and try multiple command rates.
* A command rate of 2T doubles the time needed for address and command decode.
*/
int command_training(ramctr_timing *ctrl)
{
int channel;
FOR_ALL_POPULATED_CHANNELS {
fill_pattern5(ctrl, channel, 0);
}
FOR_ALL_POPULATED_CHANNELS {
int cmdrate, err;
/*
* Dual DIMM per channel:
* Issue:
* While command training seems to succeed, raminit will fail in write training.
*
* Workaround:
* Skip 1T in dual DIMM mode, that's only supported by a few DIMMs.
* Only try 1T mode for XMP DIMMs that request it in dual DIMM mode.
*
* Single DIMM per channel:
* Try command rate 1T and 2T
*/
cmdrate = ((ctrl->rankmap[channel] & 0x5) == 0x5);
if (ctrl->tCMD)
/* XMP gives the CMD rate in clock ticks, not ns */
cmdrate = MIN(DIV_ROUND_UP(ctrl->tCMD, 256) - 1, 1);
for (; cmdrate < 2; cmdrate++) {
err = try_cmd_stretch(ctrl, channel, cmdrate << 1);
if (!err)
break;
}
if (err) {
printk(BIOS_EMERG, "Command training failed: %d\n", channel);
return err;
}
printram("Using CMD rate %uT on channel %u\n", cmdrate + 1, channel);
}
FOR_ALL_POPULATED_CHANNELS
program_timings(ctrl, channel);
reprogram_320c(ctrl);
return 0;
}
static int find_read_mpr_margin(ramctr_timing *ctrl, int channel, int slotrank, int *edges)
{
int dqs_pi;
int stats[NUM_LANES][MAX_EDGE_TIMING + 1];
int lane;
for (dqs_pi = 0; dqs_pi <= MAX_EDGE_TIMING; dqs_pi++) {
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].rx_dqs_p = dqs_pi;
ctrl->timings[channel][slotrank].lanes[lane].rx_dqs_n = dqs_pi;
}
program_timings(ctrl, channel);
FOR_ALL_LANES {
MCHBAR32(IOSAV_By_ERROR_COUNT_ch(channel, lane)) = 0;
MCHBAR32(IOSAV_By_BW_SERROR_C_ch(channel, lane));
}
wait_for_iosav(channel);
iosav_write_read_mpr_sequence(
channel, slotrank, ctrl->tMOD, 500, 4, 1, ctrl->CAS + 8);
iosav_run_once_and_wait(channel);
FOR_ALL_LANES {
stats[lane][dqs_pi] = MCHBAR32(IOSAV_By_ERROR_COUNT_ch(channel, lane));
}
}
FOR_ALL_LANES {
struct run rn = get_longest_zero_run(stats[lane], MAX_EDGE_TIMING + 1);
edges[lane] = rn.middle;
if (rn.all) {
printk(BIOS_EMERG, "Read MPR training failed: %d, %d, %d\n", channel,
slotrank, lane);
return MAKE_ERR;
}
printram("eval %d, %d, %d: % 4d\n", channel, slotrank, lane, edges[lane]);
}
return 0;
}
static void find_predefined_pattern(ramctr_timing *ctrl, const int channel)
{
int slotrank, lane;
fill_pattern0(ctrl, channel, 0, 0);
FOR_ALL_LANES {
MCHBAR32(IOSAV_By_BW_MASK_ch(channel, lane)) = 0;
MCHBAR32(IOSAV_By_BW_SERROR_C_ch(channel, lane));
}
FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].rx_dqs_n = 16;
ctrl->timings[channel][slotrank].lanes[lane].rx_dqs_p = 16;
}
program_timings(ctrl, channel);
FOR_ALL_POPULATED_RANKS {
wait_for_iosav(channel);
iosav_write_read_mpr_sequence(
channel, slotrank, ctrl->tMOD, 3, 4, 1, ctrl->CAS + 8);
iosav_run_once_and_wait(channel);
}
/* XXX: check any measured value ? */
FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].rx_dqs_n = 48;
