coreboot/src/soc/amd/picasso/agesa_acpi.c

1049 lines
35 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#include <acpi/acpi.h>
#include <acpi/acpi_crat.h>
#include <acpi/acpi_ivrs.h>
#include <console/console.h>
#include <cpu/amd/cpuid.h>
#include <cpu/amd/msr.h>
#include <fsp/util.h>
#include <FspGuids.h>
#include <soc/acpi.h>
#include <stdint.h>
#include <device/pci_def.h>
#include <device/pci_ops.h>
#include <amdblocks/cpu.h>
#include <amdblocks/data_fabric.h>
#include <amdblocks/ioapic.h>
#include <soc/data_fabric.h>
#include <soc/pci_devs.h>
#include <stdlib.h>
#include <arch/mmio.h>
struct amd_fsp_acpi_hob_info {
uint32_t table_size_in_bytes;
uint8_t total_hobs_for_table;
uint8_t sequence_number;
uint16_t reserved;
uint16_t hob_payload[0xffc8];
} __packed;
static uintptr_t add_agesa_acpi_table(guid_t guid, const char *name, acpi_rsdp_t *rsdp,
uintptr_t current)
{
const struct amd_fsp_acpi_hob_info *data;
void *table = (void *)current;
size_t hob_size;
data = fsp_find_extension_hob_by_guid(guid.b, &hob_size);
if (!data) {
printk(BIOS_ERR, "AGESA %s ACPI table was not found.\n", name);
return current;
}
printk(BIOS_INFO, "ACPI: * %s (AGESA).\n", name);
memcpy(table, data->hob_payload, data->table_size_in_bytes);
current += data->table_size_in_bytes;
acpi_add_table(rsdp, table);
current = acpi_align_current(current);
return current;
}
unsigned long acpi_fill_ivrs_ioapic(acpi_ivrs_t *ivrs, unsigned long current)
{
ivrs_ivhd_special_t *ivhd_ioapic = (ivrs_ivhd_special_t *)current;
memset(ivhd_ioapic, 0, sizeof(*ivhd_ioapic));
ivhd_ioapic->type = IVHD_DEV_8_BYTE_EXT_SPECIAL_DEV;
ivhd_ioapic->dte_setting = IVHD_DTE_LINT_1_PASS | IVHD_DTE_LINT_0_PASS |
IVHD_DTE_SYS_MGT_NO_TRANS | IVHD_DTE_NMI_PASS |
IVHD_DTE_EXT_INT_PASS | IVHD_DTE_INIT_PASS;
ivhd_ioapic->handle = FCH_IOAPIC_ID;
ivhd_ioapic->source_dev_id = PCI_DEVFN(SMBUS_DEV, SMBUS_FUNC);
ivhd_ioapic->variety = IVHD_SPECIAL_DEV_IOAPIC;
current += sizeof(ivrs_ivhd_special_t);
ivhd_ioapic = (ivrs_ivhd_special_t *)current;
memset(ivhd_ioapic, 0, sizeof(*ivhd_ioapic));
ivhd_ioapic->type = IVHD_DEV_8_BYTE_EXT_SPECIAL_DEV;
ivhd_ioapic->handle = GNB_IOAPIC_ID;
ivhd_ioapic->source_dev_id = PCI_DEVFN(0, 1);
ivhd_ioapic->variety = IVHD_SPECIAL_DEV_IOAPIC;
current += sizeof(ivrs_ivhd_special_t);
return current;
}
static unsigned long ivhd_describe_hpet(unsigned long current)
{
ivrs_ivhd_special_t *ivhd_hpet = (ivrs_ivhd_special_t *)current;
ivhd_hpet->type = IVHD_DEV_8_BYTE_EXT_SPECIAL_DEV;
ivhd_hpet->reserved = 0x0000;
ivhd_hpet->dte_setting = 0x00;
ivhd_hpet->handle = 0x00;
ivhd_hpet->source_dev_id = PCI_DEVFN(SMBUS_DEV, SMBUS_FUNC);
ivhd_hpet->variety = IVHD_SPECIAL_DEV_HPET;
current += sizeof(ivrs_ivhd_special_t);
return current;
}
static unsigned long ivhd_describe_f0_device(unsigned long current,
uint16_t dev_id, uint8_t datasetting)
{
ivrs_ivhd_f0_entry_t *ivhd_f0 = (ivrs_ivhd_f0_entry_t *) current;
ivhd_f0->type = IVHD_DEV_VARIABLE;
ivhd_f0->dev_id = dev_id;
ivhd_f0->dte_setting = datasetting;
ivhd_f0->hardware_id[0] = 'A';
ivhd_f0->hardware_id[1] = 'M';
ivhd_f0->hardware_id[2] = 'D';
ivhd_f0->hardware_id[3] = 'I';
ivhd_f0->hardware_id[4] = '0';
ivhd_f0->hardware_id[5] = '0';
ivhd_f0->hardware_id[6] = '4';
ivhd_f0->hardware_id[7] = '0';
memset(ivhd_f0->compatible_id, 0, sizeof(ivhd_f0->compatible_id));
ivhd_f0->uuid_format = 0;
ivhd_f0->uuid_length = 0;
current += sizeof(ivrs_ivhd_f0_entry_t);
return current;
}
static unsigned long ivhd_dev_range(unsigned long current, uint16_t start_devid,
uint16_t end_devid, uint8_t setting)
{
/* 4-byte IVHD structures must be aligned to the 4-byte boundary. */
current = ALIGN_UP(current, 4);
ivrs_ivhd_generic_t *ivhd_range = (ivrs_ivhd_generic_t *)current;
/* Create the start range IVHD entry */
ivhd_range->type = IVHD_DEV_4_BYTE_START_RANGE;
ivhd_range->dev_id = start_devid;
ivhd_range->dte_setting = setting;
current += sizeof(ivrs_ivhd_generic_t);
/* Create the end range IVHD entry */
ivhd_range = (ivrs_ivhd_generic_t *)current;
ivhd_range->type = IVHD_DEV_4_BYTE_END_RANGE;
ivhd_range->dev_id = end_devid;
ivhd_range->dte_setting = setting;
current += sizeof(ivrs_ivhd_generic_t);
return current;
}
static unsigned long add_ivhd_dev_entry(struct device *parent, struct device *dev,
unsigned long *current, uint8_t type, uint8_t data)
{
if (type == IVHD_DEV_4_BYTE_SELECT) {
/* 4-byte IVHD structures must be aligned to the 4-byte boundary. */
*current = ALIGN_UP(*current, 4);
ivrs_ivhd_generic_t *ivhd_entry = (ivrs_ivhd_generic_t *)*current;
ivhd_entry->type = type;
ivhd_entry->dev_id = dev->path.pci.devfn | (dev->bus->secondary << 8);
