coreboot/src/soc/qualcomm/sc7180/display/dsi_phy.c

766 lines
18 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#include <console/console.h>
#include <delay.h>
#include <device/mmio.h>
#include <edid.h>
#include <lib.h>
#include <soc/clock.h>
#include <soc/display/dsi_phy.h>
#include <soc/display/mdssreg.h>
#include <soc/display/display_resources.h>
#include <string.h>
#include <timer.h>
#define HAL_DSI_PHY_PLL_READY_TIMEOUT_MS 150 /* ~15 ms */
#define HAL_DSI_PHY_REFGEN_TIMEOUT_MS 150 /* ~15 ms */
#define DSI_MAX_REFRESH_RATE 95
#define DSI_MIN_REFRESH_RATE 15
#define HAL_DSI_PLL_VCO_MIN_MHZ_2_2_0 1000
#define S_DIV_ROUND_UP(n, d) \
(((n) >= 0) ? (((n) + (d) - 1) / (d)) : (((n) - (d) + 1) / (d)))
#define mult_frac(x, numer, denom)( \
{ \
typeof(x) quot = (x) / (denom); \
typeof(x) rem = (x) % (denom); \
(quot * (numer)) + ((rem * (numer)) / (denom)); \
} \
)
struct dsi_phy_divider_lut_entry_type {
uint16_t pll_post_div;
uint16_t phy_post_div;
};
/* PLL divider LUTs */
static struct dsi_phy_divider_lut_entry_type pll_dividerlut_dphy[] = {
/* pll post div will always be power of 2 */
{ 2, 11 },
{ 4, 5 },
{ 2, 9 },
{ 8, 2 },
{ 1, 15 },
{ 2, 7 },
{ 1, 13 },
{ 4, 3 },
{ 1, 11 },
{ 2, 5 },
{ 1, 9 },
{ 8, 1 },
{ 1, 7 },
{ 2, 3 },
{ 1, 5 },
{ 4, 1 },
{ 1, 3 },
{ 2, 1 },
{ 1, 1 }
};
enum dsi_laneid_type {
DSI_LANEID_0 = 0,
DSI_LANEID_1,
DSI_LANEID_2,
DSI_LANEID_3,
DSI_LANEID_CLK,
DSI_LANEID_MAX,
DSI_LANEID_FORCE_32BIT = 0x7FFFFFFF
};
struct dsi_phy_configtype {
uint32_t desired_bitclk_freq;
uint32_t bits_per_pixel;
uint32_t num_data_lanes;
uint32_t pclk_divnumerator;
uint32_t pclk_divdenominator;
/* pixel clk source select */
uint32_t phy_post_div;
uint32_t pll_post_div;
};
static inline s32 linear_inter(s32 tmax, s32 tmin, s32 percent,
s32 min_result, bool even)
{
s32 v;
v = (tmax - tmin) * percent;
v = S_DIV_ROUND_UP(v, 100) + tmin;
if (even && (v & 0x1))
return MAX(min_result, v - 1);
return MAX(min_result, v);
}
static void mdss_dsi_phy_reset(void)
{
write32(&dsi0_phy->phy_cmn_ctrl1, 0x40);
udelay(100);
write32(&dsi0_phy->phy_cmn_ctrl1, 0x0);
}
static void mdss_dsi_power_down(void)
{
/* power up DIGTOP & PLL */
write32(&dsi0_phy->phy_cmn_ctrl0, 0x60);
/* Disable PLL */
write32(&dsi0_phy->phy_cmn_pll_ctrl, 0x0);
/* Resync re-time FIFO OFF*/
write32(&dsi0_phy->phy_cmn_rbuf_ctrl, 0x0);
}
static void mdss_dsi_phy_setup_lanephy(enum dsi_laneid_type lane)
{
uint32_t reg_val = 0;
uint32_t lprx_ctrl = 0;
uint32_t hstx_strength = 0x88;
uint32_t data_strength_lp_n = 0x5;
uint32_t data_strength_lp_p = 0x5;
uint32_t pemph_bottom = 0;
uint32_t pemph_top = 0;
uint32_t strength_override = 0;
uint32_t clk_lane = 0;
if (lane == DSI_LANEID_CLK)
clk_lane = 1;
else
clk_lane = 0;
if (lane == DSI_LANEID_0)
lprx_ctrl = 3;
/*
* DSIPHY_STR_LP_N
* DSIPHY_STR_LP_P
*/
reg_val = ((data_strength_lp_n << 0x4) & 0xf0) |
(data_strength_lp_p & 0x0f);
write32(&dsi0_phy->phy_ln_regs[lane].dln0_lptx_str_ctrl, reg_val);
/*