ctrl->timings[channel][slotrank].lanes[lane].rx_dqs_p = 48;
}
program_timings(ctrl, channel);
FOR_ALL_POPULATED_RANKS {
wait_for_iosav(channel);
iosav_write_read_mpr_sequence(
channel, slotrank, ctrl->tMOD, 3, 4, 1, ctrl->CAS + 8);
iosav_run_once_and_wait(channel);
}
/* XXX: check any measured value ? */
FOR_ALL_LANES {
MCHBAR32(IOSAV_By_BW_MASK_ch(channel, lane)) =
~MCHBAR32(IOSAV_By_BW_SERROR_ch(channel, lane)) & 0xff;
}
}
int read_mpr_training(ramctr_timing *ctrl)
{
int falling_edges[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
int rising_edges[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
int channel, slotrank, lane;
int err;
MCHBAR32(GDCRTRAININGMOD) = 0;
toggle_io_reset();
FOR_ALL_POPULATED_CHANNELS {
find_predefined_pattern(ctrl, channel);
fill_pattern0(ctrl, channel, 0, 0xffffffff);
}
/*
* FIXME: Under some conditions, vendor BIOS sets both edges to the same value. It will
* also use a single loop. It would seem that it is a debugging configuration.
*/
MCHBAR32(IOSAV_DC_MASK) = 3 << 8;
printram("discover falling edges:\n[%x] = %x\n", IOSAV_DC_MASK, 3 << 8);
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
err = find_read_mpr_margin(ctrl, channel, slotrank,
falling_edges[channel][slotrank]);
if (err)
return err;
}
MCHBAR32(IOSAV_DC_MASK) = 2 << 8;
printram("discover rising edges:\n[%x] = %x\n", IOSAV_DC_MASK, 2 << 8);
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
err = find_read_mpr_margin(ctrl, channel, slotrank,
rising_edges[channel][slotrank]);
if (err)
return err;
}
MCHBAR32(IOSAV_DC_MASK) = 0;
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].rx_dqs_n =
falling_edges[channel][slotrank][lane];
ctrl->timings[channel][slotrank].lanes[lane].rx_dqs_p =
rising_edges[channel][slotrank][lane];
}
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
FOR_ALL_POPULATED_CHANNELS FOR_ALL_LANES {
MCHBAR32(IOSAV_By_BW_MASK_ch(channel, lane)) = 0;
}
return 0;
}
static int find_agrsv_read_margin(ramctr_timing *ctrl, int channel, int slotrank, int *edges)
{
const int rd_vref_offsets[] = { 0, 0xc, 0x2c };
u32 raw_stats[MAX_EDGE_TIMING + 1];
int lower[NUM_LANES];
int upper[NUM_LANES];
int lane, i, read_pi, pat;
FOR_ALL_LANES {
lower[lane] = 0;
upper[lane] = MAX_EDGE_TIMING;
}
for (i = 0; i < ARRAY_SIZE(rd_vref_offsets); i++) {
const union gdcr_training_mod_reg training_mod = {
.vref_gen_ctl = rd_vref_offsets[i],
};
MCHBAR32(GDCRTRAININGMOD_ch(channel)) = training_mod.raw;
printram("[%x] = 0x%08x\n", GDCRTRAININGMOD_ch(channel), training_mod.raw);
for (pat = 0; pat < NUM_PATTERNS; pat++) {
fill_pattern5(ctrl, channel, pat);
printram("using pattern %d\n", pat);
for (read_pi = 0; read_pi <= MAX_EDGE_TIMING; read_pi++) {
FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane]
.rx_dqs_p = read_pi;
ctrl->timings[channel][slotrank].lanes[lane]
.rx_dqs_n = read_pi;
}
program_timings(ctrl, channel);
FOR_ALL_LANES {
