coreboot/src/northbridge/intel/ironlake/raminit.c

4721 lines
125 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
#include <console/console.h>
#include <commonlib/helpers.h>
#include <string.h>
#include <arch/io.h>
#include <device/mmio.h>
#include <device/pci_ops.h>
#include <device/smbus_host.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/cache.h>
#include <cbmem.h>
#include <cf9_reset.h>
#include <ip_checksum.h>
#include <option.h>
#include <device/pci_def.h>
#include <device/device.h>
#include <halt.h>
#include <spd.h>
#include <timestamp.h>
#include <cpu/x86/mtrr.h>
#include <cpu/intel/speedstep.h>
#include <cpu/intel/turbo.h>
#include <mrc_cache.h>
#include <southbridge/intel/ibexpeak/me.h>
#include <southbridge/intel/common/pmbase.h>
#include <delay.h>
#include <types.h>
#include "chip.h"
#include "ironlake.h"
#include "raminit.h"
#include "raminit_tables.h"
#define NORTHBRIDGE PCI_DEV(0, 0, 0)
#define SOUTHBRIDGE PCI_DEV(0, 0x1f, 0)
#define GMA PCI_DEV (0, 0x2, 0x0)
#define HECIDEV PCI_DEV(0, 0x16, 0)
#define HECIBAR 0x10
#define FOR_ALL_RANKS \
for (channel = 0; channel < NUM_CHANNELS; channel++) \
for (slot = 0; slot < NUM_SLOTS; slot++) \
for (rank = 0; rank < NUM_RANKS; rank++)
#define FOR_POPULATED_RANKS \
for (channel = 0; channel < NUM_CHANNELS; channel++) \
for (slot = 0; slot < NUM_SLOTS; slot++) \
for (rank = 0; rank < NUM_RANKS; rank++) \
if (info->populated_ranks[channel][slot][rank])
#define FOR_POPULATED_RANKS_BACKWARDS \
for (channel = NUM_CHANNELS - 1; channel >= 0; channel--) \
for (slot = 0; slot < NUM_SLOTS; slot++) \
for (rank = 0; rank < NUM_RANKS; rank++) \
if (info->populated_ranks[channel][slot][rank])
/* [REG_178][CHANNEL][2 * SLOT + RANK][LANE] */
typedef struct {
u8 smallest;
u8 largest;
} timing_bounds_t[2][2][2][9];
#define MRC_CACHE_VERSION 3
struct ram_training {
/* [TM][CHANNEL][SLOT][RANK][LANE] */
u16 lane_timings[4][2][2][2][9];
u16 reg_178;
u16 reg_10b;
u8 reg178_center;
u8 reg178_smallest;
u8 reg178_largest;
timing_bounds_t timing_bounds[2];
u16 timing_offset[2][2][2][9];
u16 timing2_offset[2][2][2][9];
u16 timing2_bounds[2][2][2][9][2];
u8 reg274265[2][3]; /* [CHANNEL][REGISTER] */
u8 reg2ca9_bit0;
u32 reg_6dc;
u32 reg_6e8;
};
#include <lib.h> /* Prototypes */
typedef struct _u128 {
u64 lo;
u64 hi;
} u128;
static void read128(u32 addr, u64 * out)
{
u128 ret;
u128 stor;
asm volatile ("movdqu %%xmm0, %0\n"
"movdqa (%2), %%xmm0\n"
"movdqu %%xmm0, %1\n"
"movdqu %0, %%xmm0":"+m" (stor), "=m"(ret):"r"(addr));
out[0] = ret.lo;
out[1] = ret.hi;
}
/*
* Ironlake memory I/O timings are located in scan chains, accessible
* through MCHBAR register groups. Each channel has a scan chain, and
* there's a global scan chain too. Each chain is broken into smaller
* sections of N bits, where N <= 32. Each section allows reading and
* writing a certain parameter. Each section contains N - 2 data bits
* and two additional bits: a Mask bit, and a Halt bit.
*/
/* OK */
static void write_1d0(u32 val, u16 addr, int bits, int flag)
{
MCHBAR32(0x1d0) = 0;
while (MCHBAR32(0x1d0) & 0x800000)
;
MCHBAR32(0x1d4) =
(val & ((1 << bits) - 1)) | (2 << bits) | (flag << bits);
MCHBAR32(0x1d0) = 0x40000000 | addr;
while (MCHBAR32(0x1d0) & 0x800000)
;
}
/* OK */
static u16 read_1d0(u16 addr, int split)
{
u32 val;
MCHBAR32(0x1d0) = 0;
while (MCHBAR32(0x1d0) & 0x800000)
;
MCHBAR32(0x1d0) =
0x80000000 | (((MCHBAR8(0x246) >> 2) & 3) + 0x361 - addr);
while (MCHBAR32(0x1d0) & 0x800000)
;
val = MCHBAR32(0x1d8);
write_1d0(0, 0x33d, 0, 0);
write_1d0(0, 0x33d, 0, 0);
val &= ((1 << split) - 1);
// printk (BIOS_ERR, "R1D0C [%x] => %x\n", addr, val);
return val;
}
static void write32p(uintptr_t addr, uint32_t val)
{
write32((void *)addr, val);
}
static uint32_t read32p(uintptr_t addr)
{
return read32((void *)addr);
}
static void sfence(void)
{
asm volatile ("sfence");
}
static inline u16 get_lane_offset(int slot, int rank, int lane)
{
return 0x124 * lane + ((lane & 4) ? 0x23e : 0) + 11 * rank + 22 * slot -
0x452 * (lane == 8);
}
static inline u16 get_timing_register_addr(int lane, int tm, int slot, int rank)
{
const u16 offs[] = { 0x1d, 0xa8, 0xe6, 0x5c };
return get_lane_offset(slot, rank, lane) + offs[(tm + 3) % 4];
}
static u32 gav_real(int line, u32 in)
{
// printk (BIOS_DEBUG, "%d: GAV: %x\n", line, in);
return in;
}
#define gav(x) gav_real (__LINE__, (x))
struct raminfo {
u16 clock_speed_index; /* clock_speed (REAL, not DDR) / 133.(3) - 3 */
u16 fsb_frequency; /* in 1.(1)/2 MHz. */
u8 is_x16_module[2][2]; /* [CHANNEL][SLOT] */
u8 density[2][2]; /* [CHANNEL][SLOT] */
u8 populated_ranks[2][2][2]; /* [CHANNEL][SLOT][RANK] */
int rank_start[2][2][2];
u8 cas_latency;
u8 board_lane_delay[9];
u8 use_ecc;
u8 revision;
u8 max_supported_clock_speed_index;
u8 uma_enabled;
u8 spd[2][2][151]; /* [CHANNEL][SLOT][BYTE] */
u8 silicon_revision;
u8 populated_ranks_mask[2];
u8 max_slots_used_in_channel;
u8 mode4030[2];
u16 avg4044[2];
u16 max4048[2];
unsigned int total_memory_mb;
unsigned int interleaved_part_mb;
unsigned int non_interleaved_part_mb;
unsigned int memory_reserved_for_heci_mb;
struct ram_training training;
u32 last_500_command[2];
u32 delay46_ps[2];
u32 delay54_ps[2];
u8 revision_flag_1;
u8 some_delay_1_cycle_floor;
u8 some_delay_2_halfcycles_ceil;
u8 some_delay_3_ps_rounded;
const struct ram_training *cached_training;
};
/* Global allocation of timings_car */
timing_bounds_t timings_car[64];
static void
write_500(struct raminfo *info, int channel, u32 val, u16 addr, int bits,
int flag);
/* OK */
static u16
read_500(struct raminfo *info, int channel, u16 addr, int split)
{
u32 val;
info->last_500_command[channel] = 0x80000000;
MCHBAR32(0x500 + (channel << 10)) = 0;
while (MCHBAR32(0x500 + (channel << 10)) & 0x800000)
;
MCHBAR32(0x500 + (channel << 10)) =
0x80000000 | (((MCHBAR8(0x246 + (channel << 10)) >> 2) & 3)
+ 0xb88 - addr);
while (MCHBAR32(0x500 + (channel << 10)) & 0x800000)
;
val = MCHBAR32(0x508 + (channel << 10));
return val & ((1 << split) - 1);
}
/* OK */
static void
write_500(struct raminfo *info, int channel, u32 val, u16 addr, int bits,
int flag)
{
if (info->last_500_command[channel] == 0x80000000) {
info->last_500_command[channel] = 0x40000000;
write_500(info, channel, 0, 0xb61, 0, 0);
}
MCHBAR32(0x500 + (channel << 10)) = 0;
while (MCHBAR32(0x500 + (channel << 10)) & 0x800000)
;
MCHBAR32(0x504 + (channel << 10)) =
(val & ((1 << bits) - 1)) | (2 << bits) | (flag << bits);
MCHBAR32(0x500 + (channel << 10)) = 0x40000000 | addr;
while (MCHBAR32(0x500 + (channel << 10)) & 0x800000)
;
}
static int rw_test(int rank)
{
const u32 mask = 0xf00fc33c;
int ok = 0xff;
int i;
for (i = 0; i < 64; i++)
write32p((rank << 28) | (i << 2), 0);
sfence();
for (i = 0; i < 64; i++)
gav(read32p((rank << 28) | (i << 2)));
sfence();
for (i = 0; i < 32; i++) {
u32 pat = (((mask >> i) & 1) ? 0xffffffff : 0);
write32p((rank << 28) | (i << 3), pat);
write32p((rank << 28) | (i << 3) | 4, pat);
}
sfence();
for (i = 0; i < 32; i++) {
u8 pat = (((mask >> i) & 1) ? 0xff : 0);
int j;
u32 val;
gav(val = read32p((rank << 28) | (i << 3)));
for (j = 0; j < 4; j++)
if (((val >> (j * 8)) & 0xff) != pat)
ok &= ~(1 << j);
gav(val = read32p((rank << 28) | (i << 3) | 4));
for (j = 0; j < 4; j++)
if (((val >> (j * 8)) & 0xff) != pat)
ok &= ~(16 << j);
}
sfence();
for (i = 0; i < 64; i++)
write32p((rank << 28) | (i << 2), 0);
sfence();
for (i = 0; i < 64; i++)
gav(read32p((rank << 28) | (i << 2)));
return ok;
}
static void
program_timings(struct raminfo *info, u16 base, int channel, int slot, int rank)
{
int lane;
for (lane = 0; lane < 8; lane++) {
write_500(info, channel,
base +
info->training.
lane_timings[2][channel][slot][rank][lane],
get_timing_register_addr(lane, 2, slot, rank), 9, 0);
write_500(info, channel,
base +
info->training.
lane_timings[3][channel][slot][rank][lane],
get_timing_register_addr(lane, 3, slot, rank), 9, 0);
}
}
static void write_26c(int channel, u16 si)
{
MCHBAR32(0x26c + (channel << 10)) = 0x03243f35;
MCHBAR32(0x268 + (channel << 10)) = 0xcfc00000 | (si << 9);
MCHBAR16(0x2b9 + (channel << 10)) = si;
}
static u32 get_580(int channel, u8 addr)
{
u32 ret;
gav(read_1d0(0x142, 3));
MCHBAR8(0x5ff) = 0x0;
MCHBAR8(0x5ff) = 0x80;
MCHBAR32(0x580 + (channel << 10)) = 0x8493c012 | addr;
MCHBAR8_OR(0x580 + (channel << 10), 1);
while (!((ret = MCHBAR32(0x580 + (channel << 10))) & 0x10000))
;
MCHBAR8_AND(0x580 + (channel << 10), ~1);
return ret;
}
#define NUM_CHANNELS 2
#define NUM_SLOTS 2
#define NUM_RANKS 2
#define RANK_SHIFT 28
#define CHANNEL_SHIFT 10
static void seq9(struct raminfo *info, int channel, int slot, int rank)
{
int i, lane;
for (i = 0; i < 2; i++)
for (lane = 0; lane < 8; lane++)
write_500(info, channel,
info->training.lane_timings[i +
1][channel][slot]
[rank][lane], get_timing_register_addr(lane,
i + 1,
slot,
rank),
9, 0);
write_1d0(1, 0x103, 6, 1);
for (lane = 0; lane < 8; lane++)
write_500(info, channel,
info->training.