* DSIPHY_LPRX_EN
* DSIPHY_CDRX_EN
* Transition from 0 to 1 for DLN0-3 CLKLN stays 0
*/
write32(&dsi0_phy->phy_ln_regs[lane].dln0_lprx_ctrl, 0x0);
write32(&dsi0_phy->phy_ln_regs[lane].dln0_lprx_ctrl, lprx_ctrl);
/* Pin Swap */
write32(&dsi0_phy->phy_ln_regs[lane].dln0_pin_swap, 0x0);
/*
* DSIPHY_HSTX_STR_HSTOP
* DSIPHY_HSTX_STR_HSBOT
*/
write32(&dsi0_phy->phy_ln_regs[lane].dln0_hstx_str_ctrl, hstx_strength);
/* PGM Delay */
write32(&dsi0_phy->phy_ln_regs[lane].dln0_cfg[0], 0x0);
/* DLN0_CFG1 */
reg_val = (strength_override << 0x5) & 0x20;
write32(&dsi0_phy->phy_ln_regs[lane].dln0_cfg[1], reg_val);
/* DLN0_CFG2 */
reg_val = ((pemph_bottom << 0x04) & 0xf0) |
(pemph_top & 0x0f);
write32(&dsi0_phy->phy_ln_regs[lane].dln0_cfg[2], reg_val);
write32(&dsi0_phy->phy_ln_regs[lane].dln0_offset_top_ctrl, 0x0);
write32(&dsi0_phy->phy_ln_regs[lane].dln0_offset_bot_ctrl, 0x0);
/*
* DSIPHY_LPRX_DLY
* IS_CKLANE
*/
reg_val = (clk_lane << 0x07) & 0x80;
write32(&dsi0_phy->phy_ln_regs[lane].dln0_cfg[3], reg_val);
reg_val = 0;
if (lane == DSI_LANEID_CLK)
reg_val = 1;
write32(&dsi0_phy->phy_ln_regs[lane].dln0_tx_dctrl, reg_val);
}
static void mdss_dsi_calculate_phy_timings(struct msm_dsi_phy_ctrl *timing,
struct dsi_phy_configtype *phy_cfg)
{
const unsigned long bit_rate = phy_cfg->desired_bitclk_freq;
s32 ui, ui_x8;
s32 tmax, tmin;
s32 pcnt0 = 50;
s32 pcnt1 = 50;
s32 pcnt2 = 10;
s32 pcnt3 = 30;
s32 pcnt4 = 10;
s32 pcnt5 = 2;
s32 coeff = 1000; /* Precision, should avoid overflow */
s32 hb_en, hb_en_ckln;
s32 temp;
if (!bit_rate)
return;
hb_en = 0;
timing->half_byte_clk_en = 0;
hb_en_ckln = 0;
ui = mult_frac(1000000, coeff, bit_rate / 1000);
ui_x8 = ui << 3;
temp = S_DIV_ROUND_UP(38 * coeff, ui_x8);
tmin = MAX(temp, 0);
temp = (95 * coeff) / ui_x8;
tmax = MAX(temp, 0);
timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, false);
temp = 300 * coeff - (timing->clk_prepare << 3) * ui;
tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = (tmin > 255) ? 511 : 255;
timing->clk_zero = linear_inter(tmax, tmin, pcnt5, 0, false);
tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8);
temp = 105 * coeff + 12 * ui - 20 * coeff;
tmax = (temp + 3 * ui) / ui_x8;
timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui, ui_x8);
tmin = MAX(temp, 0);
temp = (85 * coeff + 6 * ui) / ui_x8;
tmax = MAX(temp, 0);
timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, false);
temp = 145 * coeff + 10 * ui - (timing->hs_prepare << 3) * ui;
tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = 255;
timing->hs_zero = linear_inter(tmax, tmin, pcnt4, 0, false);
tmin = DIV_ROUND_UP(60 * coeff + 4 * ui, ui_x8) - 1;
temp = 105 * coeff + 12 * ui - 20 * coeff;
tmax = (temp / ui_x8) - 1;
timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, false);
temp = 50 * coeff + ((hb_en << 2) - 8) * ui;
timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8);
tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1;
tmax = 255;
timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, false);
temp = 50 * coeff + ((hb_en_ckln << 2) - 8) * ui;
timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8);
temp = 60 * coeff + 52 * ui - 43 * ui;
tmin = DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = 63;
timing->clk_post = linear_inter(tmax, tmin, pcnt2, 0, false);
temp = 8 * ui + (timing->clk_prepare << 3) * ui;
temp += (((timing->clk_zero + 3) << 3) + 11) * ui;
temp += hb_en_ckln ? (((timing->hs_rqst << 3) + 4) * ui) :
(((timing->hs_rqst << 3) + 8) * ui);
tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1;
tmax = 63;
if (tmin > tmax) {
temp = linear_inter(tmax << 1, tmin, pcnt2, 0, false);
timing->clk_pre = temp >> 1;
timing->clk_pre_inc_by_2 = 1;
} else {
timing->clk_pre = linear_inter(tmax, tmin, pcnt2, 0, false);
timing->clk_pre_inc_by_2 = 0;
}
timing->ta_go = 3;
timing->ta_sure = 0;
timing->ta_get = 4;
printk(BIOS_INFO, "PHY timings: %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d\n",
timing->clk_pre, timing->clk_post,
timing->clk_pre_inc_by_2, timing->clk_zero,
timing->clk_trail, timing->clk_prepare, timing->hs_exit,
timing->hs_zero, timing->hs_prepare, timing->hs_trail,
timing->hs_rqst);
}
static enum cb_err mdss_dsi_phy_timings(struct msm_dsi_phy_ctrl *phy_timings)
{
uint32_t reg_val = 0;
/*
* Step 4 Common block including GlobalTiming Parameters
* BYTECLK_SEL
*/
reg_val = (0x02 << 3) & 0x18;
write32(&dsi0_phy->phy_cmn_glbl_ctrl, reg_val);
/* VREG_CTRL */
write32(&dsi0_phy->phy_cmn_vreg_ctrl, 0x59);
/*HALFBYTECLK_EN*/
write32(&dsi0_phy->phy_cmn_timing_ctrl[0], phy_timings->half_byte_clk_en);
/* T_CLK_ZERO */
write32(&dsi0_phy->phy_cmn_timing_ctrl[1], phy_timings->clk_zero);
/* T_CLK_PREPARE */
write32(&dsi0_phy->phy_cmn_timing_ctrl[2], phy_timings->clk_prepare);
/* T_CLK_TRAIL */
write32(&dsi0_phy->phy_cmn_timing_ctrl[3], phy_timings->clk_trail);
/* T_HS_EXIT */
write32(&dsi0_phy->phy_cmn_timing_ctrl[4], phy_timings->hs_exit);
/* T_HS_ZERO */
write32(&dsi0_phy->phy_cmn_timing_ctrl[5], phy_timings->hs_zero);
/* T_HS_PREPARE */
write32(&dsi0_phy->phy_cmn_timing_ctrl[6], phy_timings->hs_prepare);
/* T_HS_TRAIL */
write32(&dsi0_phy->phy_cmn_timing_ctrl[7], phy_timings->hs_trail);
/* T_HS_RQST */
write32(&dsi0_phy->phy_cmn_timing_ctrl[8], phy_timings->hs_rqst);
/* T_TA_GO & T_TA_SURE */
write32(&dsi0_phy->phy_cmn_timing_ctrl[9],
phy_timings->ta_sure << 3 | phy_timings->ta_go);
/* T_TA_GET */
write32(&dsi0_phy->phy_cmn_timing_ctrl[10], phy_timings->ta_get);
/*DSIPHY_TRIG3_CMD*/
write32(&dsi0_phy->phy_cmn_timing_ctrl[11], 0x0);
/* DSI clock out timing ctrl T_CLK_PRE & T_CLK_POST*/
reg_val = ((phy_timings->clk_post << 8) | phy_timings->clk_pre);
write32(&dsi0->clkout_timing_ctrl, reg_val);
/* DCTRL */
write32(&dsi0_phy->phy_cmn_ctrl2, 0x40);
return CB_SUCCESS;
}
static enum cb_err dsi_phy_waitforrefgen(void)
{
uint32_t timeout = HAL_DSI_PHY_REFGEN_TIMEOUT_MS;
uint32_t refgen = 0;
enum cb_err ret = CB_SUCCESS;