ivhd_entry->dte_setting = data;
*current += sizeof(ivrs_ivhd_generic_t);
} else if (type == IVHD_DEV_8_BYTE_ALIAS_SELECT) {
ivrs_ivhd_alias_t *ivhd_entry = (ivrs_ivhd_alias_t *)*current;
ivhd_entry->type = type;
ivhd_entry->dev_id = dev->path.pci.devfn | (dev->bus->secondary << 8);
ivhd_entry->dte_setting = data;
ivhd_entry->reserved1 = 0;
ivhd_entry->reserved2 = 0;
ivhd_entry->source_dev_id = parent->path.pci.devfn |
(parent->bus->secondary << 8);
*current += sizeof(ivrs_ivhd_alias_t);
}
return *current;
}
static void ivrs_add_device_or_bridge(struct device *parent, struct device *dev,
unsigned long *current, uint16_t *ivhd_length)
{
unsigned int header_type, is_pcie;
unsigned long current_backup;
header_type = dev->hdr_type & 0x7f;
is_pcie = pci_find_capability(dev, PCI_CAP_ID_PCIE);
if (((header_type == PCI_HEADER_TYPE_NORMAL) ||
(header_type == PCI_HEADER_TYPE_BRIDGE)) && is_pcie) {
/* Device or Bridge is PCIe */
current_backup = *current;
add_ivhd_dev_entry(parent, dev, current, IVHD_DEV_4_BYTE_SELECT, 0x0);
*ivhd_length += (*current - current_backup);
} else if ((header_type == PCI_HEADER_TYPE_NORMAL) && !is_pcie) {
/* Device is legacy PCI or PCI-X */
current_backup = *current;
add_ivhd_dev_entry(parent, dev, current, IVHD_DEV_8_BYTE_ALIAS_SELECT, 0x0);
*ivhd_length += (*current - current_backup);
}
}
static void add_ivhd_device_entries(struct device *parent, struct device *dev,
unsigned int depth, int linknum, int8_t *root_level,
unsigned long *current, uint16_t *ivhd_length)
{
struct device *sibling;
struct bus *link;
if (!root_level)
return;
if (dev->path.type == DEVICE_PATH_PCI) {
if ((dev->bus->secondary == 0x0) &&
(dev->path.pci.devfn == 0x0))
*root_level = depth;
if ((*root_level != -1) && (dev->enabled)) {
if (depth != *root_level)
ivrs_add_device_or_bridge(parent, dev, current, ivhd_length);
}
}
for (link = dev->link_list; link; link = link->next)
for (sibling = link->children; sibling; sibling =
sibling->sibling)
add_ivhd_device_entries(dev, sibling, depth + 1, depth, root_level,
current, ivhd_length);
}
static unsigned long acpi_fill_ivrs40(unsigned long current, acpi_ivrs_t *ivrs)
{
acpi_ivrs_ivhd40_t *ivhd_40;
unsigned long current_backup;
int8_t root_level;
/*
* These devices should be already found by previous function.
* Do not perform NULL checks.
*/
struct device *nb_dev = pcidev_on_root(0, 0);
struct device *iommu_dev = pcidev_on_root(0, 2);
memset((void *)current, 0, sizeof(acpi_ivrs_ivhd40_t));
ivhd_40 = (acpi_ivrs_ivhd40_t *)current;
/* Enable EFR */
ivhd_40->type = IVHD_BLOCK_TYPE_FULL__ACPI_HID;
/* For type 40h bits 6 and 7 are reserved */
ivhd_40->flags = ivrs->ivhd.flags & 0x3f;
ivhd_40->length = sizeof(struct acpi_ivrs_ivhd_40);
/* BDF <bus>:00.2 */
ivhd_40->device_id = 0x02 | (nb_dev->bus->secondary << 8);
ivhd_40->capability_offset = pci_find_capability(iommu_dev, IOMMU_CAP_ID);
ivhd_40->iommu_base_low = ivrs->ivhd.iommu_base_low;
ivhd_40->iommu_base_high = ivrs->ivhd.iommu_base_high;
ivhd_40->pci_segment_group = 0x0000;
ivhd_40->iommu_info = ivrs->ivhd.iommu_info;
/* For type 40h bits 31:28 and 12:0 are reserved */
ivhd_40->iommu_attributes = ivrs->ivhd.iommu_feature_info & 0xfffe000;
if (pci_read_config32(iommu_dev, ivhd_40->capability_offset) & EFR_FEATURE_SUP) {
ivhd_40->efr_reg_image_low = read32((void *)ivhd_40->iommu_base_low + 0x30);
ivhd_40->efr_reg_image_high = read32((void *)ivhd_40->iommu_base_low + 0x34);
}
current += sizeof(acpi_ivrs_ivhd40_t);
/* Now repeat all the device entries from type 10h */
current_backup = current;
current = ivhd_dev_range(current, PCI_DEVFN(1, 0), PCI_DEVFN(0x1f, 6), 0);
ivhd_40->length += (current - current_backup);
root_level = -1;
add_ivhd_device_entries(NULL, all_devices, 0, -1, &root_level,
&current, &ivhd_40->length);
/* Describe HPET */
current_backup = current;
current = ivhd_describe_hpet(current);
ivhd_40->length += (current - current_backup);
/* Describe IOAPICs */
current_backup = current;
current = acpi_fill_ivrs_ioapic(ivrs, current);
ivhd_40->length += (current - current_backup);
/* Describe EMMC */
current_backup = current;
current = ivhd_describe_f0_device(current, PCI_DEVFN(0x13, 1),
IVHD_DTE_LINT_1_PASS | IVHD_DTE_LINT_0_PASS |
IVHD_DTE_SYS_MGT_TRANS | IVHD_DTE_NMI_PASS |
IVHD_DTE_EXT_INT_PASS | IVHD_DTE_INIT_PASS);
ivhd_40->length += (current - current_backup);
return current;
}
static unsigned long acpi_fill_ivrs11(unsigned long current, acpi_ivrs_t *ivrs)
{
acpi_ivrs_ivhd11_t *ivhd_11;
ivhd11_iommu_attr_t *ivhd11_attr_ptr;
unsigned long current_backup;
int8_t root_level;
/*
* These devices should be already found by previous function.
