coreboot/src/vendorcode/amd/agesa/f15tn/Proc/Fch/HwAcpi/Family/Hudson2/Hudson2HwAcpiEnvService.c

561 lines
19 KiB
C

/* $NoKeywords:$ */
/**
* @file
*
* Config Fch HwAcpi controller
*
* Init HwAcpi Controller features.
*
* @xrefitem bom "File Content Label" "Release Content"
* @e project: AGESA
* @e sub-project: FCH
* @e \$Revision: 63425 $ @e \$Date: 2011-12-22 11:24:10 -0600 (Thu, 22 Dec 2011) $
*
*/
/*
*****************************************************************************
*
* Copyright (c) 2008 - 2012, Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Advanced Micro Devices, Inc. nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
****************************************************************************
*/
#include "FchPlatform.h"
#include "amdlib.h"
#include "cpuServices.h"
#include "Filecode.h"
#define FILECODE PROC_FCH_HWACPI_FAMILY_HUDSON2_HUDSON2HWACPIENVSERVICE_FILECODE
#define AMD_CPUID_APICID_LPC_BID 0x00000001ul // Local APIC ID, Logical Processor Count, Brand ID
/**
* FchInitEnvHwAcpiMmioTable - Fch ACPI MMIO initial
* during POST.
*
*/
ACPI_REG_WRITE FchHudson2InitEnvHwAcpiMmioTable[] =
{
{00, 00, 0xB0, 0xAC}, /// Signature
//
// HPET workaround
//
{PMIO_BASE >> 8, FCH_PMIOA_REG54 + 3, 0xFC, BIT0 + BIT1},
{PMIO_BASE >> 8, FCH_PMIOA_REG54 + 2, 0x7F, BIT7},
{PMIO_BASE >> 8, FCH_PMIOA_REG54 + 2, 0x7F, 0x00},
//
// Enable Hudson-2 A12 ACPI bits at PMIO 0xC0 [30, 10:3]
// ClrAllStsInThermalEvent 3 Set to 1 to allow ASF remote power down/power cycle, Thermal event, Fan slow event to clear all the Gevent status and enabled bits. The bit should be set to 1 all the time.
// UsbGoodClkDlyEn 4 Set to 1 to delay de-assertion of Usb clk by 6 Osc clk. The bit should be set to 1 all the time.
// ForceNBCPUPwr 5 Set to 1 to force CPU pwrGood to be toggled along with NB pwrGood.
// MergeUsbPerReq 6 Set to 1 to merge usb perdical traffic into usb request as one of break event.
// IMCWatchDogRstEn 7 Set to 1 to allow IMC watchdog timer to reset entire acpi block. The bit should be set to 1 when IMC is enabled.
// GeventStsFixEn 8 1: Gevent status is not reset by its enable bit. 0: Gevent status is reset by its enable bit.
// PmeTimerFixEn 9 Set to 1 to reset Pme Timer when going to sleep state.
// UserRst2EcEn 10 Set to 1 to route user reset event to Ec. The bit should be set to 1 when IMC is enabled.
// Smbus0ClkSEn 30 Set to 1 to enable SMBus0 controller clock stretch support.
//
{PMIO_BASE >> 8, FCH_PMIOA_REGC4, (UINT8)~BIT2, BIT2},
{PMIO_BASE >> 8, FCH_PMIOA_REGC0, 0, 0xF9},
{PMIO_BASE >> 8, FCH_PMIOA_REGC0 + 1, 0x04, 0x07},
//
// RtcSts 19-17 RTC_STS set only in Sleep State.
// GppPme 20 Set to 1 to enable PME request from SB GPP.
// Pcireset 22 Set to 1 to allow SW to reset PCIe.