lane_timings[0][channel][slot][rank][lane],
get_timing_register_addr(lane, 0, slot, rank), 9, 0);
for (i = 0; i < 2; i++) {
for (lane = 0; lane < 8; lane++)
write_500(info, channel,
info->training.lane_timings[i +
1][channel][slot]
[rank][lane], get_timing_register_addr(lane,
i + 1,
slot,
rank),
9, 0);
gav(get_580(channel, ((i + 1) << 2) | (rank << 5)));
}
gav(read_1d0(0x142, 3)); // = 0x10408118
MCHBAR8(0x5ff) = 0x0;
MCHBAR8(0x5ff) = 0x80;
write_1d0(0x2, 0x142, 3, 1);
for (lane = 0; lane < 8; lane++) {
// printk (BIOS_ERR, "before: %x\n", info->training.lane_timings[2][channel][slot][rank][lane]);
info->training.lane_timings[2][channel][slot][rank][lane] =
read_500(info, channel,
get_timing_register_addr(lane, 2, slot, rank), 9);
//printk (BIOS_ERR, "after: %x\n", info->training.lane_timings[2][channel][slot][rank][lane]);
info->training.lane_timings[3][channel][slot][rank][lane] =
info->training.lane_timings[2][channel][slot][rank][lane] +
0x20;
}
}
static int count_ranks_in_channel(struct raminfo *info, int channel)
{
int slot, rank;
int res = 0;
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_SLOTS; rank++)
res += info->populated_ranks[channel][slot][rank];
return res;
}
static void
config_rank(struct raminfo *info, int s3resume, int channel, int slot, int rank)
{
int add;
write_1d0(0, 0x178, 7, 1);
seq9(info, channel, slot, rank);
program_timings(info, 0x80, channel, slot, rank);
if (channel == 0)
add = count_ranks_in_channel(info, 1);
else
add = 0;
if (!s3resume)
gav(rw_test(rank + add));
program_timings(info, 0x00, channel, slot, rank);
if (!s3resume)
gav(rw_test(rank + add));
if (!s3resume)
gav(rw_test(rank + add));
write_1d0(0, 0x142, 3, 1);
write_1d0(0, 0x103, 6, 1);
gav(get_580(channel, 0xc | (rank << 5)));
gav(read_1d0(0x142, 3));
MCHBAR8(0x5ff) = 0x0;
MCHBAR8(0x5ff) = 0x80;
}
static void set_4cf(struct raminfo *info, int channel, u8 val)
{
gav(read_500(info, channel, 0x4cf, 4)); // = 0xc2300cf9
write_500(info, channel, val, 0x4cf, 4, 1);
gav(read_500(info, channel, 0x659, 4)); // = 0x80300839
write_500(info, channel, val, 0x659, 4, 1);
gav(read_500(info, channel, 0x697, 4)); // = 0x80300839
write_500(info, channel, val, 0x697, 4, 1);
}
static void set_334(int zero)
{
int j, k, channel;
const u32 val3[] = { 0x2a2b2a2b, 0x26272627, 0x2e2f2e2f, 0x2a2b };
u32 vd8[2][16];
for (channel = 0; channel < NUM_CHANNELS; channel++) {
for (j = 0; j < 4; j++) {
u32 a = (j == 1) ? 0x29292929 : 0x31313131;
u32 lmask = (j == 3) ? 0xffff : 0xffffffff;
u16 c;
if ((j == 0 || j == 3) && zero)
c = 0;
else if (j == 3)
c = 0x5f;
else
c = 0x5f5f;
for (k = 0; k < 2; k++) {
MCHBAR32(0x138 + 8 * k) =
(channel << 26) | (j << 24);
gav(vd8[1][(channel << 3) | (j << 1) | k] =
MCHBAR32(0x138 + 8 * k));
gav(vd8[0][(channel << 3) | (j << 1) | k] =
MCHBAR32(0x13c + 8 * k));
}
MCHBAR32(0x334 + (channel << 10) + (j * 0x44)) =
zero ? 0 : val3[j];
MCHBAR32(0x32c + (channel << 10) + (j * 0x44)) =
zero ? 0 : (0x18191819 & lmask);
MCHBAR16(0x34a + (channel << 10) + (j * 0x44)) = c;
MCHBAR32(0x33c + (channel << 10) + (j * 0x44)) =
zero ? 0 : (a & lmask);
MCHBAR32(0x344 + (channel << 10) + (j * 0x44)) =
zero ? 0 : (a & lmask);
}
}
MCHBAR32_OR(0x130, 1);
while (MCHBAR8(0x130) & 1)
;
}
static void rmw_1d0(u16 addr, u32 and, u32 or, int split)
{
u32 v;
v = read_1d0(addr, split);
write_1d0((v & and) | or, addr, split, 1);
}
static int find_highest_bit_set(u16 val)
{
int i;
for (i = 15; i >= 0; i--)
if (val & (1 << i))
return i;
return -1;
}
static int find_lowest_bit_set32(u32 val)
{
int i;
for (i = 0; i < 32; i++)
if (val & (1 << i))
return i;
return -1;
}
enum {
DEVICE_TYPE = 2,
MODULE_TYPE = 3,
DENSITY = 4,
RANKS_AND_DQ = 7,
MEMORY_BUS_WIDTH = 8,
TIMEBASE_DIVIDEND = 10,
TIMEBASE_DIVISOR = 11,
CYCLETIME = 12,
CAS_LATENCIES_LSB = 14,
CAS_LATENCIES_MSB = 15,
CAS_LATENCY_TIME = 16,
THERMAL_AND_REFRESH = 31,
REFERENCE_RAW_CARD_USED = 62,
RANK1_ADDRESS_MAPPING = 63
};
static void calculate_timings(struct raminfo *info)
{
unsigned int cycletime;
unsigned int cas_latency_time;
unsigned int supported_cas_latencies;
unsigned int channel, slot;
unsigned int clock_speed_index;
unsigned int min_cas_latency;
unsigned int cas_latency;
unsigned int max_clock_index;
/* Find common CAS latency */
supported_cas_latencies = 0x3fe;
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
if (info->populated_ranks[channel][slot][0])
supported_cas_latencies &=
2 *
(info->
spd[channel][slot][CAS_LATENCIES_LSB] |
(info->
spd[channel][slot][CAS_LATENCIES_MSB] <<
8));
max_clock_index = MIN(3, info->max_supported_clock_speed_index);
cycletime = min_cycletime[max_clock_index];
cas_latency_time = min_cas_latency_time[max_clock_index];
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
if (info->populated_ranks[channel][slot][0]) {
unsigned int timebase;
timebase =
1000 *
info->
spd[channel][slot][TIMEBASE_DIVIDEND] /
info->spd[channel][slot][TIMEBASE_DIVISOR];
cycletime =
MAX(cycletime,
timebase *
info->spd[channel][slot][CYCLETIME]);
cas_latency_time =
MAX(cas_latency_time,
timebase *
info->
spd[channel][slot][CAS_LATENCY_TIME]);
}
if (cycletime > min_cycletime[0])
die("RAM init: Decoded SPD DRAM freq is slower than the controller minimum!");
for (clock_speed_index = 0; clock_speed_index < 3; clock_speed_index++) {
if (cycletime == min_cycletime[clock_speed_index])
break;
if (cycletime > min_cycletime[clock_speed_index]) {
clock_speed_index--;
cycletime = min_cycletime[clock_speed_index];
break;
}
}
min_cas_latency = DIV_ROUND_UP(cas_latency_time, cycletime);
cas_latency = 0;
while (supported_cas_latencies) {
cas_latency = find_highest_bit_set(supported_cas_latencies) + 3;
if (cas_latency <= min_cas_latency)
break;
supported_cas_latencies &=
~(1 << find_highest_bit_set(supported_cas_latencies));
}
if (cas_latency != min_cas_latency && clock_speed_index)
clock_speed_index--;
if (cas_latency * min_cycletime[clock_speed_index] > 20000)
die("Couldn't configure DRAM");
info->clock_speed_index = clock_speed_index;
info->cas_latency = cas_latency;
}
static void program_base_timings(struct raminfo *info)
{
unsigned int channel;
unsigned int slot, rank, lane;
unsigned int extended_silicon_revision;
int i;
extended_silicon_revision = info->silicon_revision;
if (info->silicon_revision == 0)
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
if ((info->
spd[channel][slot][MODULE_TYPE] & 0xF) ==
3)
extended_silicon_revision = 4;
for (channel = 0; channel < NUM_CHANNELS; channel++) {
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_SLOTS; rank++) {
int card_timing_2;
if (!info->populated_ranks[channel][slot][rank])
continue;
for (lane = 0; lane < 9; lane++) {
int tm_reg;
int card_timing;
card_timing = 0;
if ((info->
spd[channel][slot][MODULE_TYPE] &
0xF) == 3) {
int reference_card;
reference_card =
info->
spd[channel][slot]
[REFERENCE_RAW_CARD_USED] &
0x1f;
if (reference_card == 3)
card_timing =
u16_ffd1188[0][lane]
[info->
clock_speed_index];
if (reference_card == 5)
card_timing =
u16_ffd1188[1][lane]
[info->
clock_speed_index];
}
info->training.
lane_timings[0][channel][slot][rank]
[lane] =
u8_FFFD1218[info->
clock_speed_index];
info->training.
lane_timings[1][channel][slot][rank]
[lane] = 256;
for (tm_reg = 2; tm_reg < 4; tm_reg++)
info->training.
lane_timings[tm_reg]
[channel][slot][rank][lane]
=
u8_FFFD1240[channel]
[extended_silicon_revision]
[lane][2 * slot +
rank][info->
clock_speed_index]
+ info->max4048[channel]
+
u8_FFFD0C78[channel]
[extended_silicon_revision]
[info->
mode4030[channel]][slot]
[rank][info->
clock_speed_index]
+ card_timing;
for (tm_reg = 0; tm_reg < 4; tm_reg++)
write_500(info, channel,
info->training.
lane_timings[tm_reg]
[channel][slot][rank]
[lane],
get_timing_register_addr
(lane, tm_reg, slot,
rank), 9, 0);
}
card_timing_2 = 0;
if (!(extended_silicon_revision != 4
|| (info->
populated_ranks_mask[channel] & 5) ==
5)) {
if ((info->
spd[channel][slot]
[REFERENCE_RAW_CARD_USED] & 0x1F)
== 3)
card_timing_2 =
u16_FFFE0EB8[0][info->
clock_speed_index];
if ((info->
spd[channel][slot]
[REFERENCE_RAW_CARD_USED] & 0x1F)
== 5)
card_timing_2 =
u16_FFFE0EB8[1][info->
clock_speed_index];
}
for (i = 0; i < 3; i++)
write_500(info, channel,
(card_timing_2 +
info->max4048[channel]
+
u8_FFFD0EF8[channel]
[extended_silicon_revision]
[info->
mode4030[channel]][info->
clock_speed_index]),
u16_fffd0c50[i][slot][rank],
8, 1);
write_500(info, channel,
(info->max4048[channel] +
u8_FFFD0C78[channel]
[extended_silicon_revision][info->
mode4030
[channel]]
[slot][rank][info->
clock_speed_index]),
u16_fffd0c70[slot][rank], 7, 1);
}
if (!info->populated_ranks_mask[channel])
continue;
for (i = 0; i < 3; i++)
write_500(info, channel,
(info->max4048[channel] +
info->avg4044[channel]
+
u8_FFFD17E0[channel]
[extended_silicon_revision][info->
mode4030
[channel]][info->
clock_speed_index]),
u16_fffd0c68[i], 8, 1);
}
}
static unsigned int fsbcycle_ps(struct raminfo *info)
{
return 900000 / info->fsb_frequency;
}
/* The time of DDR transfer in ps. */
static unsigned int halfcycle_ps(struct raminfo *info)
{
return 3750 / (info->clock_speed_index + 3);
}
/* The time of clock cycle in ps. */
static unsigned int cycle_ps(struct raminfo *info)
{
return 2 * halfcycle_ps(info);
}
/* Frequency in 1.(1)=10/9 MHz units. */
static unsigned int frequency_11(struct raminfo *info)
{
return (info->clock_speed_index + 3) * 120;
}
/* Frequency in 0.1 MHz units. */
static unsigned int frequency_01(struct raminfo *info)
{
return 100 * frequency_11(info) / 9;
}
static unsigned int ps_to_halfcycles(struct raminfo *info, unsigned int ps)
{
return (frequency_11(info) * 2) * ps / 900000;
}
static unsigned int ns_to_cycles(struct raminfo *info, unsigned int ns)
{
return (frequency_11(info)) * ns / 900;
}
static void compute_derived_timings(struct raminfo *info)
{
unsigned int channel, slot, rank;
int extended_silicon_revision;
int some_delay_1_ps;
int some_delay_2_ps;
int some_delay_2_halfcycles_ceil;
int some_delay_2_halfcycles_floor;
int some_delay_3_ps;
int some_delay_3_ps_rounded;
int some_delay_1_cycle_ceil;
int some_delay_1_cycle_floor;
some_delay_3_ps_rounded = 0;
extended_silicon_revision = info->silicon_revision;
if (!info->silicon_revision)
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
if ((info->
spd[channel][slot][MODULE_TYPE] & 0xF) ==
3)
extended_silicon_revision = 4;
if (info->board_lane_delay[7] < 5)
info->board_lane_delay[7] = 5;
info->revision_flag_1 = 2;
if (info->silicon_revision == 2 || info->silicon_revision == 3)
info->revision_flag_1 = 0;
if (info->revision < 16)
info->revision_flag_1 = 0;
if (info->revision < 8)
info->revision_flag_1 = 0;
if (info->revision >= 8 && (info->silicon_revision == 0
|| info->silicon_revision == 1))
some_delay_2_ps = 735;
else
some_delay_2_ps = 750;
if (info->revision >= 0x10 && (info->silicon_revision == 0
|| info->silicon_revision == 1))
some_delay_1_ps = 3929;
else
some_delay_1_ps = 3490;
some_delay_1_cycle_floor = some_delay_1_ps / cycle_ps(info);
some_delay_1_cycle_ceil = some_delay_1_ps / cycle_ps(info);
if (some_delay_1_ps % cycle_ps(info))
some_delay_1_cycle_ceil++;
else
some_delay_1_cycle_floor--;
info->some_delay_1_cycle_floor = some_delay_1_cycle_floor;
if (info->revision_flag_1)
some_delay_2_ps = halfcycle_ps(info) >> 6;
some_delay_2_ps +=
MAX(some_delay_1_ps - 30,
2 * halfcycle_ps(info) * (some_delay_1_cycle_ceil - 1) + 1000) +
375;
some_delay_3_ps =
halfcycle_ps(info) - some_delay_2_ps % halfcycle_ps(info);
if (info->revision_flag_1) {
if (some_delay_3_ps >= 150) {
const int some_delay_3_halfcycles =
(some_delay_3_ps << 6) / halfcycle_ps(info);
some_delay_3_ps_rounded =
halfcycle_ps(info) * some_delay_3_halfcycles >> 6;
}
}
some_delay_2_halfcycles_ceil =
(some_delay_2_ps + halfcycle_ps(info) - 1) / halfcycle_ps(info) -
2 * (some_delay_1_cycle_ceil - 1);
if (info->revision_flag_1 && some_delay_3_ps < 150)
some_delay_2_halfcycles_ceil++;
some_delay_2_halfcycles_floor = some_delay_2_halfcycles_ceil;
if (info->revision < 0x10)
some_delay_2_halfcycles_floor =
some_delay_2_halfcycles_ceil - 1;
if (!info->revision_flag_1)
some_delay_2_halfcycles_floor++;
info->some_delay_2_halfcycles_ceil = some_delay_2_halfcycles_ceil;
info->some_delay_3_ps_rounded = some_delay_3_ps_rounded;
if ((info->populated_ranks[0][0][0] && info->populated_ranks[0][1][0])
|| (info->populated_ranks[1][0][0]
&& info->populated_ranks[1][1][0]))
info->max_slots_used_in_channel = 2;
else
info->max_slots_used_in_channel = 1;
for (channel = 0; channel < 2; channel++)
MCHBAR32(0x244 + (channel << 10)) =
((info->revision < 8) ? 1 : 0x200) |
((2 - info->max_slots_used_in_channel) << 17) |
(channel << 21) |
(info->some_delay_1_cycle_floor << 18) | 0x9510;
if (info->max_slots_used_in_channel == 1) {
info->mode4030[0] = (count_ranks_in_channel(info, 0) == 2);
info->mode4030[1] = (count_ranks_in_channel(info, 1) == 2);
} else {
info->mode4030[0] = ((count_ranks_in_channel(info, 0) == 1) || (count_ranks_in_channel(info, 0) == 2)) ? 2 : 3; /* 2 if 1 or 2 ranks */
info->mode4030[1] = ((count_ranks_in_channel(info, 1) == 1)
|| (count_ranks_in_channel(info, 1) ==
2)) ? 2 : 3;
}
for (channel = 0; channel < NUM_CHANNELS; channel++) {
int max_of_unk;
int min_of_unk_2;
int i, count;
int sum;
if (!info->populated_ranks_mask[channel])
continue;
max_of_unk = 0;
min_of_unk_2 = 32767;
sum = 0;
count = 0;
for (i = 0; i < 3; i++) {
int unk1;
if (info->revision < 8)
unk1 =
u8_FFFD1891[0][channel][info->
clock_speed_index]
[i];
else if (!