* Do not perform NULL checks.
*/
struct device *nb_dev = pcidev_on_root(0, 0);
struct device *iommu_dev = pcidev_on_root(0, 2);
/*
* In order to utilize all features, firmware should expose type 11h
* IVHD which supersedes the type 10h.
*/
memset((void *)current, 0, sizeof(acpi_ivrs_ivhd11_t));
ivhd_11 = (acpi_ivrs_ivhd11_t *)current;
/* Enable EFR */
ivhd_11->type = IVHD_BLOCK_TYPE_FULL__FIXED;
/* For type 11h bits 6 and 7 are reserved */
ivhd_11->flags = ivrs->ivhd.flags & 0x3f;
ivhd_11->length = sizeof(struct acpi_ivrs_ivhd_11);
/* BDF <bus>:00.2 */
ivhd_11->device_id = 0x02 | (nb_dev->bus->secondary << 8);
ivhd_11->capability_offset = pci_find_capability(iommu_dev, IOMMU_CAP_ID);
ivhd_11->iommu_base_low = ivrs->ivhd.iommu_base_low;
ivhd_11->iommu_base_high = ivrs->ivhd.iommu_base_high;
ivhd_11->pci_segment_group = 0x0000;
ivhd_11->iommu_info = ivrs->ivhd.iommu_info;
ivhd11_attr_ptr = (ivhd11_iommu_attr_t *) &ivrs->ivhd.iommu_feature_info;
ivhd_11->iommu_attributes.perf_counters = ivhd11_attr_ptr->perf_counters;
ivhd_11->iommu_attributes.perf_counter_banks = ivhd11_attr_ptr->perf_counter_banks;
ivhd_11->iommu_attributes.msi_num_ppr = ivhd11_attr_ptr->msi_num_ppr;
if (pci_read_config32(iommu_dev, ivhd_11->capability_offset) & EFR_FEATURE_SUP) {
ivhd_11->efr_reg_image_low = read32((void *)ivhd_11->iommu_base_low + 0x30);
ivhd_11->efr_reg_image_high = read32((void *)ivhd_11->iommu_base_low + 0x34);
}
current += sizeof(acpi_ivrs_ivhd11_t);
/* Now repeat all the device entries from type 10h */
current_backup = current;
current = ivhd_dev_range(current, PCI_DEVFN(1, 0), PCI_DEVFN(0x1f, 6), 0);
ivhd_11->length += (current - current_backup);
root_level = -1;
add_ivhd_device_entries(NULL, all_devices, 0, -1, &root_level,
&current, &ivhd_11->length);
/* Describe HPET */
current_backup = current;
current = ivhd_describe_hpet(current);
ivhd_11->length += (current - current_backup);
/* Describe IOAPICs */
current_backup = current;
current = acpi_fill_ivrs_ioapic(ivrs, current);
ivhd_11->length += (current - current_backup);
return acpi_fill_ivrs40(current, ivrs);
}
static unsigned long acpi_fill_ivrs(acpi_ivrs_t *ivrs, unsigned long current)
{
unsigned long current_backup;
uint64_t mmio_x30_value;
uint64_t mmio_x18_value;
uint64_t mmio_x4000_value;
uint32_t cap_offset_0;
uint32_t cap_offset_10;
int8_t root_level;
struct device *iommu_dev;
struct device *nb_dev;
nb_dev = pcidev_on_root(0, 0);
if (!nb_dev) {
printk(BIOS_WARNING, "%s: Northbridge device not present!\n", __func__);
printk(BIOS_WARNING, "%s: IVRS table not generated...\n", __func__);
return (unsigned long)ivrs;
}
iommu_dev = pcidev_on_root(0, 2);
if (!iommu_dev) {
printk(BIOS_WARNING, "%s: IOMMU device not found\n", __func__);
return (unsigned long)ivrs;
}
if (ivrs != NULL) {
ivrs->ivhd.type = IVHD_BLOCK_TYPE_LEGACY__FIXED;
ivrs->ivhd.length = sizeof(struct acpi_ivrs_ivhd);
/* BDF <bus>:00.2 */
ivrs->ivhd.device_id = 0x02 | (nb_dev->bus->secondary << 8);
ivrs->ivhd.capability_offset = pci_find_capability(iommu_dev, IOMMU_CAP_ID);
ivrs->ivhd.iommu_base_low = pci_read_config32(iommu_dev, 0x44) & 0xffffc000;
ivrs->ivhd.iommu_base_high = pci_read_config32(iommu_dev, 0x48);
cap_offset_0 = pci_read_config32(iommu_dev, ivrs->ivhd.capability_offset);
cap_offset_10 = pci_read_config32(iommu_dev,
ivrs->ivhd.capability_offset + 0x10);
mmio_x18_value = read64((void *)ivrs->ivhd.iommu_base_low + 0x18);
mmio_x30_value = read64((void *)ivrs->ivhd.iommu_base_low + 0x30);
mmio_x4000_value = read64((void *)ivrs->ivhd.iommu_base_low + 0x4000);
ivrs->ivhd.flags |= ((mmio_x30_value & MMIO_EXT_FEATURE_PPR_SUP) ?
IVHD_FLAG_PPE_SUP : 0);
ivrs->ivhd.flags |= ((mmio_x30_value & MMIO_EXT_FEATURE_PRE_F_SUP) ?
IVHD_FLAG_PREF_SUP : 0);
ivrs->ivhd.flags |= ((mmio_x18_value & MMIO_CTRL_COHERENT) ?
IVHD_FLAG_COHERENT : 0);
ivrs->ivhd.flags |= ((cap_offset_0 & CAP_OFFSET_0_IOTLB_SP) ?
IVHD_FLAG_IOTLB_SUP : 0);
ivrs->ivhd.flags |= ((mmio_x18_value & MMIO_CTRL_ISOC) ?
IVHD_FLAG_ISOC : 0);
ivrs->ivhd.flags |= ((mmio_x18_value & MMIO_CTRL_RES_PASS_PW) ?
IVHD_FLAG_RES_PASS_PW : 0);
ivrs->ivhd.flags |= ((mmio_x18_value & MMIO_CTRL_PASS_PW) ?