//
{PMIO_BASE >> 8, 0xC2 , 0x20, 0x58},
{PMIO_BASE >> 8, 0xC2 + 1, 0, 0x40},
{PMIO_BASE >> 8, 0xC2 , (UINT8)~(BIT4), BIT4},
{PMIO_BASE >> 8, FCH_PMIOA_REGCC, 0xF8, 0x01},
{PMIO_BASE >> 8, FCH_PMIOA_REG74, 0x00, BIT0 + BIT1 + BIT2 + BIT4},
{PMIO_BASE >> 8, FCH_PMIOA_REG74 + 3, (UINT8)~BIT5, 0},
{PMIO_BASE >> 8, 0xDE + 1, (UINT8)~(BIT0 + BIT1), BIT0 + BIT1},
{PMIO_BASE >> 8, 0xDE , (UINT8)~BIT4, BIT4},
{PMIO_BASE >> 8, FCH_PMIOA_REGBA, (UINT8)~BIT3, BIT3},
{PMIO_BASE >> 8, FCH_PMIOA_REGBA + 1, (UINT8)~BIT6, BIT6},
{PMIO_BASE >> 8, FCH_PMIOA_REGBC, (UINT8)~BIT1, BIT1},
{PMIO_BASE >> 8, FCH_PMIOA_REGED, (UINT8)~(BIT0 + BIT1), 0},
{PMIO_BASE >> 8, 0xDC , 0x7C, BIT0}, /// Hiding Flash Controller PM_IO 0xDC[7] = 0x0 & PM_IO 0xDC [1:0]=0x01
{PMIO_BASE >> 8, FCH_PMIOA_REGBF, (UINT8)~BIT0, 0},
{PMIO_BASE >> 8, FCH_PMIOA_REGBE, (UINT8)~BIT0, BIT0},
{SMI_BASE >> 8, 0x41 , 0, 1},
{SMI_BASE >> 8, 0x43 , 0, 3},
{SMI_BASE >> 8, 0x44 , 0, 4},
{SMI_BASE >> 8, 0x45 , 0, 5},
{SMI_BASE >> 8, 0x46 , 0, 6},
{SMI_BASE >> 8, 0x57 , 0, 23},
{SMI_BASE >> 8, 0x78 , 0, 11},
{SMI_BASE >> 8, 0x79 , 0, 11},
{SMI_BASE >> 8, 0x58 , 0, 11},
{SMI_BASE >> 8, 0x59 , 0, 11},
{SMI_BASE >> 8, 0x5A , 0, 11},
{SMI_BASE >> 8, 0x5B , 0, 11},
{SMI_BASE >> 8, 0x68 , 0, 12},
{SMI_BASE >> 8, 0x6C , 0, 13},
{SMI_BASE >> 8, 0x5C , 0, 15},
{SMI_BASE >> 8, 0x5D , 0, 16},
{SMI_BASE >> 8, 0x5E , 0, 17},
{SMI_BASE >> 8, 0x5F , 0, 18},
{SMI_BASE >> 8, 0x67 , 0, 19},
{SMI_BASE >> 8, 0x6A , 0, 28},
{SMI_BASE >> 8, 0x48 , 0, 24},
{SMI_BASE >> 8, 0x64 , 0, 27},
{SMI_BASE >> 8, 0x65 , 0, 30},
{SMI_BASE >> 8, 0x66 , 0, 31},
{SMI_BASE >> 8, FCH_SMI_REG08, 0xE7, 0},
{SMI_BASE >> 8, FCH_SMI_REG0C + 2, (UINT8)~BIT3, BIT3},
{SMI_BASE >> 8, 0x70 , 0, 9},
{SMI_BASE >> 8, FCH_SMI_REG3C, 0, BIT6},
{SMI_BASE >> 8, 0x84 + 2, 0, BIT7},
//
// CG PLL CMOX Clock Driver Setting for power saving
//
{MISC_BASE >> 8, FCH_MISC_REG18 + 0x06, 0, 0xE0},
{MISC_BASE >> 8, FCH_MISC_REG18 + 0x07, 0, 0x1F},
{MISC_BASE >> 8, 0x50 + 3, (UINT8)~BIT5, BIT5},
{MISC_BASE >> 8, 0x50 + 2, (UINT8)~BIT3, BIT3},
//{SERIAL_DEBUG_BASE >> 8, FCH_SDB_REG74, 0, 0},
{0xFF, 0xFF, 0xFF, 0xFF},
};
/**
* FchHudson2InitEnvHwAcpiPciTable - PCI device registers initial
* during early POST.