(info->revision >= 0x10
|| info->revision_flag_1))
unk1 =
u8_FFFD1891[1][channel][info->
clock_speed_index]
[i];
else
unk1 = 0;
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++) {
int a = 0;
int b = 0;
if (!info->
populated_ranks[channel][slot]
[rank])
continue;
if (extended_silicon_revision == 4
&& (info->
populated_ranks_mask[channel] &
5) != 5) {
if ((info->
spd[channel][slot]
[REFERENCE_RAW_CARD_USED] &
0x1F) == 3) {
a = u16_ffd1178[0]
[info->
clock_speed_index];
b = u16_fe0eb8[0][info->
clock_speed_index];
} else
if ((info->
spd[channel][slot]
[REFERENCE_RAW_CARD_USED]
& 0x1F) == 5) {
a = u16_ffd1178[1]
[info->
clock_speed_index];
b = u16_fe0eb8[1][info->
clock_speed_index];
}
}
min_of_unk_2 = MIN(min_of_unk_2, a);
min_of_unk_2 = MIN(min_of_unk_2, b);
if (rank == 0) {
sum += a;
count++;
}
{
int t;
t = b +
u8_FFFD0EF8[channel]
[extended_silicon_revision]
[info->
mode4030[channel]][info->
clock_speed_index];
if (unk1 >= t)
max_of_unk =
MAX(max_of_unk,
unk1 - t);
}
}
{
int t =
u8_FFFD17E0[channel]
[extended_silicon_revision][info->
mode4030
[channel]]
[info->clock_speed_index] + min_of_unk_2;
if (unk1 >= t)
max_of_unk = MAX(max_of_unk, unk1 - t);
}
}
if (count == 0)
die("No memory ranks found for channel %u\n", channel);
info->avg4044[channel] = sum / count;
info->max4048[channel] = max_of_unk;
}
}
static void jedec_read(struct raminfo *info,
int channel, int slot, int rank,
int total_rank, u8 addr3, unsigned int value)
{
/* Handle mirrored mapping. */
if ((rank & 1) && (info->spd[channel][slot][RANK1_ADDRESS_MAPPING] & 1))
addr3 = (addr3 & 0xCF) | ((addr3 & 0x10) << 1) |
((addr3 >> 1) & 0x10);
MCHBAR8(0x271) = addr3 | (MCHBAR8(0x271) & 0xC1);
MCHBAR8(0x671) = addr3 | (MCHBAR8(0x671) & 0xC1);
/* Handle mirrored mapping. */
if ((rank & 1) && (info->spd[channel][slot][RANK1_ADDRESS_MAPPING] & 1))
value =
(value & ~0x1f8) | ((value >> 1) & 0xa8) | ((value & 0xa8)
<< 1);
read32p((value << 3) | (total_rank << 28));
MCHBAR8(0x271) = (MCHBAR8(0x271) & 0xC3) | 2;
MCHBAR8(0x671) = (MCHBAR8(0x671) & 0xC3) | 2;
read32p(total_rank << 28);
}
enum {
MR1_RZQ12 = 512,
MR1_RZQ2 = 64,
MR1_RZQ4 = 4,
MR1_ODS34OHM = 2
};
enum {
MR0_BT_INTERLEAVED = 8,
MR0_DLL_RESET_ON = 256
};
enum {
MR2_RTT_WR_DISABLED = 0,
MR2_RZQ2 = 1 << 10
};
static void jedec_init(struct raminfo *info)
{
int write_recovery;
int channel, slot, rank;
int total_rank;
int dll_on;
int self_refresh_temperature;
int auto_self_refresh;
auto_self_refresh = 1;
self_refresh_temperature = 1;
if (info->board_lane_delay[3] <= 10) {
if (info->board_lane_delay[3] <= 8)
write_recovery = info->board_lane_delay[3] - 4;
else
write_recovery = 5;
} else {
write_recovery = 6;
}
FOR_POPULATED_RANKS {
auto_self_refresh &=
(info->spd[channel][slot][THERMAL_AND_REFRESH] >> 2) & 1;
self_refresh_temperature &=
info->spd[channel][slot][THERMAL_AND_REFRESH] & 1;
}
if (auto_self_refresh == 1)
self_refresh_temperature = 0;
dll_on = ((info->silicon_revision != 2 && info->silicon_revision != 3)
|| (info->populated_ranks[0][0][0]
&& info->populated_ranks[0][1][0])
|| (info->populated_ranks[1][0][0]
&& info->populated_ranks[1][1][0]));
total_rank = 0;
for (channel = NUM_CHANNELS - 1; channel >= 0; channel--) {
int rtt, rtt_wr = MR2_RTT_WR_DISABLED;
int rzq_reg58e;
if (info->silicon_revision == 2 || info->silicon_revision == 3) {
rzq_reg58e = 64;
rtt = MR1_RZQ2;
if (info->clock_speed_index != 0) {
rzq_reg58e = 4;
if (info->populated_ranks_mask[channel] == 3)
rtt = MR1_RZQ4;
}
} else {
if ((info->populated_ranks_mask[channel] & 5) == 5) {
rtt = MR1_RZQ12;
rzq_reg58e = 64;
rtt_wr = MR2_RZQ2;
} else {
rzq_reg58e = 4;
rtt = MR1_RZQ4;
}
}
MCHBAR16(0x588 + (channel << 10)) = 0x0;
MCHBAR16(0x58a + (channel << 10)) = 0x4;
MCHBAR16(0x58c + (channel << 10)) = rtt | MR1_ODS34OHM;
MCHBAR16(0x58e + (channel << 10)) = rzq_reg58e | 0x82;
MCHBAR16(0x590 + (channel << 10)) = 0x1282;
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
if (info->populated_ranks[channel][slot][rank]) {
jedec_read(info, channel, slot, rank,
total_rank, 0x28,
rtt_wr | (info->
clock_speed_index
<< 3)
| (auto_self_refresh << 6) |
(self_refresh_temperature <<
7));
jedec_read(info, channel, slot, rank,
total_rank, 0x38, 0);
jedec_read(info, channel, slot, rank,
total_rank, 0x18,
rtt | MR1_ODS34OHM);
jedec_read(info, channel, slot, rank,
total_rank, 6,
(dll_on << 12) |
(write_recovery << 9)
| ((info->cas_latency - 4) <<
4) | MR0_BT_INTERLEAVED |
MR0_DLL_RESET_ON);
total_rank++;
}
}
}
static void program_modules_memory_map(struct raminfo *info, int pre_jedec)
{
unsigned int channel, slot, rank;
unsigned int total_mb[2] = { 0, 0 }; /* total memory per channel in MB */
unsigned int channel_0_non_interleaved;
FOR_ALL_RANKS {
if (info->populated_ranks[channel][slot][rank]) {
total_mb[channel] +=
pre_jedec ? 256 : (256 << info->
density[channel][slot] >> info->
is_x16_module[channel][slot]);
MCHBAR8(0x208 + rank + 2 * slot + (channel << 10)) =
(pre_jedec ? (1 | ((1 + 1) << 1)) :
(info->is_x16_module[channel][slot] |
((info->density[channel][slot] + 1) << 1))) |
0x80;
}
MCHBAR16(0x200 + (channel << 10) + 4 * slot + 2 * rank) =
total_mb[channel] >> 6;
}
info->total_memory_mb = total_mb[0] + total_mb[1];
info->interleaved_part_mb =
pre_jedec ? 0 : 2 * MIN(total_mb[0], total_mb[1]);
info->non_interleaved_part_mb =
total_mb[0] + total_mb[1] - info->interleaved_part_mb;
channel_0_non_interleaved = total_mb[0] - info->interleaved_part_mb / 2;
MCHBAR32(0x100) = channel_0_non_interleaved |
(info->non_interleaved_part_mb << 16);
if (!pre_jedec)
MCHBAR16(0x104) = info->interleaved_part_mb;
}
static void program_board_delay(struct raminfo *info)
{
int cas_latency_shift;
int some_delay_ns;
int some_delay_3_half_cycles;
unsigned int channel, i;
int high_multiplier;
int lane_3_delay;
int cas_latency_derived;
high_multiplier = 0;
some_delay_ns = 200;
some_delay_3_half_cycles = 4;
cas_latency_shift = info->silicon_revision == 0
|| info->silicon_revision == 1 ? 1 : 0;
if (info->revision < 8) {
some_delay_ns = 600;
cas_latency_shift = 0;
}
{
int speed_bit;
speed_bit =
((info->clock_speed_index > 1
|| (info->silicon_revision != 2
&& info->silicon_revision != 3))) ^ (info->revision >=
0x10);
write_500(info, 0, speed_bit | ((!info->use_ecc) << 1), 0x60e,
3, 1);
write_500(info, 1, speed_bit | ((!info->use_ecc) << 1), 0x60e,
3, 1);
if (info->revision >= 0x10 && info->clock_speed_index <= 1
&& (info->silicon_revision == 2
|| info->silicon_revision == 3))
rmw_1d0(0x116, 5, 2, 4);
}
MCHBAR32(0x120) = (1 << (info->max_slots_used_in_channel + 28)) |
0x188e7f9f;
MCHBAR8(0x124) = info->board_lane_delay[4] +
((frequency_01(info) + 999) / 1000);
MCHBAR16(0x125) = 0x1360;
MCHBAR8(0x127) = 0x40;
if (info->fsb_frequency < frequency_11(info) / 2) {
unsigned int some_delay_2_half_cycles;
high_multiplier = 1;
some_delay_2_half_cycles = ps_to_halfcycles(info,
((3 *
fsbcycle_ps(info))
>> 1) +
(halfcycle_ps(info)
*
reg178_min[info->
clock_speed_index]
>> 6)
+
4 *
halfcycle_ps(info)
+ 2230);
some_delay_3_half_cycles =
MIN((some_delay_2_half_cycles +
(frequency_11(info) * 2) * (28 -
some_delay_2_half_cycles) /
(frequency_11(info) * 2 -
4 * (info->fsb_frequency))) >> 3, 7);
}
if (MCHBAR8(0x2ca9) & 1)
some_delay_3_half_cycles = 3;
for (channel = 0; channel < NUM_CHANNELS; channel++) {
MCHBAR32_OR(0x220 + (channel << 10), 0x18001117);
MCHBAR32(0x224 + (channel << 10)) =
(info->max_slots_used_in_channel - 1) |
((info->cas_latency - 5 - info->clock_speed_index)
<< 21) | ((info->max_slots_used_in_channel +
info->cas_latency - cas_latency_shift - 4) << 16) |
((info->cas_latency - cas_latency_shift - 4) << 26) |
((info->cas_latency - info->clock_speed_index +
info->max_slots_used_in_channel - 6) << 8);
MCHBAR32(0x228 + (channel << 10)) =
info->max_slots_used_in_channel;
MCHBAR8(0x239 + (channel << 10)) = 32;
MCHBAR32(0x248 + (channel << 10)) = (high_multiplier << 24) |
(some_delay_3_half_cycles << 25) | 0x840000;
MCHBAR32(0x278 + (channel << 10)) = 0xc362042;
MCHBAR32(0x27c + (channel << 10)) = 0x8b000062;
MCHBAR32(0x24c + (channel << 10)) =
((!!info->clock_speed_index) << 17) |
(((2 + info->clock_speed_index -
(!!info->clock_speed_index))) << 12) | 0x10200;
MCHBAR8(0x267 + (channel << 10)) = 0x4;
MCHBAR16(0x272 + (channel << 10)) = 0x155;
MCHBAR32_AND_OR(0x2bc + (channel << 10), 0xFF000000, 0x707070);
write_500(info, channel,
((!info->populated_ranks[channel][1][1])
| (!info->populated_ranks[channel][1][0] << 1)
| (!info->populated_ranks[channel][0][1] << 2)
| (!info->populated_ranks[channel][0][0] << 3)),
0x4c9, 4, 1);
}
MCHBAR8(0x2c4) = ((1 + (info->clock_speed_index != 0)) << 6) | 0xC;
{
u8 freq_divisor = 2;
if (info->fsb_frequency == frequency_11(info))
freq_divisor = 3;
else if (2 * info->fsb_frequency < 3 * (frequency_11(info) / 2))
freq_divisor = 1;
else
freq_divisor = 2;
MCHBAR32(0x2c0) = (freq_divisor << 11) | 0x6009c400;
}
if (info->board_lane_delay[3] <= 10) {
if (info->board_lane_delay[3] <= 8)
lane_3_delay = info->board_lane_delay[3];
else
lane_3_delay = 10;
} else {
lane_3_delay = 12;
}
cas_latency_derived = info->cas_latency - info->clock_speed_index + 2;
if (info->clock_speed_index > 1)
cas_latency_derived++;
for (channel = 0; channel < NUM_CHANNELS; channel++) {
MCHBAR32(0x240 + (channel << 10)) =
((info->clock_speed_index == 0) * 0x11000) |
0x1002100 | ((2 + info->clock_speed_index) << 4) |
(info->cas_latency - 3);
write_500(info, channel, (info->clock_speed_index << 1) | 1,
0x609, 6, 1);
write_500(info, channel,
info->clock_speed_index + 2 * info->cas_latency - 7,
0x601, 6, 1);
MCHBAR32(0x250 + (channel << 10)) =
((lane_3_delay + info->clock_speed_index + 9) << 6) |
(info->board_lane_delay[7] << 2) |
(info->board_lane_delay[4] << 16) |
(info->board_lane_delay[1] << 25) |
(info->board_lane_delay[1] << 29) | 1;
MCHBAR32(0x254 + (channel << 10)) =
(info->board_lane_delay[1] >> 3) |
((info->board_lane_delay[8] + 4 * info->use_ecc) << 6) |
0x80 | (info->board_lane_delay[6] << 1) |
(info->board_lane_delay[2] << 28) |
(cas_latency_derived << 16) | 0x4700000;
MCHBAR32(0x258 + (channel << 10)) =
((info->board_lane_delay[5] + info->clock_speed_index +
9) << 12) | ((info->clock_speed_index -
info->cas_latency + 12) << 8) |
(info->board_lane_delay[2] << 17) |
(info->board_lane_delay[4] << 24) | 0x47;
MCHBAR32(0x25c + (channel << 10)) =
(info->board_lane_delay[1] << 1) |
(info->board_lane_delay[0] << 8) | 0x1da50000;
MCHBAR8(0x264 + (channel << 10)) = 0xff;
MCHBAR8(0x5f8 + (channel << 10)) =
(cas_latency_shift << 3) | info->use_ecc;
}
program_modules_memory_map(info, 1);
MCHBAR16(0x610) = (MIN(ns_to_cycles(info, some_delay_ns) / 2, 127) << 9)
| (MCHBAR16(0x610) & 0x1C3) | 0x3C;
MCHBAR16_OR(0x612, 0x100);
MCHBAR16_OR(0x214, 0x3E00);
for (i = 0; i < 8; i++) {
pci_write_config32(QPI_SAD, SAD_DRAM_RULE(i),
(info->total_memory_mb - 64) | !i | 2);
pci_write_config32(QPI_SAD, SAD_INTERLEAVE_LIST(i), 0);
}
}
#define DEFAULT_PCI_MMIO_SIZE 2048
#define HOST_BRIDGE PCI_DEVFN(0, 0)
static unsigned int get_mmio_size(void)
{
const struct device *dev;
const struct northbridge_intel_ironlake_config *cfg = NULL;
dev = pcidev_path_on_root(HOST_BRIDGE);
if (dev)
cfg = dev->chip_info;
/* If this is zero, it just means devicetree.cb didn't set it */
if (!cfg || cfg->pci_mmio_size == 0)
return DEFAULT_PCI_MMIO_SIZE;
else
return cfg->pci_mmio_size;
}
static void program_total_memory_map(struct raminfo *info)
{
unsigned int tom, tolud, touud;
unsigned int quickpath_reserved;
unsigned int remap_base;
unsigned int uma_base_igd;
unsigned int uma_base_gtt;
unsigned int mmio_size;
int memory_remap;
unsigned int memory_map[8];
int i;
unsigned int current_limit;
unsigned int tseg_base;
int uma_size_igd = 0, uma_size_gtt = 0;
memset(memory_map, 0, sizeof(memory_map));
if (info->uma_enabled) {
u16 t = pci_read_config16(NORTHBRIDGE, GGC);
gav(t);
const int uma_sizes_gtt[16] =
{ 0, 1, 0, 2, 0, 0, 0, 0, 0, 2, 3, 4, 42, 42, 42, 42 };
/* Igd memory */
const int uma_sizes_igd[16] = {
0, 0, 0, 0, 0, 32, 48, 64, 128, 256, 96, 160, 224, 352,
256, 512
};
uma_size_igd = uma_sizes_igd[(t >> 4) & 0xF];