while (!refgen) {
refgen = (read32(&dsi0_phy->phy_cmn_phy_status) & 0x1);
if (!refgen) {
udelay(100);
timeout--;
if (!timeout) {
/* timeout while polling the lock status */
ret = CB_ERR;
break;
}
}
}
return ret;
}
static enum cb_err mdss_dsi_phy_commit(void)
{
enum cb_err ret = CB_SUCCESS;
ret = dsi_phy_waitforrefgen();
if (ret) {
printk(BIOS_ERR, "%s: waitforrefgen error\n", __func__);
return ret;
}
mdss_dsi_power_down();
/* Remove PLL, DIG and all lanes from pwrdn */
write32(&dsi0_phy->phy_cmn_ctrl0, 0x7F);
/* Lane enable */
write32(&dsi0_phy->phy_cmn_dsi_lane_ctrl0, 0x1F);
mdss_dsi_phy_setup_lanephy(DSI_LANEID_0);
mdss_dsi_phy_setup_lanephy(DSI_LANEID_1);
mdss_dsi_phy_setup_lanephy(DSI_LANEID_2);
mdss_dsi_phy_setup_lanephy(DSI_LANEID_3);
mdss_dsi_phy_setup_lanephy(DSI_LANEID_CLK);
return ret;
}
static void mdss_dsi_phy_setup(void)
{
/* First reset phy */
mdss_dsi_phy_reset();
/* commit phy settings */
mdss_dsi_phy_commit();
}
static void dsi_phy_resync_fifo(void)
{
/* Resync FIFO*/
write32(&dsi0_phy->phy_cmn_rbuf_ctrl, 0x1);
}
static void dsi_phy_pll_global_clk_enable(bool enable)
{
uint32_t clk_cfg = read32(&dsi0_phy->phy_cmn_clk_cfg1);
uint32_t clk_enable = 0;
/* Set CLK_EN */
if (enable)
clk_enable = 1;
clk_cfg &= ~0x20;
clk_cfg |= ((clk_enable << 0x5) & 0x20);
/* clk cfg1 */
write32(&dsi0_phy->phy_cmn_clk_cfg1, clk_cfg);
}
static enum cb_err dsi_phy_pll_lock_detect(void)
{
enum cb_err ret = CB_SUCCESS;
/* Enable PLL */
write32(&dsi0_phy->phy_cmn_pll_ctrl, 0x1);
/* Wait for Lock */
if (!wait_us(15000, read32(&phy_pll_qlink->pll_common_status_one) & 0x1)) {
/* timeout while polling the lock status */
ret = CB_ERR;
printk(BIOS_ERR, "dsi pll lock detect timedout, error.\n");
}
return ret;
}
static void dsi_phy_toggle_dln3_tx_dctrl(void)
{
uint32_t reg_val = 0;
reg_val = read32(&dsi0_phy->phy_ln_regs[DSI_LANEID_3].dln0_tx_dctrl);
/* clear bit 0 and keep all other bits including bit 2 */
reg_val &= ~0x01;
/* toggle bit 0 */
write32(&dsi0_phy->phy_ln_regs[DSI_LANEID_3].dln0_tx_dctrl, (0x01 | reg_val));
write32(&dsi0_phy->phy_ln_regs[DSI_LANEID_3].dln0_tx_dctrl, 0x4);
}
static void dsi_phy_pll_set_source(void)
{
uint32_t clk_cfg = read32(&dsi0_phy->phy_cmn_clk_cfg1);
uint32_t dsi_clksel = 1;
clk_cfg &= ~0x03;
clk_cfg |= ((dsi_clksel) & 0x3);
/* clk cfg1 */
write32(&dsi0_phy->phy_cmn_clk_cfg1, clk_cfg);
}
static void dsi_phy_pll_bias_enable(bool enable)
{
uint32_t reg_val = 0;
/* Set BIAS_EN_MUX, BIAS_EN */
if (enable)
reg_val = (0x01 << 6) | (0x01 << 7);
/* pll system muxes */
write32(&phy_pll_qlink->pll_system_muxes, reg_val);
}
static void dsi_phy_mnd_divider(struct dsi_phy_configtype *phy_cfg)
{
uint32_t m_val = 1;
uint32_t n_val = 1;
if (phy_cfg->bits_per_pixel == 18) {
switch (phy_cfg->num_data_lanes) {
case 1:
case 2:
m_val = 2;
n_val = 3;
break;
case 4:
m_val = 4;
n_val = 9;
break;
default:
break;
}
} else if ((phy_cfg->bits_per_pixel == 16) &&
(phy_cfg->num_data_lanes == 3)) {