*
*/
REG8_MASK FchHudson2InitEnvHwAcpiPciTable[] =
{
//
// SMBUS Device (Bus 0, Dev 20, Func 0)
//
{0x00, SMBUS_BUS_DEV_FUN, 0},
{FCH_CFG_REG10, 0x00, (FCH_VERSION & 0xFF)}, ///Program the version information
{FCH_CFG_REG11, 0x00, (FCH_VERSION >> 8)},
{0xFF, 0xFF, 0xFF},
};
/**
* ProgramPFchAcpiMmio - Config HwAcpi MMIO registers
* Acpi S3 resume won't execute this procedure (POST only)
*
* @param[in] FchDataPtr Fch configuration structure pointer.
*
*/
VOID
ProgramEnvPFchAcpiMmio (
IN VOID *FchDataPtr
)
{
FCH_DATA_BLOCK *LocalCfgPtr;
AMD_CONFIG_PARAMS *StdHeader;
LocalCfgPtr = (FCH_DATA_BLOCK *) FchDataPtr;
StdHeader = LocalCfgPtr->StdHeader;
ProgramFchAcpiMmioTbl ((ACPI_REG_WRITE*) (&FchHudson2InitEnvHwAcpiMmioTable[0]), StdHeader);
}
/**
* ProgramFchEnvHwAcpiPciReg - Config HwAcpi PCI controller
* before PCI emulation
*
*
*
* @param[in] FchDataPtr Fch configuration structure pointer.
*
*/
VOID
ProgramFchEnvHwAcpiPciReg (
IN VOID *FchDataPtr
)
{
FCH_DATA_BLOCK *LocalCfgPtr;
AMD_CONFIG_PARAMS *StdHeader;
LocalCfgPtr = (FCH_DATA_BLOCK *) FchDataPtr;
StdHeader = LocalCfgPtr->StdHeader;
//
// FCH CFG programming
//
// Make BAR registers of smbus visible.
//
RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGC8 + 1, AccessWidth8, (UINT8)~BIT6, 0);
//
//Early post initialization of pci config space
//
ProgramPciByteTable ((REG8_MASK*) (&FchHudson2InitEnvHwAcpiPciTable[0]),
ARRAY_SIZE(FchHudson2InitEnvHwAcpiPciTable), StdHeader);
if ( LocalCfgPtr->Smbus.SmbusSsid != 0 ) {
RwPci ((SMBUS_BUS_DEV_FUN << 16) + FCH_CFG_REG2C, AccessWidth32, 0x00, LocalCfgPtr->Smbus.SmbusSsid, StdHeader);
}
//
//Make BAR registers of smbus invisible.
//
RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGC8 + 1, AccessWidth8, (UINT8)~BIT6, BIT6);
}
/**
* FchVgaInit - Config VGA CODEC
*
* @param[in] VOID empty
*
*/
VOID
FchVgaInit (
OUT VOID
)
{
//
// Cobia_Nutmeg_DP-VGA Electrical SI validation_Lower RGB Luminance level BGADJ=0x1F & DACADJ=0x1B
//
RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGC4, AccessWidth8, 0xff, BIT5 );
RwMem (ACPI_MMIO_BASE + PMIO_BASE + 0xD8 , AccessWidth8, 0x00, 0x17 );
RwMem (ACPI_MMIO_BASE + PMIO_BASE + 0xD9 , AccessWidth8, 0x00, ((BGADJ << 2) + (((DACADJ & 0xf0) >> 4) & 0x3)));
RwMem (ACPI_MMIO_BASE + PMIO_BASE + 0xD8 , AccessWidth8, 0x00, 0x16 );
RwMem (ACPI_MMIO_BASE + PMIO_BASE + 0xD9 , AccessWidth8, 0x0f, ((DACADJ & 0x0f) << 4));
*((UINT8*) ((UINTN)(PKT_DATA_REG + 0x00))) = (0x08 << 4) + (UINT8) ((EFUS_DAC_ADJUSTMENT_CONTROL >> 16) & 0xff);
*((UINT8*) ((UINTN)(PKT_DATA_REG + 0x01))) = (UINT8) ((EFUS_DAC_ADJUSTMENT_CONTROL >> 8) & 0xff);
*((UINT8*) ((UINTN)(PKT_DATA_REG + 0x02))) = (UINT8) ((EFUS_DAC_ADJUSTMENT_CONTROL >> 0) & 0xff);
*((UINT8*) ((UINTN)(PKT_DATA_REG + 0x03))) = (UINT8) (0x03);
*((UINT8*) ((UINTN)(PKT_DATA_REG + 0x04))) = (UINT8) (((EFUS_DAC_ADJUSTMENT_CONTROL_DATA) >> 0) & 0xff);
*((UINT8*) ((UINTN)(PKT_DATA_REG + 0x05))) = (UINT8) (((EFUS_DAC_ADJUSTMENT_CONTROL_DATA) >> 8) & 0xff);
*((UINT8*) ((UINTN)(PKT_DATA_REG + 0x06))) = (UINT8) (((EFUS_DAC_ADJUSTMENT_CONTROL_DATA) >> 16) & 0xff);
*((UINT8*) ((UINTN)(PKT_DATA_REG + 0x07))) = (UINT8) (((EFUS_DAC_ADJUSTMENT_CONTROL_DATA) >> 24) & 0xff);
*((UINT8*) ((UINTN)(PKT_LEN_REG))) = 0x08;
*((UINT8*) ((UINTN)(PKT_CTRL_REG))) = 0x01;
}
/**
* ProgramSpecificFchInitEnvAcpiMmio - Config HwAcpi MMIO before
* PCI emulation
*
*
*
* @param[in] FchDataPtr Fch configuration structure pointer.