IVHD_FLAG_PASS_PW : 0);
ivrs->ivhd.flags |= ((mmio_x18_value & MMIO_CTRL_HT_TUN_EN) ?
IVHD_FLAG_HT_TUN_EN : 0);
ivrs->ivhd.pci_segment_group = 0x0000;
ivrs->ivhd.iommu_info = pci_read_config16(iommu_dev,
ivrs->ivhd.capability_offset + 0x10) & 0x1F;
ivrs->ivhd.iommu_info |= (pci_read_config16(iommu_dev,
ivrs->ivhd.capability_offset + 0xC) & 0x1F) << IOMMU_INFO_UNIT_ID_SHIFT;
ivrs->ivhd.iommu_feature_info = 0;
ivrs->ivhd.iommu_feature_info |= (mmio_x30_value & MMIO_EXT_FEATURE_HATS_MASK)
<< (IOMMU_FEATURE_HATS_SHIFT - MMIO_EXT_FEATURE_HATS_SHIFT);
ivrs->ivhd.iommu_feature_info |= (mmio_x30_value & MMIO_EXT_FEATURE_GATS_MASK)
<< (IOMMU_FEATURE_GATS_SHIFT - MMIO_EXT_FEATURE_GATS_SHIFT);
ivrs->ivhd.iommu_feature_info |= (cap_offset_10 & CAP_OFFSET_10_MSI_NUM_PPR)
>> (CAP_OFFSET_10_MSI_NUM_PPR_SHIFT
- IOMMU_FEATURE_MSI_NUM_PPR_SHIFT);
ivrs->ivhd.iommu_feature_info |= (mmio_x4000_value &
MMIO_CNT_CFG_N_COUNTER_BANKS)
<< (IOMMU_FEATURE_PN_BANKS_SHIFT - MMIO_CNT_CFG_N_CNT_BANKS_SHIFT);
ivrs->ivhd.iommu_feature_info |= (mmio_x4000_value & MMIO_CNT_CFG_N_COUNTER)
<< (IOMMU_FEATURE_PN_COUNTERS_SHIFT - MMIO_CNT_CFG_N_COUNTER_SHIFT);
ivrs->ivhd.iommu_feature_info |= (mmio_x30_value &
MMIO_EXT_FEATURE_PAS_MAX_MASK)
>> (MMIO_EXT_FEATURE_PAS_MAX_SHIFT - IOMMU_FEATURE_PA_SMAX_SHIFT);
ivrs->ivhd.iommu_feature_info |= ((mmio_x30_value & MMIO_EXT_FEATURE_HE_SUP)
? IOMMU_FEATURE_HE_SUP : 0);
ivrs->ivhd.iommu_feature_info |= ((mmio_x30_value & MMIO_EXT_FEATURE_GA_SUP)
? IOMMU_FEATURE_GA_SUP : 0);
ivrs->ivhd.iommu_feature_info |= ((mmio_x30_value & MMIO_EXT_FEATURE_IA_SUP)
? IOMMU_FEATURE_IA_SUP : 0);
ivrs->ivhd.iommu_feature_info |= (mmio_x30_value &
MMIO_EXT_FEATURE_GLX_SUP_MASK)
>> (MMIO_EXT_FEATURE_GLX_SHIFT - IOMMU_FEATURE_GLX_SHIFT);
ivrs->ivhd.iommu_feature_info |= ((mmio_x30_value & MMIO_EXT_FEATURE_GT_SUP)
? IOMMU_FEATURE_GT_SUP : 0);
ivrs->ivhd.iommu_feature_info |= ((mmio_x30_value & MMIO_EXT_FEATURE_NX_SUP)
? IOMMU_FEATURE_NX_SUP : 0);
ivrs->ivhd.iommu_feature_info |= ((mmio_x30_value & MMIO_EXT_FEATURE_XT_SUP)
? IOMMU_FEATURE_XT_SUP : 0);
/* Enable EFR if supported */
ivrs->iv_info = pci_read_config32(iommu_dev,
ivrs->ivhd.capability_offset + 0x10) & 0x007fffe0;
if (pci_read_config32(iommu_dev,
ivrs->ivhd.capability_offset) & EFR_FEATURE_SUP)
ivrs->iv_info |= IVINFO_EFR_SUPPORTED;
} else {
printk(BIOS_WARNING, "%s: AGESA returned NULL IVRS\n", __func__);
return (unsigned long)ivrs;
}
/*
* Add all possible PCI devices on bus 0 that can generate transactions
* processed by IOMMU. Start with device 00:01.0
*/
current_backup = current;
current = ivhd_dev_range(current, PCI_DEVFN(1, 0), PCI_DEVFN(0x1f, 6), 0);
ivrs->ivhd.length += (current - current_backup);
root_level = -1;
add_ivhd_device_entries(NULL, all_devices, 0, -1, &root_level,
&current, &ivrs->ivhd.length);
/* Describe HPET */
current_backup = current;
current = ivhd_describe_hpet(current);
ivrs->ivhd.length += (current - current_backup);
/* Describe IOAPICs */
current_backup = current;
current = acpi_fill_ivrs_ioapic(ivrs, current);
ivrs->ivhd.length += (current - current_backup);
/* If EFR is not supported, IVHD type 11h is reserved */
if (!(ivrs->iv_info & IVINFO_EFR_SUPPORTED))
return current;
return acpi_fill_ivrs11(current, ivrs);
}
static unsigned long gen_crat_hsa_entry(struct acpi_crat_header *crat, unsigned long current)
{
struct crat_hsa_processing_unit *hsa_entry = (struct crat_hsa_processing_unit *)current;
memset(hsa_entry, 0, sizeof(struct crat_hsa_processing_unit));
hsa_entry->flags = CRAT_HSA_PR_FLAG_EN | CRAT_HSA_PR_FLAG_CPU_PRES;
hsa_entry->wave_front_size = 4;
hsa_entry->num_cpu_cores = get_cpu_count();
hsa_entry->length = sizeof(struct crat_hsa_processing_unit);
crat->total_entries++;
current += hsa_entry->length;
return current;
}
static unsigned long create_crat_memory_entry(uint32_t domain, uint64_t region_base,
uint64_t region_size, unsigned long current)
{
struct crat_memory *mem_affinity = (struct crat_memory *)current;
memset(mem_affinity, 0, sizeof(struct crat_memory));
mem_affinity->type = CRAT_MEMORY_TYPE;
mem_affinity->length = sizeof(struct crat_memory);
mem_affinity->proximity_domain = 0;