MCHBAR32(IOSAV_By_ERROR_COUNT_ch(channel, lane)) = 0;
MCHBAR32(IOSAV_By_BW_SERROR_C_ch(channel, lane));
}
wait_for_iosav(channel);
iosav_write_data_write_sequence(ctrl, channel, slotrank);
iosav_run_once_and_wait(channel);
FOR_ALL_LANES {
MCHBAR32(IOSAV_By_ERROR_COUNT_ch(channel, lane));
}
/* FIXME: This register only exists on Ivy Bridge */
raw_stats[read_pi] = MCHBAR32(IOSAV_BYTE_SERROR_C_ch(channel));
}
FOR_ALL_LANES {
int stats[MAX_EDGE_TIMING + 1];
struct run rn;
for (read_pi = 0; read_pi <= MAX_EDGE_TIMING; read_pi++)
stats[read_pi] = !!(raw_stats[read_pi] & (1 << lane));
rn = get_longest_zero_run(stats, MAX_EDGE_TIMING + 1);
printram("edges: %d, %d, %d: % 4d-% 4d-% 4d, "
"% 4d-% 4d\n", channel, slotrank, i, rn.start,
rn.middle, rn.end, rn.start + ctrl->edge_offset[i],
rn.end - ctrl->edge_offset[i]);
lower[lane] = MAX(rn.start + ctrl->edge_offset[i], lower[lane]);
upper[lane] = MIN(rn.end - ctrl->edge_offset[i], upper[lane]);
edges[lane] = (lower[lane] + upper[lane]) / 2;
if (rn.all || (lower[lane] > upper[lane])) {
printk(BIOS_EMERG, "Aggressive read training failed: "
"%d, %d, %d\n", channel, slotrank, lane);
return MAKE_ERR;
}
}
}
}
/* Restore nominal Vref after training */
MCHBAR32(GDCRTRAININGMOD_ch(channel)) = 0;
printram("CPA\n");
return 0;
}
int aggressive_read_training(ramctr_timing *ctrl)
{
int falling_edges[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
int rising_edges[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
int channel, slotrank, lane, err;
/*
* FIXME: Under some conditions, vendor BIOS sets both edges to the same value. It will
* also use a single loop. It would seem that it is a debugging configuration.
*/
MCHBAR32(IOSAV_DC_MASK) = 3 << 8;
printram("discover falling edges aggressive:\n[%x] = %x\n", IOSAV_DC_MASK, 3 << 8);
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
err = find_agrsv_read_margin(ctrl, channel, slotrank,
falling_edges[channel][slotrank]);
if (err)
return err;
}
MCHBAR32(IOSAV_DC_MASK) = 2 << 8;
printram("discover rising edges aggressive:\n[%x] = %x\n", IOSAV_DC_MASK, 2 << 8);
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
err = find_agrsv_read_margin(ctrl, channel, slotrank,
rising_edges[channel][slotrank]);
if (err)
return err;
}
MCHBAR32(IOSAV_DC_MASK) = 0;
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
ctrl->timings[channel][slotrank].lanes[lane].rx_dqs_n =
falling_edges[channel][slotrank][lane];
ctrl->timings[channel][slotrank].lanes[lane].rx_dqs_p =
rising_edges[channel][slotrank][lane];
}
FOR_ALL_POPULATED_CHANNELS
program_timings(ctrl, channel);
return 0;
}
static void test_aggressive_write(ramctr_timing *ctrl, int channel, int slotrank)
{
wait_for_iosav(channel);
iosav_write_aggressive_write_read_sequence(ctrl, channel, slotrank);
iosav_run_once_and_wait(channel);
}
static void set_write_vref(const int channel, const u8 wr_vref)
{
