coreboot/src/cpu/x86/lapic/lapic_cpu_init.c

587 lines
14 KiB
C

/*
* This file is part of the coreboot project.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <cpu/x86/cr.h>
#include <cpu/x86/gdt.h>
#include <cpu/x86/lapic.h>
#include <cpu/x86/smi_deprecated.h>
#include <arch/acpi.h>
#include <delay.h>
#include <halt.h>
#include <lib.h>
#include <string.h>
#include <symbols.h>
#include <console/console.h>
#include <device/device.h>
#include <device/path.h>
#include <smp/atomic.h>
#include <smp/spinlock.h>
#include <cpu/cpu.h>
#include <cpu/intel/speedstep.h>
#include <thread.h>
/* This is a lot more paranoid now, since Linux can NOT handle
* being told there is a CPU when none exists. So any errors
* will return 0, meaning no CPU.
*
* We actually handling that case by noting which cpus startup
* and not telling anyone about the ones that don't.
*/
/* Start-UP IPI vector must be 4kB aligned and below 1MB. */
#define AP_SIPI_VECTOR 0x1000
static char *lowmem_backup;
static char *lowmem_backup_ptr;
static int lowmem_backup_size;
static inline void setup_secondary_gdt(void)
{
u16 *gdt_limit;
#ifdef __x86_64__
u64 *gdt_base;
#else
u32 *gdt_base;
#endif
gdt_limit = (void *)&_secondary_gdt_addr;
gdt_base = (void *)&gdt_limit[1];
*gdt_limit = (uintptr_t)&gdt_end - (uintptr_t)&gdt - 1;
*gdt_base = (uintptr_t)&gdt;
}
static void copy_secondary_start_to_lowest_1M(void)
{
unsigned long code_size;
/* Fill in secondary_start's local gdt. */
setup_secondary_gdt();
code_size = (unsigned long)_secondary_start_end
- (unsigned long)_secondary_start;
if (acpi_is_wakeup_s3()) {
/* need to save it for RAM resume */
lowmem_backup_size = code_size;
lowmem_backup = malloc(code_size);
lowmem_backup_ptr = (char *)AP_SIPI_VECTOR;
if (lowmem_backup == NULL)
die("Out of backup memory\n");
memcpy(lowmem_backup, lowmem_backup_ptr, lowmem_backup_size);
}
/* copy the _secondary_start to the RAM below 1M*/
memcpy((unsigned char *)AP_SIPI_VECTOR,
(unsigned char *)_secondary_start, code_size);
printk(BIOS_DEBUG, "start_eip=0x%08lx, code_size=0x%08lx\n",
(unsigned long int)AP_SIPI_VECTOR, code_size);
}
static void recover_lowest_1M(void)
{
if (acpi_is_wakeup_s3())
memcpy(lowmem_backup_ptr, lowmem_backup, lowmem_backup_size);
}
static int lapic_start_cpu(unsigned long apicid)
{
int timeout;
unsigned long send_status, accept_status;
int j, maxlvt;
/*
* Starting actual IPI sequence...
*/
printk(BIOS_SPEW, "Asserting INIT.\n");
/*
* Turn INIT on target chip
*/
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(apicid));
/*
* Send IPI
*/
lapic_write_around(LAPIC_ICR, LAPIC_INT_LEVELTRIG | LAPIC_INT_ASSERT
| LAPIC_DM_INIT);
printk(BIOS_SPEW, "Waiting for send to finish...\n");
timeout = 0;
do {
printk(BIOS_SPEW, "+");
udelay(100);
send_status = lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY;
} while (send_status && (timeout++ < 1000));
if (timeout >= 1000) {
printk(BIOS_ERR, "CPU %ld: First APIC write timed out. "
"Disabling\n", apicid);
// too bad.
printk(BIOS_ERR, "ESR is 0x%lx\n", lapic_read(LAPIC_ESR));
if (lapic_read(LAPIC_ESR)) {
printk(BIOS_ERR, "Try to reset ESR\n");
lapic_write_around(LAPIC_ESR, 0);
printk(BIOS_ERR, "ESR is 0x%lx\n",
lapic_read(LAPIC_ESR));
}
return 0;
}
#if !CONFIG(CPU_AMD_MODEL_10XXX) \
&& !CONFIG(CPU_INTEL_MODEL_206AX) \
&& !CONFIG(CPU_INTEL_MODEL_2065X)
mdelay(10);
#endif
printk(BIOS_SPEW, "Deasserting INIT.\n");
/* Target chip */
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(apicid));
/* Send IPI */
lapic_write_around(LAPIC_ICR, LAPIC_INT_LEVELTRIG | LAPIC_DM_INIT);
printk(BIOS_SPEW, "Waiting for send to finish...\n");
timeout = 0;
do {
printk(BIOS_SPEW, "+");
udelay(100);
send_status = lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY;
} while (send_status && (timeout++ < 1000));
if (timeout >= 1000) {
printk(BIOS_ERR, "CPU %ld: Second APIC write timed out. "
"Disabling\n", apicid);
// too bad.