uma_size_gtt = uma_sizes_gtt[(t >> 8) & 0xF];
}
mmio_size = get_mmio_size();
tom = info->total_memory_mb;
if (tom == 4096)
tom = 4032;
touud = ALIGN_DOWN(tom - info->memory_reserved_for_heci_mb, 64);
tolud = ALIGN_DOWN(MIN(4096 - mmio_size + ALIGN_UP(uma_size_igd + uma_size_gtt, 64)
, touud), 64);
memory_remap = 0;
if (touud - tolud > 64) {
memory_remap = 1;
remap_base = MAX(4096, touud);
touud = touud - tolud + 4096;
}
if (touud > 4096)
memory_map[2] = touud | 1;
quickpath_reserved = 0;
u32 t = pci_read_config32(QPI_SAD, 0x68);
gav(t);
if (t & 0x800) {
u32 shift = t >> 20;
if (shift == 0)
die("Quickpath value is 0\n");
quickpath_reserved = (u32)1 << find_lowest_bit_set32(shift);
}
if (memory_remap)
touud -= quickpath_reserved;
uma_base_igd = tolud - uma_size_igd;
uma_base_gtt = uma_base_igd - uma_size_gtt;
tseg_base = ALIGN_DOWN(uma_base_gtt, 64) - (CONFIG_SMM_TSEG_SIZE >> 20);
if (!memory_remap)
tseg_base -= quickpath_reserved;
tseg_base = ALIGN_DOWN(tseg_base, 8);
pci_write_config16(NORTHBRIDGE, TOLUD, tolud << 4);
pci_write_config16(NORTHBRIDGE, TOM, tom >> 6);
if (memory_remap) {
pci_write_config16(NORTHBRIDGE, REMAPBASE, remap_base >> 6);
pci_write_config16(NORTHBRIDGE, REMAPLIMIT, (touud - 64) >> 6);
}
pci_write_config16(NORTHBRIDGE, TOUUD, touud);
if (info->uma_enabled) {
pci_write_config32(NORTHBRIDGE, IGD_BASE, uma_base_igd << 20);
pci_write_config32(NORTHBRIDGE, GTT_BASE, uma_base_gtt << 20);
}
pci_write_config32(NORTHBRIDGE, TSEG, tseg_base << 20);
current_limit = 0;
memory_map[0] = ALIGN_DOWN(uma_base_gtt, 64) | 1;
memory_map[1] = 4096;
for (i = 0; i < ARRAY_SIZE(memory_map); i++) {
current_limit = MAX(current_limit, memory_map[i] & ~1);
pci_write_config32(QPI_SAD, SAD_DRAM_RULE(i),
(memory_map[i] & 1) | ALIGN_DOWN(current_limit -
1, 64) | 2);
pci_write_config32(QPI_SAD, SAD_INTERLEAVE_LIST(i), 0);
}
}
static void collect_system_info(struct raminfo *info)
{
u32 capid0[3];
int i;
unsigned int channel;
/* Wait for some bit, maybe TXT clear. */
while (!(read8((u8 *)0xfed40000) & (1 << 7)))
;
if (!info->memory_reserved_for_heci_mb) {
/* Wait for ME to be ready */
intel_early_me_init();
info->memory_reserved_for_heci_mb = intel_early_me_uma_size();
}
for (i = 0; i < 3; i++) {
capid0[i] = pci_read_config32(NORTHBRIDGE, CAPID0 | (i << 2));
printk(BIOS_DEBUG, "CAPID0[%d] = 0x%08x\n", i, capid0[i]);
}
info->revision = pci_read_config8(NORTHBRIDGE, PCI_REVISION_ID);
printk(BIOS_DEBUG, "Revision ID: 0x%x\n", info->revision);
printk(BIOS_DEBUG, "Device ID: 0x%x\n", pci_read_config16(NORTHBRIDGE, PCI_DEVICE_ID));
info->max_supported_clock_speed_index = (~capid0[1] & 7);
if ((capid0[1] >> 11) & 1)
info->uma_enabled = 0;
else
gav(info->uma_enabled =
pci_read_config8(NORTHBRIDGE, DEVEN) & 8);
/* Unrecognised: [0000:fffd3d2d] 37f81.37f82 ! CPUID: eax: 00000001; ecx: 00000e00 => 00020655.00010800.029ae3ff.bfebfbff */
info->silicon_revision = 0;
if (capid0[2] & 2) {
info->silicon_revision = 0;
info->max_supported_clock_speed_index = 2;
for (channel = 0; channel < NUM_CHANNELS; channel++)
if (info->populated_ranks[channel][0][0]
&& (info->spd[channel][0][MODULE_TYPE] & 0xf) ==
3) {
info->silicon_revision = 2;
info->max_supported_clock_speed_index = 1;
}
} else {
switch (((capid0[2] >> 18) & 1) + 2 * ((capid0[1] >> 3) & 1)) {
case 1:
case 2:
info->silicon_revision = 3;
break;
case 3:
info->silicon_revision = 0;
break;
case 0:
info->silicon_revision = 2;
break;
}
switch (pci_read_config16(NORTHBRIDGE, PCI_DEVICE_ID)) {
case 0x40:
info->silicon_revision = 0;
break;
case 0x48:
info->silicon_revision = 1;
break;
}
}
}
static void write_training_data(struct raminfo *info)
{
int tm, channel, slot, rank, lane;
if (info->revision < 8)
return;
for (tm = 0; tm < 4; tm++)
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
for (lane = 0; lane < 9; lane++)
write_500(info, channel,
info->
cached_training->
lane_timings[tm]
[channel][slot][rank]
[lane],
get_timing_register_addr
(lane, tm, slot,
rank), 9, 0);
write_1d0(info->cached_training->reg_178, 0x178, 7, 1);
write_1d0(info->cached_training->reg_10b, 0x10b, 6, 1);
}
static void dump_timings(struct raminfo *info)
{
int channel, slot, rank, lane, i;
printk(RAM_SPEW, "Timings:\n");
FOR_POPULATED_RANKS {
printk(RAM_SPEW, "channel %d, slot %d, rank %d\n", channel,
slot, rank);
for (lane = 0; lane < 9; lane++) {
printk(RAM_SPEW, "lane %d: ", lane);
for (i = 0; i < 4; i++) {
printk(RAM_SPEW, "%x (%x) ",
read_500(info, channel,
get_timing_register_addr
(lane, i, slot, rank),
9),
info->training.
lane_timings[i][channel][slot][rank]
[lane]);
}
printk(RAM_SPEW, "\n");
}
}
printk(RAM_SPEW, "[178] = %x (%x)\n", read_1d0(0x178, 7),
info->training.reg_178);
printk(RAM_SPEW, "[10b] = %x (%x)\n", read_1d0(0x10b, 6),
info->training.reg_10b);
}
/* Read timings and other registers that need to be restored verbatim and
put them to CBMEM.
*/
static void save_timings(struct raminfo *info)
{
struct ram_training train;
int channel, slot, rank, lane, i;
train = info->training;
FOR_POPULATED_RANKS for (lane = 0; lane < 9; lane++)
for (i = 0; i < 4; i++)
train.lane_timings[i][channel][slot][rank][lane] =
read_500(info, channel,
get_timing_register_addr(lane, i, slot,
rank), 9);
train.reg_178 = read_1d0(0x178, 7);
train.reg_10b = read_1d0(0x10b, 6);
for (channel = 0; channel < NUM_CHANNELS; channel++) {
u32 reg32;
reg32 = MCHBAR32((channel << 10) + 0x274);
train.reg274265[channel][0] = reg32 >> 16;
train.reg274265[channel][1] = reg32 & 0xffff;
train.reg274265[channel][2] =
MCHBAR16((channel << 10) + 0x265) >> 8;
}
train.reg2ca9_bit0 = MCHBAR8(0x2ca9) & 1;
train.reg_6dc = MCHBAR32(0x6dc);
train.reg_6e8 = MCHBAR32(0x6e8);
printk(RAM_SPEW, "[6dc] = %x\n", train.reg_6dc);
printk(RAM_SPEW, "[6e8] = %x\n", train.reg_6e8);
/* Save the MRC S3 restore data to cbmem */
mrc_cache_stash_data(MRC_TRAINING_DATA, MRC_CACHE_VERSION,
&train, sizeof(train));
}
static const struct ram_training *get_cached_training(void)
{
return mrc_cache_current_mmap_leak(MRC_TRAINING_DATA,
MRC_CACHE_VERSION,
NULL);
}
/* FIXME: add timeout. */
static void wait_heci_ready(void)
{
while (!(read32(DEFAULT_HECIBAR + 0xc) & 8)) // = 0x8000000c
;
write32((DEFAULT_HECIBAR + 0x4), (read32(DEFAULT_HECIBAR + 0x4) & ~0x10) | 0xc);
}
/* FIXME: add timeout. */
static void wait_heci_cb_avail(int len)
{
union {
struct mei_csr csr;
u32 raw;
} csr;
while (!(read32(DEFAULT_HECIBAR + 0xc) & 8))
;
do {
csr.raw = read32(DEFAULT_HECIBAR + 0x4);
} while (len > csr.csr.buffer_depth - (csr.csr.buffer_write_ptr -
csr.csr.buffer_read_ptr));
}
static void send_heci_packet(struct mei_header *head, u32 *payload)
{
int len = (head->length + 3) / 4;
int i;
wait_heci_cb_avail(len + 1);
/* FIXME: handle leftovers correctly. */
write32(DEFAULT_HECIBAR + 0, *(u32 *) head);
for (i = 0; i < len - 1; i++)
write32(DEFAULT_HECIBAR + 0, payload[i]);
write32(DEFAULT_HECIBAR + 0, payload[i] & ((1 << (8 * len)) - 1));
write32(DEFAULT_HECIBAR + 0x4, read32(DEFAULT_HECIBAR + 0x4) | 0x4);
}
static void send_heci_message(u8 *msg, int len, u8 hostaddress, u8 clientaddress)
{
struct mei_header head;
int maxlen;
wait_heci_ready();
maxlen = (read32(DEFAULT_HECIBAR + 0x4) >> 24) * 4 - 4;
while (len) {
int cur = len;
if (cur > maxlen) {
cur = maxlen;
head.is_complete = 0;
} else
head.is_complete = 1;
head.length = cur;
head.reserved = 0;
head.client_address = clientaddress;
head.host_address = hostaddress;
send_heci_packet(&head, (u32 *) msg);
len -= cur;
msg += cur;
}
}
/* FIXME: Add timeout. */
static int recv_heci_packet(struct mei_header *head, u32 *packet, u32 *packet_size)
{
union {
struct mei_csr csr;
u32 raw;
} csr;
int i = 0;
write32(DEFAULT_HECIBAR + 0x4, read32(DEFAULT_HECIBAR + 0x4) | 2);
do {
csr.raw = read32(DEFAULT_HECIBAR + 0xc);
} while (csr.csr.buffer_write_ptr == csr.csr.buffer_read_ptr);
*(u32 *) head = read32(DEFAULT_HECIBAR + 0x8);
if (!head->length) {
write32(DEFAULT_HECIBAR + 0x4, read32(DEFAULT_HECIBAR + 0x4) | 2);
*packet_size = 0;
return 0;
}
if (head->length + 4 > 4 * csr.csr.buffer_depth || head->length > *packet_size) {
*packet_size = 0;
return -1;
}
do {
csr.raw = read32(DEFAULT_HECIBAR + 0xc);
} while (((head->length + 3) >> 2) >
(csr.csr.buffer_write_ptr - csr.csr.buffer_read_ptr));
for (i = 0; i < (head->length + 3) >> 2; i++)
packet[i++] = read32(DEFAULT_HECIBAR + 0x8);
*packet_size = head->length;
if (!csr.csr.ready)
*packet_size = 0;
write32(DEFAULT_HECIBAR + 0x4, read32(DEFAULT_HECIBAR + 0x4) | 4);
return 0;
}
/* FIXME: Add timeout. */
static int recv_heci_message(u32 *message, u32 *message_size)
{
struct mei_header head;
int current_position;
current_position = 0;
while (1) {
u32 current_size;
current_size = *message_size - current_position;
if (recv_heci_packet
(&head, message + (current_position >> 2),
&current_size) == -1)
break;
if (!current_size)
break;
current_position += current_size;
if (head.is_complete) {
*message_size = current_position;
return 0;
}
if (current_position >= *message_size)
break;
}
*message_size = 0;
return -1;
}
static void send_heci_uma_message(const u64 heci_uma_addr, const unsigned int heci_uma_size)
{
volatile struct uma_reply {
u8 group_id;
u8 command;
u8 reserved;
u8 result;
u8 field2;
u8 unk3[0x48 - 4 - 1];
} __packed reply;
/* FIXME: recv_heci_message() does not always initialize 'reply' */
reply.command = 0;
struct uma_message {
u8 group_id;
u8 cmd;
u8 reserved;
u8 result;
u32 c2;
u64 heci_uma_addr;
u32 heci_uma_size;
u16 c3;
} __packed msg = {
.group_id = 0,
.cmd = MKHI_SET_UMA,
.reserved = 0,
.result = 0,
.c2 = 0x82,
.heci_uma_addr = heci_uma_addr,
.heci_uma_size = heci_uma_size,
.c3 = 0,
};
u32 reply_size;
send_heci_message((u8 *) &msg, sizeof(msg), 0, 7);
reply_size = sizeof(reply);
if (recv_heci_message((u32 *) &reply, &reply_size) == -1)
return;
if (reply.command != (MKHI_SET_UMA | (1 << 7)))
die("HECI init failed\n");
}
static void setup_heci_uma(struct raminfo *info)
{
if (!info->memory_reserved_for_heci_mb && !(pci_read_config32(HECIDEV, 0x40) & 0x20))
return;
const u64 heci_uma_addr =
((u64)
((((u64)pci_read_config16(NORTHBRIDGE, TOM)) << 6) -
info->memory_reserved_for_heci_mb)) << 20;
pci_read_config32(NORTHBRIDGE, DMIBAR);
if (info->memory_reserved_for_heci_mb) {
DMIBAR32(DMIVC0RCTL) &= ~0x80;
RCBA32(0x14) &= ~0x80;
DMIBAR32(DMIVC1RCTL) &= ~0x80;
RCBA32(0x20) &= ~0x80;
DMIBAR32(DMIVCPRCTL) &= ~0x80;
RCBA32(0x30) &= ~0x80;
DMIBAR32(DMIVCMRCTL) &= ~0x80;
RCBA32(0x40) &= ~0x80;
RCBA32(0x40) = 0x87000080; // OK
DMIBAR32(DMIVCMRCTL) = 0x87000080; // OK
while ((RCBA16(0x46) & 2) && DMIBAR16(DMIVCMRSTS) & VCMNP)
;
}
MCHBAR32(0x24) = 0x10000 + info->memory_reserved_for_heci_mb;
send_heci_uma_message(heci_uma_addr, info->memory_reserved_for_heci_mb);
pci_write_config32(HECIDEV, 0x10, 0x0);
pci_write_config8(HECIDEV, 0x4, 0x0);
}
static int have_match_ranks(struct raminfo *info, int channel, int ranks)
{
int ranks_in_channel;
ranks_in_channel = info->populated_ranks[channel][0][0]
+ info->populated_ranks[channel][0][1]
+ info->populated_ranks[channel][1][0]
+ info->populated_ranks[channel][1][1];
/* empty channel */
if (ranks_in_channel == 0)
return 1;
if (ranks_in_channel != ranks)
return 0;
/* single slot */
if (info->populated_ranks[channel][0][0] !=
info->populated_ranks[channel][1][0])
return 1;
if (info->populated_ranks[channel][0][1] !=
info->populated_ranks[channel][1][1])
return 1;
if (info->is_x16_module[channel][0] != info->is_x16_module[channel][1])
return 0;
if (info->density[channel][0] != info->density[channel][1])
return 0;
return 1;
}
static void read_4090(struct raminfo *info)
{
int i, channel, slot, rank, lane;
for (i = 0; i < 2; i++)
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
for (lane = 0; lane < 9; lane++)
info->training.
lane_timings[0][i][slot][rank][lane]
= 32;
for (i = 1; i < 4; i++)
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
for (lane = 0; lane < 9; lane++) {
info->training.
lane_timings[i][channel]
[slot][rank][lane] =
read_500(info, channel,
get_timing_register_addr
(lane, i, slot,
rank), 9)
+ (i == 1) * 11; // !!!!