MCHBAR32_AND_OR(GDCRCMDDEBUGMUXCFG_Cz_S(channel), ~(0x3f << 24), wr_vref << 24);
udelay(2);
}
int aggressive_write_training(ramctr_timing *ctrl)
{
const u8 wr_vref_offsets[3] = { 0, 0x0f, 0x2f };
int i, pat;
int lower[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
int upper[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
int channel, slotrank, lane;
/* Changing the write Vref is only supported on some Ivy Bridge SKUs */
if (!IS_IVY_CPU(ctrl->cpu))
return 0;
if (!(pci_read_config32(HOST_BRIDGE, CAPID0_A) & CAPID_WRTVREF))
return 0;
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
lower[channel][slotrank][lane] = 0;
upper[channel][slotrank][lane] = MAX_TX_DQ;
}
/* Only enable IOSAV_n_SPECIAL_COMMAND_ADDR optimization on later steppings */
const bool enable_iosav_opt = IS_IVY_CPU_D(ctrl->cpu) || IS_IVY_CPU_E(ctrl->cpu);
if (enable_iosav_opt)
MCHBAR32(MCMNTS_SPARE) = 1;
printram("Aggresive write training:\n");
for (i = 0; i < ARRAY_SIZE(wr_vref_offsets); i++) {
FOR_ALL_POPULATED_CHANNELS {
set_write_vref(channel, wr_vref_offsets[i]);
for (pat = 0; pat < NUM_PATTERNS; pat++) {
FOR_ALL_POPULATED_RANKS {
int tx_dq;
u32 raw_stats[MAX_TX_DQ + 1];
int stats[MAX_TX_DQ + 1];
/* Make sure rn.start < rn.end */
stats[MAX_TX_DQ] = 1;
fill_pattern5(ctrl, channel, pat);
for (tx_dq = 0; tx_dq < MAX_TX_DQ; tx_dq++) {
FOR_ALL_LANES {
ctrl->timings[channel][slotrank]
.lanes[lane].tx_dq = tx_dq;
}
program_timings(ctrl, channel);
test_aggressive_write(ctrl, channel, slotrank);
raw_stats[tx_dq] = MCHBAR32(
IOSAV_BYTE_SERROR_C_ch(channel));
}
FOR_ALL_LANES {
struct run rn;
for (tx_dq = 0; tx_dq < MAX_TX_DQ; tx_dq++) {
stats[tx_dq] = !!(raw_stats[tx_dq]
& (1 << lane));
}
rn = get_longest_zero_run(stats, MAX_TX_DQ + 1);
if (rn.all) {
printk(BIOS_EMERG, "Aggressive "
"write training failed: "
"%d, %d, %d\n", channel,
slotrank, lane);
return MAKE_ERR;
}
printram("tx_dq: %d, %d, %d: "
"% 4d-% 4d-% 4d, "
"% 4d-% 4d\n", channel, slotrank,
i, rn.start, rn.middle, rn.end,
rn.start + ctrl->tx_dq_offset[i],
rn.end - ctrl->tx_dq_offset[i]);
lower[channel][slotrank][lane] =
MAX(rn.start + ctrl->tx_dq_offset[i],
lower[channel][slotrank][lane]);
upper[channel][slotrank][lane] =
MIN(rn.end - ctrl->tx_dq_offset[i],
upper[channel][slotrank][lane]);
}
}
}
}
}
FOR_ALL_CHANNELS {
/* Restore nominal write Vref after training */
set_write_vref(channel, 0);
}
/* Disable IOSAV_n_SPECIAL_COMMAND_ADDR optimization */
if (enable_iosav_opt)
MCHBAR32(MCMNTS_SPARE) = 0;
printram("CPB\n");
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
printram("tx_dq %d, %d, %d: % 4d\n", channel, slotrank, lane,
(lower[channel][slotrank][lane] +
upper[channel][slotrank][lane]) / 2);
ctrl->timings[channel][slotrank].lanes[lane].tx_dq =
(lower[channel][slotrank][lane] +
upper[channel][slotrank][lane]) / 2;
}
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
return 0;
}
void normalize_training(ramctr_timing *ctrl)
{
int channel, slotrank, lane;