return 0;
}
/*
* Run STARTUP IPI loop.
*/
printk(BIOS_SPEW, "#startup loops: %d.\n", CONFIG_NUM_IPI_STARTS);
maxlvt = 4;
for (j = 1; j <= CONFIG_NUM_IPI_STARTS; j++) {
printk(BIOS_SPEW, "Sending STARTUP #%d to %lu.\n", j, apicid);
lapic_read_around(LAPIC_SPIV);
lapic_write(LAPIC_ESR, 0);
lapic_read(LAPIC_ESR);
printk(BIOS_SPEW, "After apic_write.\n");
/*
* STARTUP IPI
*/
/* Target chip */
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(apicid));
/* Boot on the stack */
/* Kick the second */
lapic_write_around(LAPIC_ICR, LAPIC_DM_STARTUP
| (AP_SIPI_VECTOR >> 12));
/*
* Give the other CPU some time to accept the IPI.
*/
udelay(300);
printk(BIOS_SPEW, "Startup point 1.\n");
printk(BIOS_SPEW, "Waiting for send to finish...\n");
timeout = 0;
do {
printk(BIOS_SPEW, "+");
udelay(100);
send_status = lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY;
} while (send_status && (timeout++ < 1000));
/*
* Give the other CPU some time to accept the IPI.
*/
udelay(200);
/*
* Due to the Pentium erratum 3AP.
*/
if (maxlvt > 3) {
lapic_read_around(LAPIC_SPIV);
lapic_write(LAPIC_ESR, 0);
}
accept_status = (lapic_read(LAPIC_ESR) & 0xEF);
if (send_status || accept_status)
break;
}
printk(BIOS_SPEW, "After Startup.\n");
if (send_status)
printk(BIOS_WARNING, "APIC never delivered???\n");
if (accept_status)
printk(BIOS_WARNING, "APIC delivery error (%lx).\n",
accept_status);
if (send_status || accept_status)
return 0;
return 1;
}
/* Number of cpus that are currently running in coreboot */
static atomic_t active_cpus = ATOMIC_INIT(1);
/* start_cpu_lock covers last_cpu_index and secondary_stack.
* Only starting one CPU at a time let's me remove the logic
* for select the stack from assembly language.
*
* In addition communicating by variables to the CPU I
* am starting allows me to verify it has started before
* start_cpu returns.
*/
DECLARE_SPIN_LOCK(start_cpu_lock);
static unsigned int last_cpu_index = 0;
static void *stacks[CONFIG_MAX_CPUS];
volatile unsigned long secondary_stack;
volatile unsigned int secondary_cpu_index;
int start_cpu(struct device *cpu)
{
struct cpu_info *info;
uintptr_t stack_top;
uintptr_t stack_base;
unsigned long apicid;
unsigned int index;
unsigned long count;
int result;
spin_lock(&start_cpu_lock);
/* Get the CPU's apicid */
apicid = cpu->path.apic.apic_id;
/* Get an index for the new processor */
index = ++last_cpu_index;
/* Find boundaries of the new processor's stack */
stack_top = ALIGN_DOWN((uintptr_t)_estack, CONFIG_STACK_SIZE);
stack_top -= (CONFIG_STACK_SIZE*index);
stack_base = stack_top - CONFIG_STACK_SIZE;
stack_top -= sizeof(struct cpu_info);
printk(BIOS_SPEW, "CPU%d: stack_base %p, stack_top %p\n", index,
(void *)stack_base, (void *)stack_top);
stacks[index] = (void *)stack_base;
/* Record the index and which CPU structure we are using */
info = (struct cpu_info *)stack_top;
info->index = index;
info->cpu = cpu;
cpu_add_map_entry(info->index);
thread_init_cpu_info_non_bsp(info);
/* Advertise the new stack and index to start_cpu */
secondary_stack = stack_top;
secondary_cpu_index = index;
/* Until the CPU starts up report the CPU is not enabled */
cpu->enabled = 0;
cpu->initialized = 0;
/* Start the CPU */
result = lapic_start_cpu(apicid);
if (result) {
result = 0;
/* Wait 1s or until the new CPU calls in */
for (count = 0; count < 100000; count++) {
if (secondary_stack == 0) {
result = 1;
break;
}
udelay(10);
}
}
secondary_stack = 0;
spin_unlock(&start_cpu_lock);
return result;
}
#if CONFIG(AP_IN_SIPI_WAIT)
/**
* Sending INIT IPI to self is equivalent of asserting #INIT with a bit of
* delay.