}
}
static u32 get_etalon2(int flip, u32 addr)
{
const u16 invmask[] = {
0xaaaa, 0x6db6, 0x4924, 0xeeee, 0xcccc, 0x8888, 0x7bde, 0x739c,
0x6318, 0x4210, 0xefbe, 0xcf3c, 0x8e38, 0x0c30, 0x0820
};
u32 ret;
u32 comp4 = addr / 480;
addr %= 480;
u32 comp1 = addr & 0xf;
u32 comp2 = (addr >> 4) & 1;
u32 comp3 = addr >> 5;
if (comp4)
ret = 0x1010101 << (comp4 - 1);
else
ret = 0;
if (flip ^ (((invmask[comp3] >> comp1) ^ comp2) & 1))
ret = ~ret;
return ret;
}
static void disable_cache_region(void)
{
msr_t msr = {.lo = 0, .hi = 0 };
wrmsr(MTRR_PHYS_BASE(3), msr);
wrmsr(MTRR_PHYS_MASK(3), msr);
}
static void enable_cache_region(unsigned int base, unsigned int size)
{
msr_t msr;
msr.lo = base | MTRR_TYPE_WRPROT;
msr.hi = 0;
wrmsr(MTRR_PHYS_BASE(3), msr);
msr.lo = ((~(ALIGN_DOWN(size + 4096, 4096) - 1) | MTRR_DEF_TYPE_EN)
& 0xffffffff);
msr.hi = 0x0000000f;
wrmsr(MTRR_PHYS_MASK(3), msr);
}
static void flush_cache(u32 start, u32 size)
{
u32 end;
u32 addr;
end = start + (ALIGN_DOWN(size + 4096, 4096));
for (addr = start; addr < end; addr += 64)
clflush((void *)(uintptr_t)addr);
}
static void clear_errors(void)
{
pci_write_config8(NORTHBRIDGE, 0xc0, 0x01);
}
static void write_testing(struct raminfo *info, int totalrank, int flip)
{
int nwrites = 0;
/* in 8-byte units. */
u32 offset;
u8 *base;
base = (u8 *)(uintptr_t)(totalrank << 28);
for (offset = 0; offset < 9 * 480; offset += 2) {
write32(base + offset * 8, get_etalon2(flip, offset));
write32(base + offset * 8 + 4, get_etalon2(flip, offset));
write32(base + offset * 8 + 8, get_etalon2(flip, offset + 1));
write32(base + offset * 8 + 12, get_etalon2(flip, offset + 1));
nwrites += 4;
if (nwrites >= 320) {
clear_errors();
nwrites = 0;
}
}
}
static u8 check_testing(struct raminfo *info, u8 total_rank, int flip)
{
u8 failmask = 0;
int i;
int comp1, comp2, comp3;
u32 failxor[2] = { 0, 0 };
enable_cache_region((total_rank << 28), 1728 * 5 * 4);
for (comp3 = 0; comp3 < 9 && failmask != 0xff; comp3++) {
for (comp1 = 0; comp1 < 4; comp1++)
for (comp2 = 0; comp2 < 60; comp2++) {
u32 re[4];
u32 curroffset =
comp3 * 8 * 60 + 2 * comp1 + 8 * comp2;
read128((total_rank << 28) | (curroffset << 3),
(u64 *) re);
failxor[0] |=
get_etalon2(flip, curroffset) ^ re[0];
failxor[1] |=
get_etalon2(flip, curroffset) ^ re[1];
failxor[0] |=
get_etalon2(flip, curroffset | 1) ^ re[2];
failxor[1] |=
get_etalon2(flip, curroffset | 1) ^ re[3];
}
for (i = 0; i < 8; i++)
if ((0xff << (8 * (i % 4))) & failxor[i / 4])
failmask |= 1 << i;
}
disable_cache_region();
flush_cache((total_rank << 28), 1728 * 5 * 4);
return failmask;
}
const u32 seed1[0x18] = {
0x3a9d5ab5, 0x576cb65b, 0x555773b6, 0x2ab772ee,
0x555556ee, 0x3a9d5ab5, 0x576cb65b, 0x555773b6,
0x2ab772ee, 0x555556ee, 0x5155a555, 0x5155a555,
0x5155a555, 0x5155a555, 0x3a9d5ab5, 0x576cb65b,
0x555773b6, 0x2ab772ee, 0x555556ee, 0x55d6b4a5,
0x366d6b3a, 0x2ae5ddbb, 0x3b9ddbb7, 0x55d6b4a5,
};
static u32 get_seed2(int a, int b)
{
const u32 seed2[5] = {
0x55555555, 0x33333333, 0x2e555a55, 0x55555555,
0x5b6db6db,
};
u32 r;
r = seed2[(a + (a >= 10)) / 5];
return b ? ~r : r;
}
static int make_shift(int comp2, int comp5, int x)
{
const u8 seed3[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x38, 0x1c, 0x3c, 0x18, 0x38, 0x38,
0x38, 0x38, 0x38, 0x38, 0x0f, 0x0f, 0x0f, 0x0f,
0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f,
};
return (comp2 - ((seed3[comp5] >> (x & 7)) & 1)) & 0x1f;
}
static u32 get_etalon(int flip, u32 addr)
{
u32 mask_byte = 0;
int comp1 = (addr >> 1) & 1;
int comp2 = (addr >> 3) & 0x1f;
int comp3 = (addr >> 8) & 0xf;
int comp4 = (addr >> 12) & 0xf;
int comp5 = (addr >> 16) & 0x1f;
u32 mask_bit = ~(0x10001 << comp3);
u32 part1;
u32 part2;
int byte;
part2 =
((seed1[comp5] >>
make_shift(comp2, comp5,
(comp3 >> 3) | (comp1 << 2) | 2)) & 1) ^ flip;
part1 =
((seed1[comp5] >>
make_shift(comp2, comp5,
(comp3 >> 3) | (comp1 << 2) | 0)) & 1) ^ flip;
for (byte = 0; byte < 4; byte++)
if ((get_seed2(comp5, comp4) >>
make_shift(comp2, comp5, (byte | (comp1 << 2)))) & 1)
mask_byte |= 0xff << (8 * byte);
return (mask_bit & mask_byte) | (part1 << comp3) | (part2 <<
(comp3 + 16));
}
static void
write_testing_type2(struct raminfo *info, u8 totalrank, u8 region, u8 block,
char flip)
{
int i;
for (i = 0; i < 2048; i++)
write32p((totalrank << 28) | (region << 25) | (block << 16) |
(i << 2), get_etalon(flip, (block << 16) | (i << 2)));
}
static u8
check_testing_type2(struct raminfo *info, u8 totalrank, u8 region, u8 block,
char flip)
{
u8 failmask = 0;
u32 failxor[2];
int i;
int comp1, comp2, comp3;
failxor[0] = 0;
failxor[1] = 0;
enable_cache_region(totalrank << 28, 134217728);
for (comp3 = 0; comp3 < 2 && failmask != 0xff; comp3++) {
for (comp1 = 0; comp1 < 16; comp1++)
for (comp2 = 0; comp2 < 64; comp2++) {
u32 addr =
(totalrank << 28) | (region << 25) | (block
<< 16)
| (comp3 << 12) | (comp2 << 6) | (comp1 <<
2);
failxor[comp1 & 1] |=
read32p(addr) ^ get_etalon(flip, addr);
}
for (i = 0; i < 8; i++)
if ((0xff << (8 * (i % 4))) & failxor[i / 4])
failmask |= 1 << i;
}
disable_cache_region();
flush_cache((totalrank << 28) | (region << 25) | (block << 16), 16384);
return failmask;
}
static int check_bounded(unsigned short *vals, u16 bound)
{
int i;
for (i = 0; i < 8; i++)
if (vals[i] < bound)
return 0;
return 1;
}
enum state {
BEFORE_USABLE = 0, AT_USABLE = 1, AT_MARGIN = 2, COMPLETE = 3
};
static int validate_state(enum state *in)
{
int i;
for (i = 0; i < 8; i++)
if (in[i] != COMPLETE)
return 0;
return 1;
}
static void
do_fsm(enum state *state, u16 *counter,
u8 fail_mask, int margin, int uplimit,
u8 *res_low, u8 *res_high, u8 val)
{
int lane;
for (lane = 0; lane < 8; lane++) {
int is_fail = (fail_mask >> lane) & 1;
switch (state[lane]) {
case BEFORE_USABLE:
if (!is_fail) {
counter[lane] = 1;
state[lane] = AT_USABLE;
break;
}
counter[lane] = 0;
state[lane] = BEFORE_USABLE;
break;
case AT_USABLE:
if (!is_fail) {
++counter[lane];
if (counter[lane] >= margin) {
state[lane] = AT_MARGIN;
res_low[lane] = val - margin + 1;
break;
}
state[lane] = 1;
break;
}
counter[lane] = 0;
state[lane] = BEFORE_USABLE;
break;
case AT_MARGIN:
if (is_fail) {
state[lane] = COMPLETE;
res_high[lane] = val - 1;
} else {
counter[lane]++;
state[lane] = AT_MARGIN;
if (val == uplimit) {
state[lane] = COMPLETE;
res_high[lane] = uplimit;
}
}
break;
case COMPLETE:
break;
}
}
}
static void
train_ram_at_178(struct raminfo *info, u8 channel, int slot, int rank,
u8 total_rank, u8 reg_178, int first_run, int niter,
timing_bounds_t * timings)
{
int lane;
enum state state[8];
u16 count[8];
u8 lower_usable[8];
u8 upper_usable[8];
unsigned short num_successfully_checked[8];
u8 reg1b3;
int i;
for (i = 0; i < 8; i++)
state[i] = BEFORE_USABLE;
if (!first_run) {
int is_all_ok = 1;
for (lane = 0; lane < 8; lane++)
if (timings[reg_178][channel][slot][rank][lane].
smallest ==
timings[reg_178][channel][slot][rank][lane].
largest) {
timings[reg_178][channel][slot][rank][lane].
smallest = 0;
timings[reg_178][channel][slot][rank][lane].
largest = 0;
is_all_ok = 0;
}
if (is_all_ok) {
for (i = 0; i < 8; i++)
state[i] = COMPLETE;
}
}
for (reg1b3 = 0; reg1b3 < 0x30 && !validate_state(state); reg1b3++) {
u8 failmask = 0;
write_1d0(reg1b3 ^ 32, 0x1b3, 6, 1);
write_1d0(reg1b3 ^ 32, 0x1a3, 6, 1);
failmask = check_testing(info, total_rank, 0);
MCHBAR32_OR(0xfb0, 0x00030000);
do_fsm(state, count, failmask, 5, 47, lower_usable,
upper_usable, reg1b3);
}
if (reg1b3) {
write_1d0(0, 0x1b3, 6, 1);
write_1d0(0, 0x1a3, 6, 1);
for (lane = 0; lane < 8; lane++) {
if (state[lane] == COMPLETE) {
timings[reg_178][channel][slot][rank][lane].
smallest =
lower_usable[lane] +
(info->training.
lane_timings[0][channel][slot][rank][lane]
& 0x3F) - 32;
timings[reg_178][channel][slot][rank][lane].
largest =
upper_usable[lane] +
(info->training.
lane_timings[0][channel][slot][rank][lane]
& 0x3F) - 32;
}
}
}
if (!first_run) {
for (lane = 0; lane < 8; lane++)
if (state[lane] == COMPLETE) {
write_500(info, channel,
timings[reg_178][channel][slot][rank]
[lane].smallest,
get_timing_register_addr(lane, 0,
slot, rank),
9, 1);
write_500(info, channel,
timings[reg_178][channel][slot][rank]
[lane].smallest +
info->training.
lane_timings[1][channel][slot][rank]
[lane]
-
info->training.
lane_timings[0][channel][slot][rank]
[lane], get_timing_register_addr(lane,
1,
slot,
rank),
9, 1);
num_successfully_checked[lane] = 0;
} else
num_successfully_checked[lane] = -1;
do {
u8 failmask = 0;
for (i = 0; i < niter; i++) {
if (failmask == 0xFF)
break;
failmask |=
check_testing_type2(info, total_rank, 2, i,
0);
failmask |=
check_testing_type2(info, total_rank, 3, i,
1);
}
MCHBAR32_OR(0xfb0, 0x00030000);
for (lane = 0; lane < 8; lane++)
if (num_successfully_checked[lane] != 0xffff) {
if ((1 << lane) & failmask) {
if (timings[reg_178][channel]
[slot][rank][lane].
largest <=
timings[reg_178][channel]
[slot][rank][lane].smallest)
num_successfully_checked
[lane] = -1;
else {
num_successfully_checked
[lane] = 0;
timings[reg_178]
[channel][slot]
[rank][lane].
smallest++;
write_500(info, channel,
timings
[reg_178]
[channel]
[slot][rank]
[lane].
smallest,
get_timing_register_addr
(lane, 0,
slot, rank),
9, 1);
write_500(info, channel,
timings
[reg_178]
[channel]
[slot][rank]
[lane].
smallest +
info->
training.
lane_timings
[1][channel]
[slot][rank]
[lane]
-
info->
training.
lane_timings
[0][channel]
[slot][rank]
[lane],
get_timing_register_addr
(lane, 1,
slot, rank),
9, 1);
}
} else
num_successfully_checked[lane]
++;
}
}
while (!check_bounded(num_successfully_checked, 2))
;
for (lane = 0; lane < 8; lane++)
if (state[lane] == COMPLETE) {
write_500(info, channel,
timings[reg_178][channel][slot][rank]
[lane].largest,
get_timing_register_addr(lane, 0,
slot, rank),
9, 1);
write_500(info, channel,
timings[reg_178][channel][slot][rank]
[lane].largest +
info->training.
lane_timings[1][channel][slot][rank]
[lane]
-
info->training.
lane_timings[0][channel][slot][rank]
[lane], get_timing_register_addr(lane,
1,
slot,
rank),
9, 1);
num_successfully_checked[lane] = 0;
} else
num_successfully_checked[lane] = -1;
do {
int failmask = 0;
for (i = 0; i < niter; i++) {
if (failmask == 0xFF)
break;
failmask |=
check_testing_type2(info, total_rank, 2, i,
0);
failmask |=
check_testing_type2(info, total_rank, 3, i,
1);
}
MCHBAR32_OR(0xfb0, 0x00030000);
for (lane = 0; lane < 8; lane++) {
if (num_successfully_checked[lane] != 0xffff) {
if ((1 << lane) & failmask) {
if (timings[reg_178][channel]
[slot][rank][lane].
largest <=
timings[reg_178][channel]
[slot][rank][lane].
smallest) {
num_successfully_checked
[lane] = -1;
} else {
num_successfully_checked
[lane] = 0;
timings[reg_178]
[channel][slot]
[rank][lane].
largest--;
write_500(info, channel,
timings
[reg_178]
[channel]
[slot][rank]
[lane].