*
*/
VOID
ProgramSpecificFchInitEnvAcpiMmio (
IN VOID *FchDataPtr
)
{
CPUID_DATA CpuId;
FCH_DATA_BLOCK *LocalCfgPtr;
AMD_CONFIG_PARAMS *StdHeader;
LocalCfgPtr = (FCH_DATA_BLOCK *) FchDataPtr;
StdHeader = LocalCfgPtr->StdHeader;
//
// Set ASF SMBUS master function enabled here (temporary)
//
RwMem (ACPI_MMIO_BASE + PMIO_BASE + 0x28 , AccessWidth16, (UINT32)~(BIT0 + BIT2), BIT0 + BIT2);
#ifdef ACPI_SLEEP_TRAP
//
// Set SLP_TYPE as SMI event
//
RwMem (ACPI_MMIO_BASE + SMI_BASE + FCH_SMI_REGB0, AccessWidth8, (UINT32)~(BIT2 + BIT3), BIT2);
//
// Disabled SLP function for S1/S3/S4/S5
//
RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGBE, AccessWidth8, (UINT32)~BIT5, 0x00);
//
// Set S state transition disabled (BIT0) force ACPI to send SMI message when writing to SLP_TYP Acpi register. (BIT1)
//
RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REG08 + 3, AccessWidth8, (UINT32)~(BIT0 + BIT1), BIT1);
//
// Enabled Global Smi ( BIT7 clear as 0 to enable )
//
RwMem (ACPI_MMIO_BASE + SMI_BASE + FCH_SMI_REG98 + 3 , AccessWidth8, (UINT32)~BIT7, 0x00);
#endif
//
// Set Stutter timer settings
//
LibAmdCpuidRead (AMD_CPUID_APICID_LPC_BID, &CpuId, StdHeader);
RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REG80 + 1, AccessWidth8, (UINT32)~(BIT3 + BIT4), BIT3 + BIT4);
//
// Set LDTSTP# duration to 10us for Specific CPU, or when HT link is 200MHz
//
if ((LocalCfgPtr->HwAcpi.AnyHt200MhzLink) || ((CpuId.EAX_Reg & 0x00ff00f0) == 0x100080) || ((CpuId.EAX_Reg & 0x00ff00f0) == 0x100090) || ((CpuId.EAX_Reg & 0x00ff00f0) == 0x1000A0)) {
RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REG94, AccessWidth8, 0, 0x0A);
RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REG80 + 3, AccessWidth8, 0xFE, 0x28);
} else {
RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REG94, AccessWidth8, 0, 0x01);
RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REG80 + 3, AccessWidth8, 0xFE, 0x20);
}
//
// SSC will provide better jitter margin
//
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x13, AccessWidth8, 0xFC, 0x01);
//
// Ac Loss Control
//
AcLossControl ((UINT8) LocalCfgPtr->HwAcpi.PwrFailShadow);
//
//FCH VGA Init
//
FchVgaInit ();
//
// 2.16 Enable DMAACTIVE
//
RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REG7F, AccessWidth8, 0xFE, 0x01);
//
// Set ACPIMMIO by OEM Input table
//
ProgramFchAcpiMmioTbl ((ACPI_REG_WRITE *) (LocalCfgPtr->HwAcpi.OemProgrammingTablePtr), StdHeader);
}
/**
* ValidateFchVariant - Validate FCH Variant
*
*
*
* @param[in] FchDataPtr
*
*/
VOID
ValidateFchVariant (
IN VOID *FchDataPtr
)
{
UINT8 XhciEfuse;
UINT8 PcieEfuse;
FCH_DATA_BLOCK *LocalCfgPtr;
AMD_CONFIG_PARAMS *StdHeader;
LocalCfgPtr = (FCH_DATA_BLOCK *) FchDataPtr;
StdHeader = LocalCfgPtr->StdHeader;
switch ( LocalCfgPtr->Misc.FchVariant ) {
case FCH_M3T:
//Disable Devices for M3T
LocalCfgPtr->Gec.GecEnable = 1;
LocalCfgPtr->Hwm.HwMonitorEnable = 0;
LocalCfgPtr->Sd.SdConfig = 0;
LocalCfgPtr->Ir.IrConfig = 0;
break;
default:
break;
}
// add Efuse checking for Xhci enable/disable
XhciEfuse = XHCI_EFUSE_LOCATION;
GetEfuseStatus (&XhciEfuse, StdHeader);
if ((XhciEfuse & (BIT0 + BIT1)) == (BIT0 + BIT1)) {
LocalCfgPtr->Usb.Xhci0Enable = 0;
LocalCfgPtr->Usb.Xhci1Enable = 0;
}
// add Efuse checking for PCIE Gen2 enable
PcieEfuse = PCIE_FORCE_GEN1_EFUSE_LOCATION;
GetEfuseStatus (&PcieEfuse, StdHeader);
if ( PcieEfuse & BIT0 ) {
LocalCfgPtr->Gpp.GppGen2 = 0;
}
}
/**
* IsExternalClockMode - Is External Clock Mode?
*
*
* @retval TRUE or FALSE
*
*/
BOOLEAN
IsExternalClockMode (
IN VOID *FchDataPtr
)
{
UINT8 MISC80;
ReadMem (ACPI_MMIO_BASE + MISC_BASE + FCH_MISC_REG80, AccessWidth8, &MISC80);
return ( (BOOLEAN) ((MISC80 & BIT4) == 0) );
}
/**
* ProgramFchEnvSpreadSpectrum - Config SpreadSpectrum before
* PCI emulation
*
*
*
* @param[in] FchDataPtr Fch configuration structure pointer.
*
*/
VOID
ProgramFchEnvSpreadSpectrum (
IN VOID *FchDataPtr
)
{
UINT8 PortStatus;
UINT8 FchSpreadSpectrum;
FCH_DATA_BLOCK *LocalCfgPtr;
AMD_CONFIG_PARAMS *StdHeader;
LocalCfgPtr = (FCH_DATA_BLOCK *) FchDataPtr;
StdHeader = LocalCfgPtr->StdHeader;
FchSpreadSpectrum = LocalCfgPtr->HwAcpi.SpreadSpectrum;
if ((FchSpreadSpectrum > 0) && !(IsExternalClockMode (FchDataPtr))) {
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x40, AccessWidth32, (UINT32) (~(0x1 << 25)), (0x1 << 25));
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x08, AccessWidth32, (UINT32) (~(0x1 << 0)), (0x0 << 0));
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x18, AccessWidth32, (UINT32) (~(0x7FF << 5)), (0x318 << 5));
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x18, AccessWidth32, (UINT32) (~(0xF << 16)), (0x0 << 16));
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x10, AccessWidth32, (UINT32) (~(0xFFFF << 8)), (0x6F83 << 8));
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x10, AccessWidth32, (UINT32) (~(0xFF << 0)), (0x90 << 0));
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x1C, AccessWidth32, (UINT32) (~(0x3F << 0)), (0x0 << 0));
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x08, AccessWidth32, (UINT32) (~(0xF << 28)), (0x7 << 28));
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x08, AccessWidth32, (UINT32) (~(0x1 << 7)), (0x0 << 8));
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x08, AccessWidth32, (UINT32) (~(0x1 << 8)), (0x1 << 8));
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x10, AccessWidth32, (UINT32) (~(0x3 << 24)), (0x1 << 24));
RwMem (ACPI_MMIO_BASE + MISC_BASE + FCH_MISC_REG08, AccessWidth8, 0xFE, 0x01);
} else {
RwMem (ACPI_MMIO_BASE + MISC_BASE + FCH_MISC_REG08, AccessWidth8, 0xFE, 0x00);