mem_affinity->base_address_low = region_base & 0xffffffff;
mem_affinity->base_address_high = (region_base >> 32) & 0xffffffff;
mem_affinity->length_low = region_size & 0xffffffff;
mem_affinity->length_high = (region_size >> 32) & 0xffffffff;
mem_affinity->flags = CRAT_MEM_FLAG_EN;
mem_affinity->width = 64;
current += mem_affinity->length;
return current;
}
static unsigned long gen_crat_memory_entries(struct acpi_crat_header *crat,
unsigned long current)
{
uint32_t dram_base_reg, dram_limit_reg, dram_hole_ctl;
uint64_t memory_length, memory_base, hole_base, size_below_hole;
size_t new_entries = 0;
for (size_t dram_map_idx = 0; dram_map_idx < PICASSO_NUM_DRAM_REG;
dram_map_idx++) {
dram_base_reg =
data_fabric_read32(0, DF_DRAM_BASE(dram_map_idx), IOMS0_FABRIC_ID);
if (dram_base_reg & DRAM_BASE_REG_VALID) {
dram_limit_reg = data_fabric_read32(0, DF_DRAM_LIMIT(dram_map_idx),
IOMS0_FABRIC_ID);
memory_length =
((dram_limit_reg & DRAM_LIMIT_ADDR) >> DRAM_LIMIT_ADDR_SHFT) + 1
- ((dram_base_reg & DRAM_BASE_ADDR) >> DRAM_BASE_ADDR_SHFT);
memory_length = memory_length << 28;
memory_base = (uint64_t)(dram_base_reg & DRAM_BASE_ADDR)
<< (28 - DRAM_BASE_ADDR_SHFT);
if (memory_base == 0) {
current =
create_crat_memory_entry(0, 0ull, 0xa0000ull, current);
memory_base = (1 * 1024 * 1024);
memory_length = memory_base;
new_entries++;
}
if (dram_base_reg & DRAM_BASE_HOLE_EN) {
dram_hole_ctl = data_fabric_read32(0, D18F0_DRAM_HOLE_CTL,
IOMS0_FABRIC_ID);
hole_base = (dram_hole_ctl & DRAM_HOLE_CTL_BASE);
size_below_hole = hole_base - memory_base;
current = create_crat_memory_entry(0, memory_base,
size_below_hole, current);
memory_length = (uint64_t)(((dram_limit_reg & DRAM_LIMIT_ADDR)
>> DRAM_LIMIT_ADDR_SHFT)
+ 1 - 0x10)
<< 28;
memory_base = 0x100000000;
new_entries++;
}
current = create_crat_memory_entry(0, memory_base, memory_length,
current);
new_entries++;
}
}
crat->total_entries += new_entries;
return current;
}
static unsigned long add_crat_cache_entry(struct crat_cache **cache_affinity,
unsigned long current)
{
*cache_affinity = (struct crat_cache *)current;
memset(*cache_affinity, 0, sizeof(struct crat_cache));
(*cache_affinity)->type = CRAT_CACHE_TYPE;
(*cache_affinity)->length = sizeof(struct crat_cache);
(*cache_affinity)->flags = CRAT_CACHE_FLAG_EN | CRAT_CACHE_FLAG_CPU_CACHE;
current += sizeof(struct crat_cache);
return current;
}
static uint8_t get_associativity(uint32_t encoded_associativity)
{
uint8_t associativity = 0;
switch (encoded_associativity) {
case 0:
case 1:
case 2:
case 3:
case 4:
return encoded_associativity;
case 5:
associativity = 6;
break;
case 6:
associativity = 8;
break;
case 8:
associativity = 16;
break;
case 0xA:
associativity = 32;
break;
case 0xB:
associativity = 48;
break;
case 0xC:
associativity = 64;
break;
case 0xD:
associativity = 96;
break;
case 0xE:
associativity = 128;
break;
case 0xF:
associativity = 0xFF;
break;
default:
return 0;
}
return associativity;
}
static unsigned long gen_crat_cache_entry(struct acpi_crat_header *crat, unsigned long current)
{
size_t total_num_threads, num_threads_sharing0, num_threads_sharing1,
num_threads_sharing2, num_threads_sharing3, thread, new_entries;
struct cpuid_result cache_props0, cache_props1, cache_props2, cache_props3;
uint8_t sibling_mask = 0;
uint32_t l1_data_cache_ids, l1_inst_cache_ids, l2_cache_ids, l3_cache_ids;
struct crat_cache *cache_affinity = NULL;
total_num_threads = get_cpu_count();
cache_props0 = cpuid_ext(CPUID_CACHE_PROPS, CACHE_PROPS_0);
cache_props1 = cpuid_ext(CPUID_CACHE_PROPS, CACHE_PROPS_1);
cache_props2 = cpuid_ext(CPUID_CACHE_PROPS, CACHE_PROPS_2);
cache_props3 = cpuid_ext(CPUID_CACHE_PROPS, CACHE_PROPS_3);
l1_data_cache_ids = cpuid_ecx(CPUID_L1_TLB_CACHE_IDS);
l1_inst_cache_ids = cpuid_edx(CPUID_L1_TLB_CACHE_IDS);
l2_cache_ids = cpuid_ecx(CPUID_L2_L3_CACHE_L2_TLB_IDS);
l3_cache_ids = cpuid_edx(CPUID_L2_L3_CACHE_L2_TLB_IDS);
num_threads_sharing0 =
((cache_props0.eax & NUM_SHARE_CACHE_MASK) >> NUM_SHARE_CACHE_SHFT) + 1;
num_threads_sharing1 =
((cache_props1.eax & NUM_SHARE_CACHE_MASK) >> NUM_SHARE_CACHE_SHFT) + 1;
num_threads_sharing2 =
((cache_props2.eax & NUM_SHARE_CACHE_MASK) >> NUM_SHARE_CACHE_SHFT) + 1;