largest,
get_timing_register_addr
(lane, 0,
slot, rank),
9, 1);
write_500(info, channel,
timings
[reg_178]
[channel]
[slot][rank]
[lane].
largest +
info->
training.
lane_timings
[1][channel]
[slot][rank]
[lane]
-
info->
training.
lane_timings
[0][channel]
[slot][rank]
[lane],
get_timing_register_addr
(lane, 1,
slot, rank),
9, 1);
}
} else
num_successfully_checked[lane]
++;
}
}
}
while (!check_bounded(num_successfully_checked, 3))
;
for (lane = 0; lane < 8; lane++) {
write_500(info, channel,
info->training.
lane_timings[0][channel][slot][rank][lane],
get_timing_register_addr(lane, 0, slot, rank),
9, 1);
write_500(info, channel,
info->training.
lane_timings[1][channel][slot][rank][lane],
get_timing_register_addr(lane, 1, slot, rank),
9, 1);
if (timings[reg_178][channel][slot][rank][lane].
largest <=
timings[reg_178][channel][slot][rank][lane].
smallest) {
timings[reg_178][channel][slot][rank][lane].
largest = 0;
timings[reg_178][channel][slot][rank][lane].
smallest = 0;
}
}
}
}
static void set_10b(struct raminfo *info, u8 val)
{
int channel;
int slot, rank;
int lane;
if (read_1d0(0x10b, 6) == val)
return;
write_1d0(val, 0x10b, 6, 1);
FOR_POPULATED_RANKS_BACKWARDS for (lane = 0; lane < 9; lane++) {
u16 reg_500;
reg_500 = read_500(info, channel,
get_timing_register_addr(lane, 0, slot,
rank), 9);
if (val == 1) {
if (lut16[info->clock_speed_index] <= reg_500)
reg_500 -= lut16[info->clock_speed_index];
else
reg_500 = 0;
} else {
reg_500 += lut16[info->clock_speed_index];
}
write_500(info, channel, reg_500,
get_timing_register_addr(lane, 0, slot, rank), 9, 1);
}
}
static void set_ecc(int onoff)
{
int channel;
for (channel = 0; channel < NUM_CHANNELS; channel++) {
u8 t;
t = MCHBAR8((channel << 10) + 0x5f8);
if (onoff)
t |= 1;
else
t &= ~1;
MCHBAR8((channel << 10) + 0x5f8) = t;
}
}
static void set_178(u8 val)
{
if (val >= 31)
val = val - 31;
else
val = 63 - val;
write_1d0(2 * val, 0x178, 7, 1);
}
static void
write_500_timings_type(struct raminfo *info, int channel, int slot, int rank,
int type)
{
int lane;
for (lane = 0; lane < 8; lane++)
write_500(info, channel,
info->training.
lane_timings[type][channel][slot][rank][lane],
get_timing_register_addr(lane, type, slot, rank), 9,
0);
}
static void
try_timing_offsets(struct raminfo *info, int channel,
int slot, int rank, int totalrank)
{
u16 count[8];
enum state state[8];
u8 lower_usable[8], upper_usable[8];
int lane;
int i;
int flip = 1;
int timing_offset;
for (i = 0; i < 8; i++)
state[i] = BEFORE_USABLE;
memset(count, 0, sizeof(count));
for (lane = 0; lane < 8; lane++)
write_500(info, channel,
info->training.
lane_timings[2][channel][slot][rank][lane] + 32,
get_timing_register_addr(lane, 3, slot, rank), 9, 1);
for (timing_offset = 0; !validate_state(state) && timing_offset < 64;
timing_offset++) {
u8 failmask;
write_1d0(timing_offset ^ 32, 0x1bb, 6, 1);
failmask = 0;
for (i = 0; i < 2 && failmask != 0xff; i++) {
flip = !flip;
write_testing(info, totalrank, flip);
failmask |= check_testing(info, totalrank, flip);
}
do_fsm(state, count, failmask, 10, 63, lower_usable,
upper_usable, timing_offset);
}
write_1d0(0, 0x1bb, 6, 1);
dump_timings(info);
if (!validate_state(state))
die("Couldn't discover DRAM timings (1)\n");
for (lane = 0; lane < 8; lane++) {
u8 bias = 0;
if (info->silicon_revision) {
int usable_length;
usable_length = upper_usable[lane] - lower_usable[lane];
if (usable_length >= 20) {
bias = usable_length / 2 - 10;
if (bias >= 2)
bias = 2;
}
}
write_500(info, channel,
info->training.
lane_timings[2][channel][slot][rank][lane] +
(upper_usable[lane] + lower_usable[lane]) / 2 - bias,
get_timing_register_addr(lane, 3, slot, rank), 9, 1);
info->training.timing2_bounds[channel][slot][rank][lane][0] =
info->training.lane_timings[2][channel][slot][rank][lane] +
lower_usable[lane];
info->training.timing2_bounds[channel][slot][rank][lane][1] =
info->training.lane_timings[2][channel][slot][rank][lane] +
upper_usable[lane];
info->training.timing2_offset[channel][slot][rank][lane] =
info->training.lane_timings[2][channel][slot][rank][lane];
}
}
static u8
choose_training(struct raminfo *info, int channel, int slot, int rank,
int lane, timing_bounds_t * timings, u8 center_178)
{
u16 central_weight;
u16 side_weight;
unsigned int sum = 0, count = 0;
u8 span;
u8 lower_margin, upper_margin;
u8 reg_178;
u8 result;
span = 12;
central_weight = 20;
side_weight = 20;
if (info->silicon_revision == 1 && channel == 1) {
central_weight = 5;
side_weight = 20;
if ((info->
populated_ranks_mask[1] ^ (info->
populated_ranks_mask[1] >> 2)) &
1)
span = 18;
}
if ((info->populated_ranks_mask[0] & 5) == 5) {
central_weight = 20;
side_weight = 20;
}
if (info->clock_speed_index >= 2
&& (info->populated_ranks_mask[0] & 5) == 5 && slot == 1) {
if (info->silicon_revision == 1) {
switch (channel) {
case 0:
if (lane == 1) {
central_weight = 10;
side_weight = 20;
}
break;
case 1:
if (lane == 6) {
side_weight = 5;
central_weight = 20;
}
break;
}
}
if (info->silicon_revision == 0 && channel == 0 && lane == 0) {
side_weight = 5;
central_weight = 20;
}
}
for (reg_178 = center_178 - span; reg_178 <= center_178 + span;
reg_178 += span) {
u8 smallest;
u8 largest;
largest = timings[reg_178][channel][slot][rank][lane].largest;
smallest = timings[reg_178][channel][slot][rank][lane].smallest;
if (largest - smallest + 1 >= 5) {
unsigned int weight;
if (reg_178 == center_178)
weight = central_weight;
else
weight = side_weight;
sum += weight * (largest + smallest);
count += weight;
}
}
dump_timings(info);
if (count == 0)
die("Couldn't discover DRAM timings (2)\n");
result = sum / (2 * count);
lower_margin =
result - timings[center_178][channel][slot][rank][lane].smallest;
upper_margin =
timings[center_178][channel][slot][rank][lane].largest - result;
if (upper_margin < 10 && lower_margin > 10)
result -= MIN(lower_margin - 10, 10 - upper_margin);
if (upper_margin > 10 && lower_margin < 10)
result += MIN(upper_margin - 10, 10 - lower_margin);
return result;
}
#define STANDARD_MIN_MARGIN 5
static u8 choose_reg178(struct raminfo *info, timing_bounds_t * timings)
{
u16 margin[64];
int lane, rank, slot, channel;
u8 reg178;
int count = 0, sum = 0;
for (reg178 = reg178_min[info->clock_speed_index];
reg178 < reg178_max[info->clock_speed_index];
reg178 += reg178_step[info->clock_speed_index]) {
margin[reg178] = -1;
FOR_POPULATED_RANKS_BACKWARDS for (lane = 0; lane < 8; lane++) {
int curmargin =
timings[reg178][channel][slot][rank][lane].largest -
timings[reg178][channel][slot][rank][lane].
smallest + 1;
if (curmargin < margin[reg178])
margin[reg178] = curmargin;
}
if (margin[reg178] >= STANDARD_MIN_MARGIN) {
u16 weight;
weight = margin[reg178] - STANDARD_MIN_MARGIN;
sum += weight * reg178;
count += weight;
}
}
dump_timings(info);
if (count == 0)
die("Couldn't discover DRAM timings (3)\n");
u8 threshold;
for (threshold = 30; threshold >= 5; threshold--) {
int usable_length = 0;
int smallest_fount = 0;
for (reg178 = reg178_min[info->clock_speed_index];
reg178 < reg178_max[info->clock_speed_index];
reg178 += reg178_step[info->clock_speed_index])
if (margin[reg178] >= threshold) {
usable_length +=
reg178_step[info->clock_speed_index];
info->training.reg178_largest =
reg178 -
2 * reg178_step[info->clock_speed_index];
if (!smallest_fount) {
smallest_fount = 1;
info->training.reg178_smallest =
reg178 +
reg178_step[info->
clock_speed_index];
}
}
if (usable_length >= 0x21)
break;
}
return sum / count;
}
static int check_cached_sanity(struct raminfo *info)
{
int lane;
int slot, rank;
int channel;
if (!info->cached_training)
return 0;
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
for (lane = 0; lane < 8 + info->use_ecc; lane++) {
u16 cached_value, estimation_value;
cached_value =
info->cached_training->
lane_timings[1][channel][slot][rank]
[lane];
if (cached_value >= 0x18
&& cached_value <= 0x1E7) {
estimation_value =
info->training.
lane_timings[1][channel]
[slot][rank][lane];
if (estimation_value <
cached_value - 24)
return 0;
if (estimation_value >
cached_value + 24)
return 0;
}
}
return 1;
}
static int try_cached_training(struct raminfo *info)
{
u8 saved_243[2];
u8 tm;
int channel, slot, rank, lane;
int flip = 1;
int i, j;
if (!check_cached_sanity(info))
return 0;
info->training.reg178_center = info->cached_training->reg178_center;
info->training.reg178_smallest = info->cached_training->reg178_smallest;
info->training.reg178_largest = info->cached_training->reg178_largest;
memcpy(&info->training.timing_bounds,
&info->cached_training->timing_bounds,
sizeof(info->training.timing_bounds));
memcpy(&info->training.timing_offset,
&info->cached_training->timing_offset,
sizeof(info->training.timing_offset));
write_1d0(2, 0x142, 3, 1);
saved_243[0] = MCHBAR8(0x243);
saved_243[1] = MCHBAR8(0x643);
MCHBAR8(0x243) = saved_243[0] | 2;
MCHBAR8(0x643) = saved_243[1] | 2;
set_ecc(0);
pci_write_config16(NORTHBRIDGE, 0xc8, 3);
if (read_1d0(0x10b, 6) & 1)
set_10b(info, 0);
for (tm = 0; tm < 2; tm++) {
int totalrank;
set_178(tm ? info->cached_training->reg178_largest : info->
cached_training->reg178_smallest);
totalrank = 0;
/* Check timing ranges. With i == 0 we check smallest one and with
i == 1 the largest bound. With j == 0 we check that on the bound
it still works whereas with j == 1 we check that just outside of
bound we fail.
*/
FOR_POPULATED_RANKS_BACKWARDS {
for (i = 0; i < 2; i++) {
for (lane = 0; lane < 8; lane++) {
write_500(info, channel,
info->cached_training->
timing2_bounds[channel][slot]
[rank][lane][i],
get_timing_register_addr(lane,
3,
slot,
rank),
9, 1);
if (!i)
write_500(info, channel,
info->
cached_training->
timing2_offset
[channel][slot][rank]
[lane],
get_timing_register_addr
(lane, 2, slot, rank),
9, 1);
write_500(info, channel,
i ? info->cached_training->
timing_bounds[tm][channel]
[slot][rank][lane].
largest : info->
cached_training->
timing_bounds[tm][channel]
[slot][rank][lane].smallest,
get_timing_register_addr(lane,
0,
slot,
rank),
9, 1);
write_500(info, channel,
info->cached_training->
timing_offset[channel][slot]
[rank][lane] +
(i ? info->cached_training->
timing_bounds[tm][channel]
[slot][rank][lane].
largest : info->
cached_training->
timing_bounds[tm][channel]
[slot][rank][lane].
smallest) - 64,
get_timing_register_addr(lane,
1,
slot,
rank),
9, 1);
}
for (j = 0; j < 2; j++) {
u8 failmask;
u8 expected_failmask;
char reg1b3;
reg1b3 = (j == 1) + 4;
reg1b3 =
j == i ? reg1b3 : (-reg1b3) & 0x3f;
write_1d0(reg1b3, 0x1bb, 6, 1);
write_1d0(reg1b3, 0x1b3, 6, 1);
write_1d0(reg1b3, 0x1a3, 6, 1);
flip = !flip;
write_testing(info, totalrank, flip);
failmask =
check_testing(info, totalrank,
flip);
expected_failmask =
j == 0 ? 0x00 : 0xff;
if (failmask != expected_failmask)
goto fail;
}
}
totalrank++;
}
}
set_178(info->cached_training->reg178_center);
if (info->use_ecc)
set_ecc(1);
write_training_data(info);
write_1d0(0, 322, 3, 1);
info->training = *info->cached_training;
write_1d0(0, 0x1bb, 6, 1);
write_1d0(0, 0x1b3, 6, 1);
write_1d0(0, 0x1a3, 6, 1);
MCHBAR8(0x243) = saved_243[0];
MCHBAR8(0x643) = saved_243[1];
return 1;
fail:
FOR_POPULATED_RANKS {
write_500_timings_type(info, channel, slot, rank, 1);
write_500_timings_type(info, channel, slot, rank, 2);
write_500_timings_type(info, channel, slot, rank, 3);
}
write_1d0(0, 0x1bb, 6, 1);
write_1d0(0, 0x1b3, 6, 1);
write_1d0(0, 0x1a3, 6, 1);
MCHBAR8(0x243) = saved_243[0];
MCHBAR8(0x643) = saved_243[1];
return 0;
}
static void do_ram_training(struct raminfo *info)
{
u8 saved_243[2];
int totalrank = 0;
u8 reg_178;
int niter;
timing_bounds_t *timings = timings_car;
int lane, rank, slot, channel;
u8 reg178_center;
write_1d0(2, 0x142, 3, 1);
saved_243[0] = MCHBAR8(0x243);
saved_243[1] = MCHBAR8(0x643);
MCHBAR8(0x243) = saved_243[0] | 2;
MCHBAR8(0x643) = saved_243[1] | 2;
switch (info->clock_speed_index) {
case 0:
niter = 5;
break;
case 1:
niter = 10;
break;
default:
niter = 19;
break;
}
set_ecc(0);
FOR_POPULATED_RANKS_BACKWARDS {
int i;
write_500_timings_type(info, channel, slot, rank, 0);
write_testing(info, totalrank, 0);
for (i = 0; i < niter; i++) {
write_testing_type2(info, totalrank, 2, i, 0);
write_testing_type2(info, totalrank, 3, i, 1);
}
pci_write_config8(NORTHBRIDGE, 0xc0, 0x01);
totalrank++;
}
if (reg178_min[info->clock_speed_index] <
reg178_max[info->clock_speed_index])
memset(timings[reg178_min[info->clock_speed_index]], 0,
sizeof(timings[0]) *
(reg178_max[info->clock_speed_index] -
reg178_min[info->clock_speed_index]));
for (reg_178 = reg178_min[info->clock_speed_index];
reg_178 < reg178_max[info->clock_speed_index];
reg_178 += reg178_step[info->clock_speed_index]) {
totalrank = 0;
set_178(reg_178);
for (channel = NUM_CHANNELS - 1; channel >= 0; channel--)
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++) {
memset(&timings[reg_178][channel][slot]
[rank][0].smallest, 0, 16);
if (info->
populated_ranks[channel][slot]
[rank]) {
train_ram_at_178(info, channel,
slot, rank,
totalrank,
reg_178, 1,
niter,
timings);
totalrank++;
}
}
}
reg178_center = choose_reg178(info, timings);
FOR_POPULATED_RANKS_BACKWARDS for (lane = 0; lane < 8; lane++) {
info->training.timing_bounds[0][channel][slot][rank][lane].