* An undefined number of instruction cycles will complete. All global locks
* must be released before INIT IPI and no printk is allowed after this.
* De-asserting INIT IPI is a no-op on later Intel CPUs.
*
* If you set DEBUG_HALT_SELF to 1, printk's after INIT IPI are enabled
* but running thread may halt without releasing the lock and effectively
* deadlock other CPUs.
*/
#define DEBUG_HALT_SELF 0
/**
* Normally this function is defined in lapic.h as an always inline function
* that just keeps the CPU in a hlt() loop. This does not work on all CPUs.
* I think all hyperthreading CPUs might need this version, but I could only
* verify this on the Intel Core Duo
*/
void stop_this_cpu(void)
{
int timeout;
unsigned long send_status;
unsigned long id;
id = lapicid();
printk(BIOS_DEBUG, "CPU %ld going down...\n", id);
/* send an LAPIC INIT to myself */
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(id));
lapic_write_around(LAPIC_ICR, LAPIC_INT_LEVELTRIG |
LAPIC_INT_ASSERT | LAPIC_DM_INIT);
/* wait for the ipi send to finish */
#if DEBUG_HALT_SELF
printk(BIOS_SPEW, "Waiting for send to finish...\n");
#endif
timeout = 0;
do {
#if DEBUG_HALT_SELF
printk(BIOS_SPEW, "+");
#endif
udelay(100);
send_status = lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY;
} while (send_status && (timeout++ < 1000));
if (timeout >= 1000) {
#if DEBUG_HALT_SELF
printk(BIOS_ERR, "timed out\n");
#endif
}
mdelay(10);
#if DEBUG_HALT_SELF
printk(BIOS_SPEW, "Deasserting INIT.\n");
#endif
/* Deassert the LAPIC INIT */
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(id));
lapic_write_around(LAPIC_ICR, LAPIC_INT_LEVELTRIG | LAPIC_DM_INIT);
#if DEBUG_HALT_SELF
printk(BIOS_SPEW, "Waiting for send to finish...\n");
#endif
timeout = 0;
do {
#if DEBUG_HALT_SELF
printk(BIOS_SPEW, "+");
#endif
udelay(100);
send_status = lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY;
} while (send_status && (timeout++ < 1000));
if (timeout >= 1000) {
#if DEBUG_HALT_SELF
printk(BIOS_ERR, "timed out\n");
#endif
}
halt();
}
#endif
/* C entry point of secondary cpus */
asmlinkage void secondary_cpu_init(unsigned int index)
{
atomic_inc(&active_cpus);
if (!CONFIG(PARALLEL_CPU_INIT))
spin_lock(&start_cpu_lock);
#ifdef __SSE3__
/*
* Seems that CR4 was cleared when AP start via lapic_start_cpu()
* Turn on CR4.OSFXSR and CR4.OSXMMEXCPT when SSE options enabled
*/
CRx_TYPE cr4_val;
cr4_val = read_cr4();
cr4_val |= (CR4_OSFXSR | CR4_OSXMMEXCPT);
write_cr4(cr4_val);
#endif
cpu_initialize(index);
if (!CONFIG(PARALLEL_CPU_INIT))
spin_unlock(&start_cpu_lock);
atomic_dec(&active_cpus);
stop_this_cpu();
}
static void start_other_cpus(struct bus *cpu_bus, struct device *bsp_cpu)
{
struct device *cpu;
/* Loop through the cpus once getting them started */
for (cpu = cpu_bus->children; cpu; cpu = cpu->sibling) {
if (cpu->path.type != DEVICE_PATH_APIC)
continue;
if (CONFIG(PARALLEL_CPU_INIT) && (cpu == bsp_cpu))
continue;
if (!cpu->enabled)
continue;
if (cpu->initialized)
continue;
if (!start_cpu(cpu))
/* Record the error in cpu? */
printk(BIOS_ERR, "CPU 0x%02x would not start!\n",
cpu->path.apic.apic_id);
if (!CONFIG(PARALLEL_CPU_INIT))
udelay(10);