int mat;
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
int delta;
mat = 0;
FOR_ALL_LANES mat =
MAX(ctrl->timings[channel][slotrank].lanes[lane].rcven, mat);
printram("normalize %d, %d, %d: mat %d\n",
channel, slotrank, lane, mat);
delta = (mat >> 6) - ctrl->timings[channel][slotrank].io_latency;
printram("normalize %d, %d, %d: delta %d\n",
channel, slotrank, lane, delta);
ctrl->timings[channel][slotrank].roundtrip_latency += delta;
ctrl->timings[channel][slotrank].io_latency += delta;
}
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
}
int channel_test(ramctr_timing *ctrl)
{
int channel, slotrank, lane;
slotrank = 0;
FOR_ALL_POPULATED_CHANNELS
if (MCHBAR32(MC_INIT_STATE_ch(channel)) & 0xa000) {
printk(BIOS_EMERG, "Mini channel test failed (1): %d\n", channel);
return MAKE_ERR;
}
FOR_ALL_POPULATED_CHANNELS {
fill_pattern0(ctrl, channel, 0x12345678, 0x98765432);
}
for (slotrank = 0; slotrank < 4; slotrank++)
FOR_ALL_CHANNELS
if (ctrl->rankmap[channel] & (1 << slotrank)) {
FOR_ALL_LANES {
MCHBAR32(IOSAV_By_ERROR_COUNT(lane)) = 0;
MCHBAR32(IOSAV_By_BW_SERROR_C(lane)) = 0;
}
wait_for_iosav(channel);
iosav_write_memory_test_sequence(ctrl, channel, slotrank);
iosav_run_once_and_wait(channel);
FOR_ALL_LANES
if (MCHBAR32(IOSAV_By_ERROR_COUNT_ch(channel, lane))) {
printk(BIOS_EMERG, "Mini channel test failed (2): %d, %d, %d\n",
channel, slotrank, lane);
return MAKE_ERR;
}
}
return 0;
}
void channel_scrub(ramctr_timing *ctrl)
{
int channel, slotrank, row, rowsize;
u8 bank;
FOR_ALL_POPULATED_CHANNELS {
wait_for_iosav(channel);
fill_pattern0(ctrl, channel, 0, 0);
}
/*
* During runtime the "scrubber" will periodically scan through the memory in the
* physical address space, to identify and fix CRC errors.
* The following loops writes to every DRAM address, setting the ECC bits to the
* correct value. A read from this location will no longer return a CRC error,
* except when a bit has toggled due to external events.
* The same could be achieved by writing to the physical memory map, but it's
* much more difficult due to SMM remapping, ME stolen memory, GFX stolen memory,
* and firmware running in x86_32.
*/
FOR_ALL_POPULATED_CHANNELS FOR_ALL_POPULATED_RANKS {
rowsize = 1 << ctrl->info.dimm[channel][slotrank >> 1].row_bits;
for (bank = 0; bank < 8; bank++) {
for (row = 0; row < rowsize; row += 16) {
u8 gap = MAX((ctrl->tFAW >> 2) + 1, ctrl->tRRD);
const struct iosav_ssq sequence[] = {
/*
* DRAM command ACT
* Opens the row for writing.
*/
[0] = {
.sp_cmd_ctrl = {
.command = IOSAV_ACT,
.ranksel_ap = 1,
},
.subseq_ctrl = {
.cmd_executions = 1,
.cmd_delay_gap = gap,
.post_ssq_wait = ctrl->tRCD,
.data_direction = SSQ_NA,
},
.sp_cmd_addr = {
.address = row,
.rowbits = 6,
.bank = bank,
.rank = slotrank,
},
.addr_update = {
.inc_addr_1 = 1,
.addr_wrap = 18,
},
},
/*
* DRAM command WR
* Writes (128 + 1) * 8 (burst length) * 8 (bus width)
* bytes.