smallest =
timings[info->training.
reg178_smallest][channel][slot][rank][lane].
smallest;
info->training.timing_bounds[0][channel][slot][rank][lane].
largest =
timings[info->training.
reg178_smallest][channel][slot][rank][lane].largest;
info->training.timing_bounds[1][channel][slot][rank][lane].
smallest =
timings[info->training.
reg178_largest][channel][slot][rank][lane].smallest;
info->training.timing_bounds[1][channel][slot][rank][lane].
largest =
timings[info->training.
reg178_largest][channel][slot][rank][lane].largest;
info->training.timing_offset[channel][slot][rank][lane] =
info->training.lane_timings[1][channel][slot][rank][lane]
-
info->training.lane_timings[0][channel][slot][rank][lane] +
64;
}
if (info->silicon_revision == 1
&& (info->
populated_ranks_mask[1] ^ (info->
populated_ranks_mask[1] >> 2)) & 1) {
int ranks_after_channel1;
totalrank = 0;
for (reg_178 = reg178_center - 18;
reg_178 <= reg178_center + 18; reg_178 += 18) {
totalrank = 0;
set_178(reg_178);
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++) {
if (info->
populated_ranks[1][slot][rank]) {
train_ram_at_178(info, 1, slot,
rank,
totalrank,
reg_178, 0,
niter,
timings);
totalrank++;
}
}
}
ranks_after_channel1 = totalrank;
for (reg_178 = reg178_center - 12;
reg_178 <= reg178_center + 12; reg_178 += 12) {
totalrank = ranks_after_channel1;
set_178(reg_178);
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
if (info->
populated_ranks[0][slot][rank]) {
train_ram_at_178(info, 0, slot,
rank,
totalrank,
reg_178, 0,
niter,
timings);
totalrank++;
}
}
} else {
for (reg_178 = reg178_center - 12;
reg_178 <= reg178_center + 12; reg_178 += 12) {
totalrank = 0;
set_178(reg_178);
FOR_POPULATED_RANKS_BACKWARDS {
train_ram_at_178(info, channel, slot, rank,
totalrank, reg_178, 0, niter,
timings);
totalrank++;
}
}
}
set_178(reg178_center);
FOR_POPULATED_RANKS_BACKWARDS for (lane = 0; lane < 8; lane++) {
u16 tm0;
tm0 =
choose_training(info, channel, slot, rank, lane, timings,
reg178_center);
write_500(info, channel, tm0,
get_timing_register_addr(lane, 0, slot, rank), 9, 1);
write_500(info, channel,
tm0 +
info->training.
lane_timings[1][channel][slot][rank][lane] -
info->training.
lane_timings[0][channel][slot][rank][lane],
get_timing_register_addr(lane, 1, slot, rank), 9, 1);
}
totalrank = 0;
FOR_POPULATED_RANKS_BACKWARDS {
try_timing_offsets(info, channel, slot, rank, totalrank);
totalrank++;
}
MCHBAR8(0x243) = saved_243[0];
MCHBAR8(0x643) = saved_243[1];
write_1d0(0, 0x142, 3, 1);
info->training.reg178_center = reg178_center;
}
static void ram_training(struct raminfo *info)
{
u16 saved_fc4;
saved_fc4 = MCHBAR16(0xfc4);
MCHBAR16(0xfc4) = 0xffff;
if (info->revision >= 8)
read_4090(info);
if (!try_cached_training(info))
do_ram_training(info);
if ((info->silicon_revision == 2 || info->silicon_revision == 3)
&& info->clock_speed_index < 2)
set_10b(info, 1);
MCHBAR16(0xfc4) = saved_fc4;
}
static unsigned int gcd(unsigned int a, unsigned int b)
{
unsigned int t;
if (a > b) {
t = a;
a = b;
b = t;
}
/* invariant a < b. */
while (a) {
t = b % a;
b = a;
a = t;
}
return b;
}
static inline int div_roundup(int a, int b)
{
return DIV_ROUND_UP(a, b);
}
static unsigned int lcm(unsigned int a, unsigned int b)
{
return (a * b) / gcd(a, b);
}
struct stru1 {
u8 freqs_reversed;
u8 freq_diff_reduced;
u8 freq_min_reduced;
u8 divisor_f4_to_fmax;
u8 divisor_f3_to_fmax;
u8 freq4_to_max_remainder;
u8 freq3_to_2_remainder;
u8 freq3_to_2_remaindera;
u8 freq4_to_2_remainder;
int divisor_f3_to_f1, divisor_f4_to_f2;
int common_time_unit_ps;
int freq_max_reduced;
};
static void
compute_frequence_ratios(struct raminfo *info, u16 freq1, u16 freq2,
int num_cycles_2, int num_cycles_1, int round_it,
int add_freqs, struct stru1 *result)
{
int g;
int common_time_unit_ps;
int freq1_reduced, freq2_reduced;
int freq_min_reduced;
int freq_max_reduced;
int freq3, freq4;
g = gcd(freq1, freq2);
freq1_reduced = freq1 / g;
freq2_reduced = freq2 / g;
freq_min_reduced = MIN(freq1_reduced, freq2_reduced);
freq_max_reduced = MAX(freq1_reduced, freq2_reduced);
common_time_unit_ps = div_roundup(900000, lcm(freq1, freq2));
freq3 = div_roundup(num_cycles_2, common_time_unit_ps) - 1;
freq4 = div_roundup(num_cycles_1, common_time_unit_ps) - 1;
if (add_freqs) {
freq3 += freq2_reduced;
freq4 += freq1_reduced;
}
if (round_it) {
result->freq3_to_2_remainder = 0;
result->freq3_to_2_remaindera = 0;
result->freq4_to_max_remainder = 0;
result->divisor_f4_to_f2 = 0;
result->divisor_f3_to_f1 = 0;
} else {
if (freq2_reduced < freq1_reduced) {
result->freq3_to_2_remainder =
result->freq3_to_2_remaindera =
freq3 % freq1_reduced - freq1_reduced + 1;
result->freq4_to_max_remainder =
-(freq4 % freq1_reduced);
result->divisor_f3_to_f1 = freq3 / freq1_reduced;
result->divisor_f4_to_f2 =
(freq4 -
(freq1_reduced - freq2_reduced)) / freq2_reduced;
result->freq4_to_2_remainder =
-(char)((freq1_reduced - freq2_reduced) +
((u8) freq4 -
(freq1_reduced -
freq2_reduced)) % (u8) freq2_reduced);
} else {
if (freq2_reduced > freq1_reduced) {
result->freq4_to_max_remainder =
(freq4 % freq2_reduced) - freq2_reduced + 1;
result->freq4_to_2_remainder =
freq4 % freq_max_reduced -
freq_max_reduced + 1;
} else {
result->freq4_to_max_remainder =
-(freq4 % freq2_reduced);
result->freq4_to_2_remainder =
-(char)(freq4 % freq_max_reduced);
}
result->divisor_f4_to_f2 = freq4 / freq2_reduced;
result->divisor_f3_to_f1 =
(freq3 -
(freq2_reduced - freq1_reduced)) / freq1_reduced;
result->freq3_to_2_remainder = -(freq3 % freq2_reduced);
result->freq3_to_2_remaindera =
-(char)((freq_max_reduced - freq_min_reduced) +
(freq3 -
(freq_max_reduced -
freq_min_reduced)) % freq1_reduced);
}
}
result->divisor_f3_to_fmax = freq3 / freq_max_reduced;
result->divisor_f4_to_fmax = freq4 / freq_max_reduced;
if (round_it) {
if (freq2_reduced > freq1_reduced) {
if (freq3 % freq_max_reduced)
result->divisor_f3_to_fmax++;
}
if (freq2_reduced < freq1_reduced) {
if (freq4 % freq_max_reduced)
result->divisor_f4_to_fmax++;
}
}
result->freqs_reversed = (freq2_reduced < freq1_reduced);
result->freq_diff_reduced = freq_max_reduced - freq_min_reduced;
result->freq_min_reduced = freq_min_reduced;
result->common_time_unit_ps = common_time_unit_ps;
result->freq_max_reduced = freq_max_reduced;
}
static void
set_2d5x_reg(struct raminfo *info, u16 reg, u16 freq1, u16 freq2,
int num_cycles_2, int num_cycles_1, int num_cycles_3,
int num_cycles_4, int reverse)
{
struct stru1 vv;
char multiplier;
compute_frequence_ratios(info, freq1, freq2, num_cycles_2, num_cycles_1,
0, 1, &vv);
multiplier =
div_roundup(MAX
(div_roundup(num_cycles_2, vv.common_time_unit_ps) +
div_roundup(num_cycles_3, vv.common_time_unit_ps),
div_roundup(num_cycles_1,
vv.common_time_unit_ps) +
div_roundup(num_cycles_4, vv.common_time_unit_ps))
+ vv.freq_min_reduced - 1, vv.freq_max_reduced) - 1;
u32 y =
(u8) ((vv.freq_max_reduced - vv.freq_min_reduced) +
vv.freq_max_reduced * multiplier)
| (vv.
freqs_reversed << 8) | ((u8) (vv.freq_min_reduced *
multiplier) << 16) | ((u8) (vv.
freq_min_reduced
*
multiplier)
<< 24);
u32 x =
vv.freq3_to_2_remaindera | (vv.freq4_to_2_remainder << 8) | (vv.
divisor_f3_to_f1
<< 16)
| (vv.divisor_f4_to_f2 << 20) | (vv.freq_min_reduced << 24);
if (reverse) {
MCHBAR32(reg) = y;
MCHBAR32(reg + 4) = x;
} else {
MCHBAR32(reg + 4) = y;
MCHBAR32(reg) = x;
}
}
static void
set_6d_reg(struct raminfo *info, u16 reg, u16 freq1, u16 freq2,
int num_cycles_1, int num_cycles_2, int num_cycles_3,
int num_cycles_4)
{
struct stru1 ratios1;
struct stru1 ratios2;
compute_frequence_ratios(info, freq1, freq2, num_cycles_1, num_cycles_2,
0, 1, &ratios2);
compute_frequence_ratios(info, freq1, freq2, num_cycles_3, num_cycles_4,
0, 1, &ratios1);
printk(RAM_SPEW, "[%x] <= %x\n", reg,
ratios1.freq4_to_max_remainder | (ratios2.
freq4_to_max_remainder
<< 8)
| (ratios1.divisor_f4_to_fmax << 16) | (ratios2.
divisor_f4_to_fmax
<< 20));
MCHBAR32(reg) = ratios1.freq4_to_max_remainder |
(ratios2.freq4_to_max_remainder << 8) |
(ratios1.divisor_f4_to_fmax << 16) |
(ratios2.divisor_f4_to_fmax << 20);
}
static void
set_2dx8_reg(struct raminfo *info, u16 reg, u8 mode, u16 freq1, u16 freq2,
int num_cycles_2, int num_cycles_1, int round_it, int add_freqs)
{
struct stru1 ratios;
compute_frequence_ratios(info, freq1, freq2, num_cycles_2, num_cycles_1,
round_it, add_freqs, &ratios);
switch (mode) {
case 0:
MCHBAR32(reg + 4) = ratios.freq_diff_reduced |
(ratios.freqs_reversed << 8);
MCHBAR32(reg) = ratios.freq3_to_2_remainder |
(ratios.freq4_to_max_remainder << 8) |
(ratios.divisor_f3_to_fmax << 16) |
(ratios.divisor_f4_to_fmax << 20) |
(ratios.freq_min_reduced << 24);
break;
case 1:
MCHBAR32(reg) = ratios.freq3_to_2_remainder |
(ratios.divisor_f3_to_fmax << 16);
break;
case 2:
MCHBAR32(reg) = ratios.freq3_to_2_remainder |
(ratios.freq4_to_max_remainder << 8) |
(ratios.divisor_f3_to_fmax << 16) |
(ratios.divisor_f4_to_fmax << 20);
break;
case 4:
MCHBAR32(reg) = (ratios.divisor_f3_to_fmax << 4) |
(ratios.divisor_f4_to_fmax << 8) |
(ratios.freqs_reversed << 12) |
(ratios.freq_min_reduced << 16) |
(ratios.freq_diff_reduced << 24);
break;
}
}
static void set_2dxx_series(struct raminfo *info, int s3resume)
{
set_2dx8_reg(info, 0x2d00, 0, 0x78, frequency_11(info) / 2, 1359, 1005,
0, 1);
set_2dx8_reg(info, 0x2d08, 0, 0x78, 0x78, 3273, 5033, 1, 1);
set_2dx8_reg(info, 0x2d10, 0, 0x78, info->fsb_frequency, 1475, 1131, 0,
1);
set_2dx8_reg(info, 0x2d18, 0, 2 * info->fsb_frequency,
frequency_11(info), 1231, 1524, 0, 1);
set_2dx8_reg(info, 0x2d20, 0, 2 * info->fsb_frequency,
frequency_11(info) / 2, 1278, 2008, 0, 1);
set_2dx8_reg(info, 0x2d28, 0, info->fsb_frequency, frequency_11(info),
1167, 1539, 0, 1);
set_2dx8_reg(info, 0x2d30, 0, info->fsb_frequency,
frequency_11(info) / 2, 1403, 1318, 0, 1);
set_2dx8_reg(info, 0x2d38, 0, info->fsb_frequency, 0x78, 3460, 5363, 1,
1);
set_2dx8_reg(info, 0x2d40, 0, info->fsb_frequency, 0x3c, 2792, 5178, 1,
1);
set_2dx8_reg(info, 0x2d48, 0, 2 * info->fsb_frequency, 0x78, 2738, 4610,
1, 1);
set_2dx8_reg(info, 0x2d50, 0, info->fsb_frequency, 0x78, 2819, 5932, 1,
1);
set_2dx8_reg(info, 0x6d4, 1, info->fsb_frequency,
frequency_11(info) / 2, 4000, 0, 0, 0);
set_2dx8_reg(info, 0x6d8, 2, info->fsb_frequency,
frequency_11(info) / 2, 4000, 4000, 0, 0);
if (s3resume) {
printk(RAM_SPEW, "[6dc] <= %x\n",
info->cached_training->reg_6dc);
MCHBAR32(0x6dc) = info->cached_training->reg_6dc;
} else
set_6d_reg(info, 0x6dc, 2 * info->fsb_frequency, frequency_11(info), 0,
info->delay46_ps[0], 0,
info->delay54_ps[0]);
set_2dx8_reg(info, 0x6e0, 1, 2 * info->fsb_frequency,
frequency_11(info), 2500, 0, 0, 0);
set_2dx8_reg(info, 0x6e4, 1, 2 * info->fsb_frequency,
frequency_11(info) / 2, 3500, 0, 0, 0);
if (s3resume) {
printk(RAM_SPEW, "[6e8] <= %x\n",
info->cached_training->reg_6e8);
MCHBAR32(0x6e8) = info->cached_training->reg_6e8;
} else
set_6d_reg(info, 0x6e8, 2 * info->fsb_frequency, frequency_11(info), 0,
info->delay46_ps[1], 0,
info->delay54_ps[1]);
set_2d5x_reg(info, 0x2d58, 0x78, 0x78, 864, 1195, 762, 786, 0);
set_2d5x_reg(info, 0x2d60, 0x195, info->fsb_frequency, 1352, 725, 455,
470, 0);
set_2d5x_reg(info, 0x2d68, 0x195, 0x3c, 2707, 5632, 3277, 2207, 0);
set_2d5x_reg(info, 0x2d70, 0x195, frequency_11(info) / 2, 1276, 758,
454, 459, 0);
set_2d5x_reg(info, 0x2d78, 0x195, 0x78, 1021, 799, 510, 513, 0);
set_2d5x_reg(info, 0x2d80, info->fsb_frequency, 0xe1, 0, 2862, 2579,
2588, 0);
set_2d5x_reg(info, 0x2d88, info->fsb_frequency, 0xe1, 0, 2690, 2405,
2405, 0);
set_2d5x_reg(info, 0x2da0, 0x78, 0xe1, 0, 2560, 2264, 2251, 0);
set_2d5x_reg(info, 0x2da8, 0x195, frequency_11(info), 1060, 775, 484,
480, 0);
set_2d5x_reg(info, 0x2db0, 0x195, 0x78, 4183, 6023, 2217, 2048, 0);
MCHBAR32(0x2dbc) = ((frequency_11(info) / 2) - 1) | 0xe00000;
MCHBAR32(0x2db8) = ((info->fsb_frequency - 1) << 16) | 0x77;
}
static u16 get_max_timing(struct raminfo *info, int channel)
{
int slot, rank, lane;
u16 ret = 0;
if ((MCHBAR8(0x2ca8) >> 2) < 1)
return 384;
if (info->revision < 8)
return 256;
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
if (info->populated_ranks[channel][slot][rank])
for (lane = 0; lane < 8 + info->use_ecc; lane++)
ret = MAX(ret, read_500(info, channel,
get_timing_register_addr
(lane, 0, slot,
rank), 9));
return ret;
}
static void set_274265(struct raminfo *info)
{
int delay_a_ps, delay_b_ps, delay_c_ps, delay_d_ps;
int delay_e_ps, delay_e_cycles, delay_f_cycles;
int delay_e_over_cycle_ps;
int cycletime_ps;
int channel;
delay_a_ps = 4 * halfcycle_ps(info) + 6 * fsbcycle_ps(info);
info->training.reg2ca9_bit0 = 0;
for (channel = 0; channel < NUM_CHANNELS; channel++) {
cycletime_ps =
900000 / lcm(2 * info->fsb_frequency, frequency_11(info));
delay_d_ps =
(halfcycle_ps(info) * get_max_timing(info, channel) >> 6)
- info->some_delay_3_ps_rounded + 200;
if (!