num_threads_sharing3 =
((cache_props3.eax & NUM_SHARE_CACHE_MASK) >> NUM_SHARE_CACHE_SHFT) + 1;
new_entries = 0;
for (thread = 0; thread < total_num_threads; thread++) {
/* L1 data cache */
if (thread % num_threads_sharing0 == 0) {
current = add_crat_cache_entry(&cache_affinity, current);
new_entries++;
cache_affinity->flags |= CRAT_CACHE_FLAG_DATA_CACHE;
cache_affinity->proc_id_low = thread;
sibling_mask = 1;
for (size_t sibling = 1; sibling < num_threads_sharing0; sibling++)
sibling_mask = (sibling_mask << 1) + 1;
cache_affinity->sibling_map[thread / 8] = sibling_mask << (thread % 8);
cache_affinity->cache_properties =
(cache_props0.edx & CACHE_INCLUSIVE_MASK) ? 2 : 0;
cache_affinity->cache_size =
(l1_data_cache_ids & L1_DC_SIZE_MASK) >> L1_DC_SIZE_SHFT;
cache_affinity->cache_level = CRAT_L1_CACHE;
cache_affinity->lines_per_tag =
(l1_data_cache_ids & L1_DC_LINE_TAG_MASK)
>> L1_DC_LINE_TAG_SHFT;
cache_affinity->cache_line_size =
(l1_data_cache_ids & L1_DC_LINE_SIZE_MASK)
>> L1_DC_LINE_SIZE_SHFT;
cache_affinity->associativity =
(l1_data_cache_ids & L1_DC_ASSOC_MASK) >> L1_DC_ASSOC_SHFT;
cache_affinity->cache_latency = 1;
}
/* L1 instruction cache */
if (thread % num_threads_sharing1 == 0) {
current = add_crat_cache_entry(&cache_affinity, current);
new_entries++;
cache_affinity->flags |= CRAT_CACHE_FLAG_INSTR_CACHE;
cache_affinity->proc_id_low = thread;
sibling_mask = 1;
for (size_t sibling = 1; sibling < num_threads_sharing1; sibling++)
sibling_mask = (sibling_mask << 1) + 1;
cache_affinity->sibling_map[thread / 8] = sibling_mask << (thread % 8);
cache_affinity->cache_properties =
(cache_props1.edx & CACHE_INCLUSIVE_MASK) ? 2 : 0;
cache_affinity->cache_size =
(l1_inst_cache_ids & L1_IC_SIZE_MASK) >> L1_IC_SIZE_SHFT;
cache_affinity->cache_level = CRAT_L1_CACHE;
cache_affinity->lines_per_tag =
(l1_inst_cache_ids & L1_IC_LINE_TAG_MASK)
>> L1_IC_LINE_TAG_SHFT;
cache_affinity->cache_line_size =
(l1_inst_cache_ids & L1_IC_LINE_SIZE_MASK)
>> L1_IC_LINE_SIZE_SHFT;
cache_affinity->associativity =
(l1_inst_cache_ids & L1_IC_ASSOC_MASK) >> L1_IC_ASSOC_SHFT;
cache_affinity->cache_latency = 1;
}
/* L2 cache */
if (thread % num_threads_sharing2 == 0) {
current = add_crat_cache_entry(&cache_affinity, current);
new_entries++;
cache_affinity->flags |=
CRAT_CACHE_FLAG_DATA_CACHE | CRAT_CACHE_FLAG_INSTR_CACHE;
cache_affinity->proc_id_low = thread;
sibling_mask = 1;
for (size_t sibling = 1; sibling < num_threads_sharing2; sibling++)
sibling_mask = (sibling_mask << 1) + 1;
cache_affinity->sibling_map[thread / 8] = sibling_mask << (thread % 8);
cache_affinity->cache_properties =
(cache_props2.edx & CACHE_INCLUSIVE_MASK) ? 2 : 0;
cache_affinity->cache_size =
(l2_cache_ids & L2_DC_SIZE_MASK) >> L2_DC_SIZE_SHFT;
cache_affinity->cache_level = CRAT_L2_CACHE;
cache_affinity->lines_per_tag =
(l2_cache_ids & L2_DC_LINE_TAG_MASK) >> L2_DC_LINE_TAG_SHFT;
cache_affinity->cache_line_size =
(l2_cache_ids & L2_DC_LINE_SIZE_MASK) >> L2_DC_LINE_SIZE_SHFT;
cache_affinity->associativity = get_associativity(
(l2_cache_ids & L2_DC_ASSOC_MASK) >> L2_DC_ASSOC_SHFT);
cache_affinity->cache_latency = 1;
}
/* L3 cache */
if (thread % num_threads_sharing3 == 0) {
current = add_crat_cache_entry(&cache_affinity, current);
new_entries++;
cache_affinity->flags |=
CRAT_CACHE_FLAG_DATA_CACHE | CRAT_CACHE_FLAG_INSTR_CACHE;
cache_affinity->proc_id_low = thread;
sibling_mask = 1;
for (size_t sibling = 1; sibling < num_threads_sharing3; sibling++)
sibling_mask = (sibling_mask << 1) + 1;
cache_affinity->sibling_map[thread / 8] = sibling_mask << (thread % 8);
cache_affinity->cache_properties =
(cache_props0.edx & CACHE_INCLUSIVE_MASK) ? 2 : 0;
cache_affinity->cache_size =
((l3_cache_ids & L3_DC_SIZE_MASK) >> L3_DC_SIZE_SHFT) * 512;
cache_affinity->cache_level = CRAT_L3_CACHE;
cache_affinity->lines_per_tag =
(l3_cache_ids & L3_DC_LINE_TAG_MASK) >> L3_DC_LINE_TAG_SHFT;
cache_affinity->cache_line_size =
(l3_cache_ids & L3_DC_LINE_SIZE_MASK) >> L3_DC_LINE_SIZE_SHFT;
cache_affinity->associativity = get_associativity(
(l3_cache_ids & L3_DC_ASSOC_MASK) >> L3_DC_ASSOC_SHFT);
cache_affinity->cache_latency = 1;