*/
[1] = {
.sp_cmd_ctrl = {
.command = IOSAV_WR,
.ranksel_ap = 1,
},
.subseq_ctrl = {
.cmd_executions = 129,
.cmd_delay_gap = 4,
.post_ssq_wait = ctrl->tWTR +
ctrl->CWL + 8,
.data_direction = SSQ_WR,
},
.sp_cmd_addr = {
.address = row,
.rowbits = 0,
.bank = bank,
.rank = slotrank,
},
.addr_update = {
.inc_addr_8 = 1,
.addr_wrap = 9,
},
},
/*
* DRAM command PRE
* Closes the row.
*/
[2] = {
.sp_cmd_ctrl = {
.command = IOSAV_PRE,
.ranksel_ap = 1,
},
.subseq_ctrl = {
.cmd_executions = 1,
.cmd_delay_gap = 4,
.post_ssq_wait = ctrl->tRP,
.data_direction = SSQ_NA,
},
.sp_cmd_addr = {
.address = 0,
.rowbits = 6,
.bank = bank,
.rank = slotrank,
},
.addr_update = {
.addr_wrap = 18,
},
},
};
iosav_write_sequence(channel, sequence, ARRAY_SIZE(sequence));
iosav_run_queue(channel, 16, 0);
wait_for_iosav(channel);
}
}
}
}
void set_scrambling_seed(ramctr_timing *ctrl)
{
int channel;
/* FIXME: we hardcode seeds. Do we need to use some PRNG for them? I don't think so. */
static u32 seeds[NUM_CHANNELS][3] = {
{0x00009a36, 0xbafcfdcf, 0x46d1ab68},
{0x00028bfa, 0x53fe4b49, 0x19ed5483}
};
FOR_ALL_POPULATED_CHANNELS {
MCHBAR32(SCHED_CBIT_ch(channel)) &= ~(1 << 28);
MCHBAR32(SCRAMBLING_SEED_1_ch(channel)) = seeds[channel][0];
MCHBAR32(SCRAMBLING_SEED_2_HI_ch(channel)) = seeds[channel][1];
MCHBAR32(SCRAMBLING_SEED_2_LO_ch(channel)) = seeds[channel][2];
}
}
void set_wmm_behavior(const u32 cpu)
{
if (IS_SANDY_CPU(cpu) && (IS_SANDY_CPU_D0(cpu) || IS_SANDY_CPU_D1(cpu))) {
MCHBAR32(SC_WDBWM) = 0x141d1519;
} else {
MCHBAR32(SC_WDBWM) = 0x551d1519;
}
}
void prepare_training(ramctr_timing *ctrl)
{
int channel;
FOR_ALL_POPULATED_CHANNELS {
/* Always drive command bus */
MCHBAR32_OR(TC_RAP_ch(channel), 1 << 29);
}
udelay(1);
FOR_ALL_POPULATED_CHANNELS {
wait_for_iosav(channel);
}
}
void set_read_write_timings(ramctr_timing *ctrl)
{
/* Use a larger delay when running fast to improve stability */
const u32 tRWDRDD_inc = ctrl->tCK <= TCK_1066MHZ ? 4 : 2;
int channel, slotrank;
FOR_ALL_POPULATED_CHANNELS {
int min_pi = 10000;
int max_pi = -10000;
FOR_ALL_POPULATED_RANKS {
max_pi = MAX(ctrl->timings[channel][slotrank].pi_coding, max_pi);
min_pi = MIN(ctrl->timings[channel][slotrank].pi_coding, min_pi);
}
const u32 tWRDRDD = (max_pi - min_pi > 51) ? 0 : ctrl->ref_card_offset[channel];