}
}
static void smm_other_cpus(struct bus *cpu_bus, struct device *bsp_cpu)
{
struct device *cpu;
int pre_count = atomic_read(&active_cpus);
/* Loop through the cpus once to let them run through SMM relocator */
for (cpu = cpu_bus->children; cpu; cpu = cpu->sibling) {
if (cpu->path.type != DEVICE_PATH_APIC)
continue;
printk(BIOS_ERR, "considering CPU 0x%02x for SMM init\n",
cpu->path.apic.apic_id);
if (cpu == bsp_cpu)
continue;
if (!cpu->enabled)
continue;
if (!start_cpu(cpu))
/* Record the error in cpu? */
printk(BIOS_ERR, "CPU 0x%02x would not start!\n",
cpu->path.apic.apic_id);
/* FIXME: endless loop */
while (atomic_read(&active_cpus) != pre_count)
;
}
}
static void wait_other_cpus_stop(struct bus *cpu_bus)
{
struct device *cpu;
int old_active_count, active_count;
long loopcount = 0;
int i;
/* Now loop until the other cpus have finished initializing */
old_active_count = 1;
active_count = atomic_read(&active_cpus);
while (active_count > 1) {
if (active_count != old_active_count) {
printk(BIOS_INFO, "Waiting for %d CPUS to stop\n",
active_count - 1);
old_active_count = active_count;
}
udelay(10);
active_count = atomic_read(&active_cpus);
loopcount++;
}
for (cpu = cpu_bus->children; cpu; cpu = cpu->sibling) {
if (cpu->path.type != DEVICE_PATH_APIC)
continue;
if (cpu->path.apic.apic_id == SPEEDSTEP_APIC_MAGIC)
continue;
if (!cpu->initialized)
printk(BIOS_ERR, "CPU 0x%02x did not initialize!\n",
cpu->path.apic.apic_id);
}
printk(BIOS_DEBUG, "All AP CPUs stopped (%ld loops)\n", loopcount);
checkstack(_estack, 0);
for (i = 1; i < CONFIG_MAX_CPUS && i <= last_cpu_index; i++)
checkstack((void *)stacks[i] + CONFIG_STACK_SIZE, i);
}
void initialize_cpus(struct bus *cpu_bus)
{
struct device_path cpu_path;
struct cpu_info *info;
/* Find the info struct for this CPU */
info = cpu_info();
if (need_lapic_init()) {
/* Ensure the local APIC is enabled */
enable_lapic();
/* Get the device path of the boot CPU */
cpu_path.type = DEVICE_PATH_APIC;
cpu_path.apic.apic_id = lapicid();
} else {
/* Get the device path of the boot CPU */
cpu_path.type = DEVICE_PATH_CPU;
cpu_path.cpu.id = 0;
}
/* Find the device structure for the boot CPU */
info->cpu = alloc_find_dev(cpu_bus, &cpu_path);
cpu_add_map_entry(info->index);
// why here? In case some day we can start core1 in amd_sibling_init
if (is_smp_boot())
copy_secondary_start_to_lowest_1M();
if (!CONFIG(SERIALIZED_SMM_INITIALIZATION))
smm_init();
/* start all aps at first, so we can init ECC all together */
if (is_smp_boot() && CONFIG(PARALLEL_CPU_INIT))
start_other_cpus(cpu_bus, info->cpu);
/* Initialize the bootstrap processor */
cpu_initialize(0);
if (is_smp_boot() && !CONFIG(PARALLEL_CPU_INIT))
start_other_cpus(cpu_bus, info->cpu);
/* Now wait the rest of the cpus stop*/
if (is_smp_boot())
wait_other_cpus_stop(cpu_bus);
if (CONFIG(SERIALIZED_SMM_INITIALIZATION)) {
/* At this point, all APs are sleeping:
* smm_init() will queue a pending SMI on all cpus
* and smm_other_cpus() will start them one by one */
smm_init();
if (is_smp_boot()) {
last_cpu_index = 0;
smm_other_cpus(cpu_bus, info->cpu);
}
}
smm_init_completion();
if (is_smp_boot())
recover_lowest_1M();
}