}
}
crat->total_entries += new_entries;
return current;
}
static uint8_t get_tlb_size(enum tlb_type type, struct crat_tlb *crat_tlb_entry,
uint16_t raw_assoc_size)
{
uint8_t tlbsize;
if (raw_assoc_size >= 256) {
tlbsize = (uint8_t)(raw_assoc_size / 256);
if (type == tlb_2m)
crat_tlb_entry->flags |= CRAT_TLB_FLAG_2MB_BASE_256;
else if (type == tlb_4k)
crat_tlb_entry->flags |= CRAT_TLB_FLAG_4K_BASE_256;
else if (type == tlb_1g)
crat_tlb_entry->flags |= CRAT_TLB_FLAG_1GB_BASE_256;
} else {
tlbsize = (uint8_t)(raw_assoc_size);
}
return tlbsize;
}
static unsigned long add_crat_tlb_entry(struct crat_tlb **tlb_affinity, unsigned long current)
{
*tlb_affinity = (struct crat_tlb *)current;
memset(*tlb_affinity, 0, sizeof(struct crat_tlb));
(*tlb_affinity)->type = CRAT_TLB_TYPE;
(*tlb_affinity)->length = sizeof(struct crat_tlb);
(*tlb_affinity)->flags = CRAT_TLB_FLAG_EN | CRAT_TLB_FLAG_CPU_TLB;
current += sizeof(struct crat_tlb);
return current;
}
static unsigned long gen_crat_tlb_entry(struct acpi_crat_header *crat, unsigned long current)
{
size_t total_num_threads, num_threads_sharing0, num_threads_sharing1,
num_threads_sharing2, thread, new_entries;
struct cpuid_result cache_props0, cache_props1, cache_props2;
uint8_t sibling_mask = 0;
uint32_t l1_tlb_2M4M_ids, l1_tlb_4K_ids, l2_tlb_2M4M_ids, l2_tlb_4K_ids, l1_tlb_1G_ids,
l2_tlb_1G_ids;
struct crat_tlb *tlb_affinity = NULL;
total_num_threads = get_cpu_count();
cache_props0 = cpuid_ext(CPUID_CACHE_PROPS, CACHE_PROPS_0);
cache_props1 = cpuid_ext(CPUID_CACHE_PROPS, CACHE_PROPS_1);
cache_props2 = cpuid_ext(CPUID_CACHE_PROPS, CACHE_PROPS_2);
l1_tlb_2M4M_ids = cpuid_eax(CPUID_L1_TLB_CACHE_IDS);
l2_tlb_2M4M_ids = cpuid_eax(CPUID_L2_L3_CACHE_L2_TLB_IDS);
l1_tlb_4K_ids = cpuid_ebx(CPUID_L1_TLB_CACHE_IDS);
l2_tlb_4K_ids = cpuid_ebx(CPUID_L2_L3_CACHE_L2_TLB_IDS);
l1_tlb_1G_ids = cpuid_eax(CPUID_TLB_L1L2_1G_IDS);
l2_tlb_1G_ids = cpuid_ebx(CPUID_TLB_L1L2_1G_IDS);
num_threads_sharing0 =
((cache_props0.eax & NUM_SHARE_CACHE_MASK) >> NUM_SHARE_CACHE_SHFT) + 1;
num_threads_sharing1 =
((cache_props1.eax & NUM_SHARE_CACHE_MASK) >> NUM_SHARE_CACHE_SHFT) + 1;
num_threads_sharing2 =
((cache_props2.eax & NUM_SHARE_CACHE_MASK) >> NUM_SHARE_CACHE_SHFT) + 1;
new_entries = 0;
for (thread = 0; thread < total_num_threads; thread++) {
/* L1 data TLB */
if (thread % num_threads_sharing0 == 0) {
current = add_crat_tlb_entry(&tlb_affinity, current);
new_entries++;
tlb_affinity->flags |= CRAT_TLB_FLAG_DATA_TLB;
tlb_affinity->proc_id_low = thread;
sibling_mask = 1;
for (size_t sibling = 1; sibling < num_threads_sharing0; sibling++)
sibling_mask = (sibling_mask << 1) + 1;
tlb_affinity->sibling_map[thread / 8] = sibling_mask << (thread % 8);
tlb_affinity->tlb_level = CRAT_L1_CACHE;
tlb_affinity->data_tlb_2mb_assoc =
(l1_tlb_2M4M_ids & L1_DAT_TLB_2M4M_ASSOC_MASK)
>> L1_DAT_TLB_2M4M_ASSOC_SHFT;
tlb_affinity->data_tlb_2mb_size =
get_tlb_size(tlb_2m, tlb_affinity,
(l1_tlb_2M4M_ids & L1_DAT_TLB_2M4M_SIZE_MASK)
>> L1_DAT_TLB_2M4M_SIZE_SHFT);
tlb_affinity->data_tlb_4k_assoc =
(l1_tlb_4K_ids & L1_DAT_TLB_4K_ASSOC_MASK)
>> L1_DAT_TLB_4K_ASSOC_SHFT;
tlb_affinity->data_tlb_4k_size =
get_tlb_size(tlb_4k, tlb_affinity,
(l1_tlb_4K_ids & L1_DAT_TLB_4K_SIZE_MASK)
>> L1_DAT_TLB_4K_SIZE_SHFT);
tlb_affinity->data_tlb_1g_assoc =
(l1_tlb_1G_ids & L1_DAT_TLB_1G_ASSOC_MASK)
>> L1_DAT_TLB_1G_ASSOC_SHFT;
tlb_affinity->data_tlb_1g_size =
get_tlb_size(tlb_1g, tlb_affinity,
(l1_tlb_1G_ids & L1_DAT_TLB_1G_SIZE_MASK)
>> L1_DAT_TLB_1G_SIZE_SHFT);
}
/* L1 instruction TLB */
if (thread % num_threads_sharing1 == 0) {
current = add_crat_tlb_entry(&tlb_affinity, current);
new_entries++;
tlb_affinity->flags |= CRAT_TLB_FLAG_INSTR_TLB;
tlb_affinity->proc_id_low = thread;
sibling_mask = 1;
for (size_t sibling = 1; sibling < num_threads_sharing1; sibling++)
sibling_mask = (sibling_mask << 1) + 1;
tlb_affinity->sibling_map[thread / 8] = sibling_mask << (thread % 8);
tlb_affinity->tlb_level = CRAT_L1_CACHE;
tlb_affinity->instr_tlb_2mb_assoc =
(l1_tlb_2M4M_ids & L1_INST_TLB_2M4M_ASSOC_MASK)
>> L1_INST_TLB_2M4M_ASSOC_SHFT;
tlb_affinity->instr_tlb_2mb_size =
get_tlb_size(tlb_2m, tlb_affinity,