const u32 val = (ctrl->pi_coding_threshold < max_pi - min_pi) ? 3 : 2;
dram_odt_stretch(ctrl, channel);
const union tc_rwp_reg tc_rwp = {
.tRRDR = 0,
.tRRDD = val,
.tWWDR = val,
.tWWDD = val,
.tRWDRDD = ctrl->ref_card_offset[channel] + tRWDRDD_inc,
.tWRDRDD = tWRDRDD,
.tRWSR = 2,
.dec_wrd = 1,
};
MCHBAR32(TC_RWP_ch(channel)) = tc_rwp.raw;
}
}
void set_normal_operation(ramctr_timing *ctrl)
{
int channel;
FOR_ALL_POPULATED_CHANNELS {
MCHBAR32(MC_INIT_STATE_ch(channel)) = (1 << 12) | ctrl->rankmap[channel];
MCHBAR32_AND(TC_RAP_ch(channel), ~(1 << 29));
}
}
/* Encode the watermark latencies in a suitable format for graphics drivers consumption */
static int encode_wm(int ns)
{
return (ns + 499) / 500;
}
/* FIXME: values in this function should be hardware revision-dependent */
void final_registers(ramctr_timing *ctrl)
{
int channel;
int t1_cycles = 0, t1_ns = 0, t2_ns;
int t3_ns;
u32 r32;
/* FIXME: This register only exists on Ivy Bridge */
MCHBAR32(WMM_READ_CONFIG) = 0x46;
FOR_ALL_CHANNELS {
union tc_othp_reg tc_othp = {
.raw = MCHBAR32(TC_OTHP_ch(channel)),
};
tc_othp.tCPDED = 1;
MCHBAR32(TC_OTHP_ch(channel)) = tc_othp.raw;
}
/* 64 DCLKs until idle, decision per rank */
MCHBAR32(PM_PDWN_CONFIG) = get_power_down_mode(ctrl) << 8 | 64;
FOR_ALL_CHANNELS
MCHBAR32(PM_TRML_M_CONFIG_ch(channel)) = 0x00000aaa;
MCHBAR32(PM_BW_LIMIT_CONFIG) = 0x5f7003ff;
MCHBAR32(PM_DLL_CONFIG) = 0x00073000 | ctrl->mdll_wake_delay;
FOR_ALL_CHANNELS {
switch (ctrl->rankmap[channel]) {
/* Unpopulated channel */
case 0:
MCHBAR32(PM_CMD_PWR_ch(channel)) = 0;
break;
/* Only single-ranked dimms */
case 1:
case 4:
case 5:
MCHBAR32(PM_CMD_PWR_ch(channel)) = 0x00373131;
break;
/* Dual-ranked dimms present */
default:
MCHBAR32(PM_CMD_PWR_ch(channel)) = 0x009b6ea1;
break;
}
}
MCHBAR32(MEM_TRML_ESTIMATION_CONFIG) = 0xca9171e5;
MCHBAR32_AND_OR(MEM_TRML_THRESHOLDS_CONFIG, ~0x00ffffff, 0x00e4d5d0);
MCHBAR32_AND(MEM_TRML_INTERRUPT, ~0x1f);
FOR_ALL_CHANNELS {
union tc_rfp_reg tc_rfp = {
.raw = MCHBAR32(TC_RFP_ch(channel)),
};
tc_rfp.refresh_2x_control = 1;
MCHBAR32(TC_RFP_ch(channel)) = tc_rfp.raw;
}
MCHBAR32_OR(MC_INIT_STATE_G, 1 << 0);
MCHBAR32_OR(MC_INIT_STATE_G, 1 << 7);
MCHBAR32(BANDTIMERS_SNB) = 0xfa;
/* Find a populated channel */
FOR_ALL_POPULATED_CHANNELS
break;