}
//
// PLL 100Mhz Reference Clock Buffer setting for internal clock generator mode (BIT5)
// OSC Clock setting for internal clock generator mode (BIT6)
//
GetChipSysMode (&PortStatus, StdHeader);
if ( ((PortStatus & ChipSysIntClkGen) == ChipSysIntClkGen) ) {
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x04 + 1, AccessWidth8, (UINT32)~(BIT5 + BIT6), BIT5 + BIT6);
}
}
/**
* TurnOffCG2
*
*
* @retval VOID
*
*/
VOID
TurnOffCG2 (
OUT VOID
)
{
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x40, AccessWidth8, (UINT32)~BIT6, 0);
RwMem (ACPI_MMIO_BASE + PMIO_BASE + 0xDA , AccessWidth8, 0x0F, 0xA0);
RwMem (ACPI_MMIO_BASE + IOMUX_BASE + 0x41, AccessWidth8, (UINT32)~(BIT1 + BIT0), (BIT1 + BIT0));
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x41, AccessWidth8, (UINT32)~( BIT4), (BIT4));
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x41, AccessWidth8, (UINT32)~(BIT6), (BIT6));
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x08, AccessWidth8, (UINT32)~BIT6, BIT6);
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x1C, AccessWidth8, (UINT32)~BIT6, BIT6);
}
/**
* BackUpCG2
*
*
* @retval VOID
*
*/
VOID
BackUpCG2 (
OUT VOID
)
{
UINT8 Byte;
ReadMem (ACPI_MMIO_BASE + MISC_BASE + 0x1C, AccessWidth8, &Byte);
if (Byte & BIT6) {
RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x41, AccessWidth8, (UINT32)~(BIT6), (0));
}
}
/**
* HpetInit - Program Fch HPET function
*
*
*
* @param[in] FchDataPtr Fch configuration structure pointer.
*
*/
VOID
HpetInit (
IN VOID *FchDataPtr
)
{
DESCRIPTION_HEADER *HpetTable;
UINT8 FchHpetTimer;
UINT8 FchHpetMsiDis;
FCH_DATA_BLOCK *LocalCfgPtr;
LocalCfgPtr = (FCH_DATA_BLOCK *) FchDataPtr;
FchHpetTimer = (UINT8) LocalCfgPtr->Hpet.HpetEnable;
FchHpetMsiDis = (UINT8) LocalCfgPtr->Hpet.HpetMsiDis;
HpetTable = NULL;
if ( FchHpetTimer == TRUE ) {
//
//Program the HPET BAR address
//
RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REG50, AccessWidth32, FCH_HPET_REG_MASK, LocalCfgPtr->Hpet.HpetBase);
//
//Enabling decoding of HPET MMIO
//Enable HPET MSI support
//Enable High Precision Event Timer (also called Multimedia Timer) interrupt
//
if ( FchHpetMsiDis == FALSE ) {
RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REG50, AccessWidth32, FCH_HPET_REG_MASK, BIT0 + BIT1 + BIT2 + BIT3 + BIT4);
#ifdef FCH_TIMER_TICK_INTERVAL_WA
RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REG50, AccessWidth32, FCH_HPET_REG_MASK, BIT0 + BIT1);
#endif
} else {
RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REG50, AccessWidth32, FCH_HPET_REG_MASK, BIT0 + BIT1);
}
} else {
if ( ! (LocalCfgPtr->Misc.S3Resume) ) {
HpetTable = (DESCRIPTION_HEADER*) AcpiLocateTable (Int32FromChar('H','P','E','T')); /* 'TEPH' */
}
if ( HpetTable != NULL ) {
HpetTable->Signature = Int32FromChar('T','E','P','H'); /* 'HPET' */
}
}
}