(l1_tlb_2M4M_ids & L1_INST_TLB_2M4M_SIZE_MASK)
>> L1_INST_TLB_2M4M_SIZE_SHFT);
tlb_affinity->instr_tlb_4k_assoc =
(l1_tlb_4K_ids & L1_INST_TLB_4K_ASSOC_MASK)
>> L1_INST_TLB_4K_ASSOC_SHFT;
tlb_affinity->instr_tlb_4k_size =
get_tlb_size(tlb_4k, tlb_affinity,
(l1_tlb_4K_ids & L1_INST_TLB_4K_SIZE_MASK)
>> L1_INST_TLB_4K_SIZE_SHFT);
tlb_affinity->instr_tlb_1g_assoc =
(l1_tlb_1G_ids & L1_INST_TLB_1G_ASSOC_MASK)
>> L1_INST_TLB_1G_ASSOC_SHFT;
tlb_affinity->instr_tlb_1g_size =
get_tlb_size(tlb_1g, tlb_affinity,
(l1_tlb_1G_ids & L1_INST_TLB_1G_SIZE_MASK)
>> L1_INST_TLB_1G_SIZE_SHFT);
}
/* L2 Data TLB */
if (thread % num_threads_sharing2 == 0) {
current = add_crat_tlb_entry(&tlb_affinity, current);
new_entries++;
tlb_affinity->flags |= CRAT_TLB_FLAG_DATA_TLB;
tlb_affinity->proc_id_low = thread;
sibling_mask = 1;
for (size_t sibling = 1; sibling < num_threads_sharing2; sibling++)
sibling_mask = (sibling_mask << 1) + 1;
tlb_affinity->sibling_map[thread / 8] = sibling_mask << (thread % 8);
tlb_affinity->tlb_level = CRAT_L2_CACHE;
tlb_affinity->data_tlb_2mb_assoc =
(l2_tlb_2M4M_ids & L2_DAT_TLB_2M4M_ASSOC_MASK)
>> L2_DAT_TLB_2M4M_ASSOC_SHFT;
tlb_affinity->data_tlb_2mb_size =
get_tlb_size(tlb_2m, tlb_affinity,
(l2_tlb_2M4M_ids & L2_DAT_TLB_2M4M_SIZE_MASK)
>> L2_DAT_TLB_2M4M_SIZE_SHFT);
tlb_affinity->data_tlb_4k_assoc =
get_associativity((l2_tlb_4K_ids & L2_DAT_TLB_2M4M_ASSOC_MASK)
>> L2_DAT_TLB_4K_ASSOC_SHFT);
tlb_affinity->data_tlb_4k_size =
get_tlb_size(tlb_4k, tlb_affinity,
(l2_tlb_2M4M_ids & L2_DAT_TLB_4K_SIZE_MASK)
>> L2_DAT_TLB_4K_SIZE_SHFT);
tlb_affinity->data_tlb_1g_assoc =
get_associativity((l2_tlb_1G_ids & L2_DAT_TLB_1G_ASSOC_MASK)
>> L2_DAT_TLB_1G_ASSOC_SHFT);
tlb_affinity->data_tlb_1g_size =
get_tlb_size(tlb_1g, tlb_affinity,
(l2_tlb_1G_ids & L2_DAT_TLB_1G_SIZE_MASK)
>> L2_DAT_TLB_1G_SIZE_SHFT);
}
/* L2 Instruction TLB */
if (thread % num_threads_sharing2 == 0) {
current = add_crat_tlb_entry(&tlb_affinity, current);
new_entries++;
tlb_affinity->flags |= CRAT_TLB_FLAG_INSTR_TLB;
tlb_affinity->proc_id_low = thread;
sibling_mask = 1;
for (size_t sibling = 1; sibling < num_threads_sharing2; sibling++)
sibling_mask = (sibling_mask << 1) + 1;
tlb_affinity->sibling_map[thread / 8] = sibling_mask << (thread % 8);
tlb_affinity->tlb_level = CRAT_L2_CACHE;
tlb_affinity->instr_tlb_2mb_assoc = get_associativity(
(l2_tlb_2M4M_ids & L2_INST_TLB_2M4M_ASSOC_MASK)
>> L2_INST_TLB_2M4M_ASSOC_SHFT);
tlb_affinity->instr_tlb_2mb_size =
get_tlb_size(tlb_2m, tlb_affinity,
(l2_tlb_2M4M_ids & L2_INST_TLB_2M4M_SIZE_MASK)
>> L2_INST_TLB_2M4M_SIZE_SHFT);
tlb_affinity->instr_tlb_4k_assoc =
get_associativity((l2_tlb_4K_ids & L2_INST_TLB_4K_ASSOC_MASK)
>> L2_INST_TLB_4K_ASSOC_SHFT);
tlb_affinity->instr_tlb_4k_size =
get_tlb_size(tlb_4k, tlb_affinity,
(l2_tlb_4K_ids & L2_INST_TLB_4K_SIZE_MASK)
>> L2_INST_TLB_4K_SIZE_SHFT);
tlb_affinity->instr_tlb_1g_assoc =
get_associativity((l2_tlb_1G_ids & L2_INST_TLB_1G_ASSOC_MASK)
>> L2_INST_TLB_1G_ASSOC_SHFT);
tlb_affinity->instr_tlb_1g_size =
get_tlb_size(tlb_1g, tlb_affinity,
(l2_tlb_1G_ids & L2_INST_TLB_1G_SIZE_MASK)
>> L2_INST_TLB_1G_SIZE_SHFT);
}
}
crat->total_entries += new_entries;
return current;
}
static unsigned long acpi_fill_crat(struct acpi_crat_header *crat, unsigned long current)
{
current = gen_crat_hsa_entry(crat, current);
current = gen_crat_memory_entries(crat, current);
current = gen_crat_cache_entry(crat, current);
current = gen_crat_tlb_entry(crat, current);
crat->num_nodes++;
return current;
}
uintptr_t agesa_write_acpi_tables(const struct device *device, uintptr_t current,
acpi_rsdp_t *rsdp)
{
acpi_ivrs_t *ivrs;
struct acpi_crat_header *crat;
/* CRAT */
current = ALIGN(current, 8);
crat = (struct acpi_crat_header *)current;
acpi_create_crat(crat, acpi_fill_crat);
current += crat->header.length;
acpi_add_table(rsdp, crat);
current = add_agesa_acpi_table(AMD_FSP_ACPI_ALIB_HOB_GUID, "ALIB", rsdp, current);
/* IVRS */
current = ALIGN(current, 8);
ivrs = (acpi_ivrs_t *) current;
acpi_create_ivrs(ivrs, acpi_fill_ivrs);
current += ivrs->header.length;
acpi_add_table(rsdp, ivrs);
/* Add SRAT, MSCT, SLIT if needed in the future */
return current;
}