t1_cycles = (MCHBAR32(TC_ZQCAL_ch(channel)) >> 8) & 0xff;
r32 = MCHBAR32(PM_DLL_CONFIG);
if (r32 & (1 << 17))
t1_cycles += (r32 & 0xfff);
t1_cycles += MCHBAR32(TC_SRFTP_ch(channel)) & 0xfff;
t1_ns = t1_cycles * ctrl->tCK / 256 + 544;
if (!(r32 & (1 << 17)))
t1_ns += 500;
t2_ns = 10 * ((MCHBAR32(SAPMTIMERS) >> 8) & 0xfff);
if (MCHBAR32(SAPMCTL) & 8) {
t3_ns = 10 * ((MCHBAR32(BANDTIMERS_IVB) >> 8) & 0xfff);
t3_ns += 10 * (MCHBAR32(SAPMTIMERS2_IVB) & 0xff);
} else {
t3_ns = 500;
}
/* The graphics driver will use these watermark values */
printk(BIOS_DEBUG, "t123: %d, %d, %d\n", t1_ns, t2_ns, t3_ns);
MCHBAR32_AND_OR(SSKPD, ~0x3f3f3f3f,
((encode_wm(t1_ns) + encode_wm(t2_ns)) << 16) | (encode_wm(t1_ns) << 8) |
((encode_wm(t3_ns) + encode_wm(t2_ns) + encode_wm(t1_ns)) << 24) | 0x0c);
}
void restore_timings(ramctr_timing *ctrl)
{
int channel;
FOR_ALL_POPULATED_CHANNELS {
const union tc_rap_reg tc_rap = {
.tRRD = ctrl->tRRD,
.tRTP = ctrl->tRTP,
.tCKE = ctrl->tCKE,
.tWTR = ctrl->tWTR,
.tFAW = ctrl->tFAW,
.tWR = ctrl->tWR,
.tCMD = ctrl->cmd_stretch[channel],
};
MCHBAR32(TC_RAP_ch(channel)) = tc_rap.raw;
}
udelay(1);
FOR_ALL_POPULATED_CHANNELS {
wait_for_iosav(channel);
}
FOR_ALL_POPULATED_CHANNELS
MCHBAR32_OR(TC_RWP_ch(channel), 1 << 27);
FOR_ALL_POPULATED_CHANNELS {
udelay(1);
MCHBAR32_OR(SCHED_CBIT_ch(channel), 1 << 21);
}
printram("CPE\n");
MCHBAR32(GDCRTRAININGMOD) = 0;
MCHBAR32(IOSAV_DC_MASK) = 0;
printram("CP5b\n");
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
u32 reg, addr;
/* Poll for RCOMP */
while (!(MCHBAR32(RCOMP_TIMER) & (1 << 16)))
;
do {
reg = MCHBAR32(IOSAV_STATUS_ch(0));
} while ((reg & 0x14) == 0);
/* Set state of memory controller */
MCHBAR32(MC_INIT_STATE_G) = 0x116;
MCHBAR32(MC_INIT_STATE) = 0;
/* Wait 500us */
udelay(500);
FOR_ALL_CHANNELS {
/* Set valid rank CKE */
reg = 0;
reg = (reg & ~0x0f) | ctrl->rankmap[channel];
addr = MC_INIT_STATE_ch(channel);
MCHBAR32(addr) = reg;
/* Wait 10ns for ranks to settle */
// udelay(0.01);
reg = (reg & ~0xf0) | (ctrl->rankmap[channel] << 4);
MCHBAR32(addr) = reg;
/* Write reset using a NOP */
write_reset(ctrl);
}
/* MRS commands */
dram_mrscommands(ctrl);
printram("CP5c\n");
MCHBAR32(GDCRTRAININGMOD_ch(0)) = 0;
FOR_ALL_CHANNELS {
MCHBAR32_AND(GDCRCMDDEBUGMUXCFG_Cz_S(channel), ~(0x3f << 24));
udelay(2);
}
}