m_val = 3;
n_val = 8;
} else if ((phy_cfg->bits_per_pixel == 30) &&
(phy_cfg->num_data_lanes == 4)) {
m_val = 2;
n_val = 3;
}
/*Save M/N info */
phy_cfg->pclk_divnumerator = m_val;
phy_cfg->pclk_divdenominator = n_val;
}
static uint32_t dsi_phy_dsiclk_divider(struct dsi_phy_configtype *phy_cfg)
{
uint32_t m_val = phy_cfg->pclk_divnumerator;
uint32_t n_val = phy_cfg->pclk_divdenominator;
uint32_t div_ctrl = 0;
div_ctrl = (m_val * phy_cfg->bits_per_pixel) /
(n_val * phy_cfg->num_data_lanes * 2);
return div_ctrl;
}
static unsigned long dsi_phy_calc_clk_divider(struct dsi_phy_configtype *phy_cfg)
{
bool div_found = false;
uint32_t m_val = 1;
uint32_t n_val = 1;
uint32_t div_ctrl = 0;
uint32_t reg_val = 0;
uint32_t pll_post_div = 0;
uint32_t phy_post_div = 0;
uint64_t vco_freq_hz = 0;
uint64_t fval = 0;
uint64_t pll_output_freq_hz;
uint64_t desired_bitclk_hz;
uint64_t min_vco_freq_hz = 0;
uint32_t lut_max;
int i;
struct dsi_phy_divider_lut_entry_type *lut;
/* use 1000Mhz */
min_vco_freq_hz = (HAL_DSI_PLL_VCO_MIN_MHZ_2_2_0 * 1000000);
dsi_phy_mnd_divider(phy_cfg);
m_val = phy_cfg->pclk_divnumerator;
n_val = phy_cfg->pclk_divdenominator;
/* Desired clock in MHz */
desired_bitclk_hz = (uint64_t)phy_cfg->desired_bitclk_freq;
/* D Phy */
lut = pll_dividerlut_dphy;
lut_max = ARRAY_SIZE(pll_dividerlut_dphy);
lut += (lut_max - 1);
/* PLL Post Div - from LUT
* Check the LUT in reverse order
*/
for (i = lut_max - 1; i >= 0; i--, lut--) {
fval = (uint64_t)lut->phy_post_div *
(uint64_t)lut->pll_post_div;
if (fval) {
if ((desired_bitclk_hz * fval) > min_vco_freq_hz) {
/* Range found */
pll_post_div = lut->pll_post_div;
phy_post_div = lut->phy_post_div;
div_found = true;
break;
}
}
}
if (div_found) {
phy_cfg->pll_post_div = pll_post_div;
phy_cfg->phy_post_div = phy_post_div;
/*div_ctrl_7_4 */
div_ctrl = dsi_phy_dsiclk_divider(phy_cfg);
/* DIV_CTRL_7_4 DIV_CTRL_3_0
* (DIV_CTRL_3_0 = PHY post divider ratio)
*/
reg_val = (div_ctrl << 0x04) & 0xf0;
reg_val |= (phy_post_div & 0x0f);
write32(&dsi0_phy->phy_cmn_clk_cfg0, reg_val);
/* PLL output frequency = desired_bitclk_hz * phy_post_div */
pll_output_freq_hz = desired_bitclk_hz * phy_post_div;
/* VCO output freq*/
vco_freq_hz = pll_output_freq_hz * pll_post_div;
}
return (unsigned long)vco_freq_hz;
}
static void dsi_phy_pll_outputdiv_rate(struct dsi_phy_configtype *pll_cfg)
{
/* Output divider */
uint32_t pll_post_div = 0;
uint32_t reg_val = 0;
pll_post_div = log2(pll_cfg->pll_post_div);
reg_val = pll_post_div & 0x3;
write32(&phy_pll_qlink->pll_outdiv_rate, reg_val);
}
static enum cb_err dsi_phy_pll_calcandcommit(struct dsi_phy_configtype *phy_cfg)
{
unsigned long vco_freq_hz;
enum cb_err ret = CB_SUCCESS;
/* validate input parameters */
if (!phy_cfg) {
return CB_ERR;
} else if ((phy_cfg->bits_per_pixel != 16) &&
(phy_cfg->bits_per_pixel != 18) &&
(phy_cfg->bits_per_pixel != 24)) {
/* Unsupported pixel bit depth */
return CB_ERR;
} else if ((phy_cfg->num_data_lanes == 0) ||
(phy_cfg->num_data_lanes > 4)) {
/* Illegal number of DSI data lanes */
return CB_ERR;
}
vco_freq_hz = dsi_phy_calc_clk_divider(phy_cfg);
if (!vco_freq_hz) {
/* bitclock too low - unsupported */
printk(BIOS_ERR, "vco_freq_hz is 0, unsupported\n");
return CB_ERR;
}
/* Enable PLL bias */
dsi_phy_pll_bias_enable(true);
/* Set byte clk source */
dsi_phy_pll_set_source();
dsi_phy_pll_outputdiv_rate(phy_cfg);
dsi_phy_pll_vco_10nm_set_rate(vco_freq_hz);
dsi_phy_toggle_dln3_tx_dctrl();
/* Steps 6,7 Start PLL & Lock */
if (ret == CB_SUCCESS)
ret = dsi_phy_pll_lock_detect();
/* Step 8 - Resync Data Paths */
if (ret == CB_SUCCESS) {
/* Global clock enable */
dsi_phy_pll_global_clk_enable(true);
/* Resync FIFOs */
dsi_phy_resync_fifo();
}
return ret;
}
static uint32_t dsi_calc_desired_bitclk(struct edid *edid, uint32_t num_lines, uint32_t bpp)
{
uint64_t desired_bclk = 0;
uint32_t pixel_clock_in_hz;
pixel_clock_in_hz = edid->mode.pixel_clock * KHz;
if (num_lines) {
desired_bclk = pixel_clock_in_hz * (uint64_t)bpp;
desired_bclk = desired_bclk/(uint64_t)(num_lines);
}
printk(BIOS_INFO, "Desired bitclock: %uHz\n", (uint32_t)desired_bclk);
return (uint32_t)desired_bclk;
}
static enum cb_err mdss_dsi_phy_pll_setup(struct edid *edid,
uint32_t num_of_lanes, uint32_t bpp)
{
struct dsi_phy_configtype phy_cfg;
struct msm_dsi_phy_ctrl phy_timings;
enum cb_err ret;
/* Setup the PhyStructure */
memset(&phy_cfg, 0, sizeof(struct dsi_phy_configtype));
memset(&phy_timings, 0, sizeof(struct msm_dsi_phy_ctrl));
phy_cfg.bits_per_pixel = bpp;
phy_cfg.num_data_lanes = num_of_lanes;
/* desired DSI PLL bit clk freq in Hz */
phy_cfg.desired_bitclk_freq = dsi_calc_desired_bitclk(edid, num_of_lanes, bpp);
ret = dsi_phy_pll_calcandcommit(&phy_cfg);
if (ret)
return ret;
mdss_dsi_calculate_phy_timings(&phy_timings, &phy_cfg);
ret = mdss_dsi_phy_timings(&phy_timings);
return ret;
}
static enum cb_err enable_dsi_clk(void)
{
enum cb_err ret;
uint32_t i = 0;
struct mdp_external_clock_entry clks[] = {
{.clk_type = MDSS_CLK_ESC0, .clk_secondary_source = 1},
{.clk_type = MDSS_CLK_PCLK0, .clk_source = 1},
{.clk_type = MDSS_CLK_BYTE0, .clk_source = 1},
{.clk_type = MDSS_CLK_BYTE0_INTF, .clk_source = 1,
.clk_div = 2, .source_div = 2},
};
for (i = 0; i < ARRAY_SIZE(clks); i++) {
/* Set Ext Source */
ret = mdss_clock_configure(clks[i].clk_type,
clks[i].clk_source,
clks[i].clk_div,
clks[i].clk_pll_m,
clks[i].clk_pll_n,
clks[i].clk_pll_2d);
if (ret) {
printk(BIOS_ERR,
"mdss_clock_configure failed for %u\n",
clks[i].clk_type);
return CB_ERR;
}
ret = mdss_clock_enable(clks[i].clk_type);
if (ret) {
printk(BIOS_ERR,
"mdss_clock_enable failed for %u\n",
clks[i].clk_type);
return CB_ERR;
}
}
return ret;
}
enum cb_err mdss_dsi_phy_10nm_init(struct edid *edid, uint32_t num_of_lanes, uint32_t bpp)
{
enum cb_err ret;
/* Phy set up */
mdss_dsi_phy_setup();
ret = mdss_dsi_phy_pll_setup(edid, num_of_lanes, bpp);
enable_dsi_clk();
return ret;
}