((info->silicon_revision == 0
|| info->silicon_revision == 1)
&& (info->revision >= 8)))
delay_d_ps += halfcycle_ps(info) * 2;
delay_d_ps +=
halfcycle_ps(info) * (!info->revision_flag_1 +
info->some_delay_2_halfcycles_ceil +
2 * info->some_delay_1_cycle_floor +
info->clock_speed_index +
2 * info->cas_latency - 7 + 11);
delay_d_ps += info->revision >= 8 ? 2758 : 4428;
MCHBAR32_AND_OR(0x140, 0xfaffffff, 0x2000000);
MCHBAR32_AND_OR(0x138, 0xfaffffff, 0x2000000);
if ((MCHBAR8(0x144) & 0x1f) > 0x13)
delay_d_ps += 650;
delay_c_ps = delay_d_ps + 1800;
if (delay_c_ps <= delay_a_ps)
delay_e_ps = 0;
else
delay_e_ps =
cycletime_ps * div_roundup(delay_c_ps - delay_a_ps,
cycletime_ps);
delay_e_over_cycle_ps = delay_e_ps % (2 * halfcycle_ps(info));
delay_e_cycles = delay_e_ps / (2 * halfcycle_ps(info));
delay_f_cycles =
div_roundup(2500 - delay_e_over_cycle_ps,
2 * halfcycle_ps(info));
if (delay_f_cycles > delay_e_cycles) {
info->delay46_ps[channel] = delay_e_ps;
delay_e_cycles = 0;
} else {
info->delay46_ps[channel] =
delay_e_over_cycle_ps +
2 * halfcycle_ps(info) * delay_f_cycles;
delay_e_cycles -= delay_f_cycles;
}
if (info->delay46_ps[channel] < 2500) {
info->delay46_ps[channel] = 2500;
info->training.reg2ca9_bit0 = 1;
}
delay_b_ps = halfcycle_ps(info) + delay_c_ps;
if (delay_b_ps <= delay_a_ps)
delay_b_ps = 0;
else
delay_b_ps -= delay_a_ps;
info->delay54_ps[channel] =
cycletime_ps * div_roundup(delay_b_ps,
cycletime_ps) -
2 * halfcycle_ps(info) * delay_e_cycles;
if (info->delay54_ps[channel] < 2500)
info->delay54_ps[channel] = 2500;
info->training.reg274265[channel][0] = delay_e_cycles;
if (delay_d_ps + 7 * halfcycle_ps(info) <=
24 * halfcycle_ps(info))
info->training.reg274265[channel][1] = 0;
else
info->training.reg274265[channel][1] =
div_roundup(delay_d_ps + 7 * halfcycle_ps(info),
4 * halfcycle_ps(info)) - 6;
MCHBAR32((channel << 10) + 0x274) =
info->training.reg274265[channel][1] |
(info->training.reg274265[channel][0] << 16);
info->training.reg274265[channel][2] =
div_roundup(delay_c_ps + 3 * fsbcycle_ps(info),
4 * halfcycle_ps(info)) + 1;
MCHBAR16((channel << 10) + 0x265) =
info->training.reg274265[channel][2] << 8;
}
if (info->training.reg2ca9_bit0)
MCHBAR8_OR(0x2ca9, 1);
else
MCHBAR8_AND(0x2ca9, ~1);
}
static void restore_274265(struct raminfo *info)
{
int channel;
for (channel = 0; channel < NUM_CHANNELS; channel++) {
MCHBAR32((channel << 10) + 0x274) =
(info->cached_training->reg274265[channel][0] << 16) |
info->cached_training->reg274265[channel][1];
MCHBAR16((channel << 10) + 0x265) =
info->cached_training->reg274265[channel][2] << 8;
}
if (info->cached_training->reg2ca9_bit0)
MCHBAR8_OR(0x2ca9, 1);
else
MCHBAR8_AND(0x2ca9, ~1);
}
static void dmi_setup(void)
{
gav(DMIBAR8(0x254));
DMIBAR8(0x254) = 0x1;
DMIBAR16(0x1b8) = 0x18f2;
MCHBAR16_AND_OR(0x48, 0, 0x2);
DMIBAR32(0xd68) |= 0x08000000;
outl((gav(inl(DEFAULT_GPIOBASE | 0x38)) & ~0x140000) | 0x400000,
DEFAULT_GPIOBASE | 0x38);
gav(inb(DEFAULT_GPIOBASE | 0xe)); // = 0xfdcaff6e
}
void chipset_init(const int s3resume)
{
u8 x2ca8;
u16 ggc;
u8 gfxsize;
x2ca8 = MCHBAR8(0x2ca8);
if ((x2ca8 & 1) || (x2ca8 == 8 && !s3resume)) {
printk(BIOS_DEBUG, "soft reset detected, rebooting properly\n");
MCHBAR8(0x2ca8) = 0;
system_reset();
}
dmi_setup();
MCHBAR16(0x1170) = 0xa880;
MCHBAR8(0x11c1) = 0x1;
MCHBAR16(0x1170) = 0xb880;
MCHBAR8_AND_OR(0x1210, 0, 0x84);
if (get_option(&gfxsize, "gfx_uma_size") != CB_SUCCESS) {
/* 0 for 32MB */
gfxsize = 0;
}
ggc = 0xb00 | ((gfxsize + 5) << 4);
pci_write_config16(NORTHBRIDGE, GGC, ggc | 2);
u16 deven;
deven = pci_read_config16(NORTHBRIDGE, DEVEN); // = 0x3
if (deven & 8) {
MCHBAR8(0x2c30) = 0x20;
pci_read_config8(NORTHBRIDGE, 0x8); // = 0x18
MCHBAR16_OR(0x2c30, 0x200);
MCHBAR16(0x2c32) = 0x434;
MCHBAR32_AND_OR(0x2c44, 0, 0x1053687);
pci_read_config8(GMA, MSAC); // = 0x2
pci_write_config8(GMA, MSAC, 0x2);
RCBA8(0x2318);
RCBA8(0x2318) = 0x47;
RCBA8(0x2320);
RCBA8(0x2320) = 0xfc;
}
MCHBAR32_AND_OR(0x30, 0, 0x40);
pci_write_config16(NORTHBRIDGE, GGC, ggc);
gav(RCBA32(0x3428));
RCBA32(0x3428) = 0x1d;
}
void raminit(const int s3resume, const u8 *spd_addrmap)
{
unsigned int channel, slot, lane, rank;
int i;
struct raminfo info;
u8 x2ca8;
u16 deven;
int cbmem_wasnot_inited;
x2ca8 = MCHBAR8(0x2ca8);
printk(RAM_DEBUG, "Scratchpad MCHBAR8(0x2ca8): 0x%04x\n", x2ca8);
deven = pci_read_config16(NORTHBRIDGE, DEVEN);
memset(&info, 0x5a, sizeof(info));
info.last_500_command[0] = 0;
info.last_500_command[1] = 0;
info.fsb_frequency = 135 * 2;
info.board_lane_delay[0] = 0x14;
info.board_lane_delay[1] = 0x07;
info.board_lane_delay[2] = 0x07;
info.board_lane_delay[3] = 0x08;
info.board_lane_delay[4] = 0x56;
info.board_lane_delay[5] = 0x04;
info.board_lane_delay[6] = 0x04;
info.board_lane_delay[7] = 0x05;
info.board_lane_delay[8] = 0x10;
info.training.reg_178 = 0;
info.training.reg_10b = 0;
info.memory_reserved_for_heci_mb = 0;
/* before SPD */
timestamp_add_now(101);
if (!s3resume || 1) { // possible error
pci_read_config8(SOUTHBRIDGE, GEN_PMCON_2); // = 0x80
collect_system_info(&info);
memset(&info.populated_ranks, 0, sizeof(info.populated_ranks));
info.use_ecc = 1;
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++) {
int v;
int try;
int addr;
const u8 useful_addresses[] = {
DEVICE_TYPE,
MODULE_TYPE,
DENSITY,
RANKS_AND_DQ,
MEMORY_BUS_WIDTH,
TIMEBASE_DIVIDEND,
TIMEBASE_DIVISOR,
CYCLETIME,
CAS_LATENCIES_LSB,
CAS_LATENCIES_MSB,
CAS_LATENCY_TIME,
0x11, 0x12, 0x13, 0x14, 0x15,
0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d,
THERMAL_AND_REFRESH,
0x20,
REFERENCE_RAW_CARD_USED,
RANK1_ADDRESS_MAPPING,
0x75, 0x76, 0x77, 0x78,
0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e,
0x7f, 0x80, 0x81, 0x82, 0x83, 0x84,
0x85, 0x86, 0x87, 0x88,
0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e,
0x8f, 0x90, 0x91, 0x92, 0x93, 0x94,
0x95
};
if (!spd_addrmap[2 * channel + slot])
continue;
for (try = 0; try < 5; try++) {
v = smbus_read_byte(spd_addrmap[2 * channel + slot],
DEVICE_TYPE);
if (v >= 0)
break;
}
if (v < 0)
continue;
for (addr = 0;
addr <
ARRAY_SIZE(useful_addresses); addr++)
gav(info.
spd[channel][0][useful_addresses
[addr]] =
smbus_read_byte(spd_addrmap[2 * channel + slot],
useful_addresses
[addr]));
if (info.spd[channel][0][DEVICE_TYPE] != 11)
die("Only DDR3 is supported");
v = info.spd[channel][0][RANKS_AND_DQ];
info.populated_ranks[channel][0][0] = 1;
info.populated_ranks[channel][0][1] =
((v >> 3) & 7);
if (((v >> 3) & 7) > 1)
die("At most 2 ranks are supported");
if ((v & 7) == 0 || (v & 7) > 2)
die("Only x8 and x16 modules are supported");
if ((info.
spd[channel][slot][MODULE_TYPE] & 0xF) != 2
&& (info.
spd[channel][slot][MODULE_TYPE] & 0xF)
!= 3)
die("Registered memory is not supported");
info.is_x16_module[channel][0] = (v & 7) - 1;
info.density[channel][slot] =
info.spd[channel][slot][DENSITY] & 0xF;
if (!
(info.
spd[channel][slot][MEMORY_BUS_WIDTH] &
0x18))
info.use_ecc = 0;
}
gav(0x55);
for (channel = 0; channel < NUM_CHANNELS; channel++) {
int v = 0;
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
v |= info.
populated_ranks[channel][slot][rank]
<< (2 * slot + rank);
info.populated_ranks_mask[channel] = v;
}
gav(0x55);
gav(pci_read_config32(NORTHBRIDGE, CAPID0 + 4));
}
/* after SPD */
timestamp_add_now(102);
MCHBAR8_AND(0x2ca8, 0xfc);
collect_system_info(&info);
calculate_timings(&info);
if (!s3resume) {
u8 reg8 = pci_read_config8(SOUTHBRIDGE, GEN_PMCON_2);
if (x2ca8 == 0 && (reg8 & 0x80)) {
/* Don't enable S4-assertion stretch. Makes trouble on roda/rk9.
reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa4);
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa4, reg8 | 0x08);
*/
/* Clear bit7. */
pci_write_config8(SOUTHBRIDGE, GEN_PMCON_2,
(reg8 & ~(1 << 7)));
printk(BIOS_INFO,
"Interrupted RAM init, reset required.\n");
system_reset();
}
}
if (!s3resume && x2ca8 == 0)
pci_write_config8(SOUTHBRIDGE, GEN_PMCON_2,
pci_read_config8(SOUTHBRIDGE, GEN_PMCON_2) | 0x80);
compute_derived_timings(&info);
if (x2ca8 == 0) {
gav(MCHBAR8(0x164));
MCHBAR8(0x164) = 0x26;
MCHBAR16(0x2c20) = 0x10;
}
MCHBAR32_OR(0x18b4, 0x210000);
MCHBAR32_OR(0x1890, 0x2000000);
MCHBAR32_OR(0x18b4, 0x8000);
gav(pci_read_config32(QPI_PHY_0, QPI_PLL_STATUS)); // !!!!
pci_write_config8(QPI_PHY_0, QPI_PLL_RATIO, 0x12);
gav(MCHBAR16(0x2c10));
MCHBAR16(0x2c10) = 0x412;
gav(MCHBAR16(0x2c10));
MCHBAR16_OR(0x2c12, 0x100);
gav(MCHBAR8(0x2ca8)); // !!!!
MCHBAR32_AND_OR(0x1804, 0xfffffffc, 0x8400080);
pci_read_config32(QPI_PHY_0, QPI_PHY_CONTROL); // !!!!
pci_write_config32(QPI_PHY_0, QPI_PHY_CONTROL, 0x40a0a0);
gav(MCHBAR32(0x1c04)); // !!!!
gav(MCHBAR32(0x1804)); // !!!!
if (x2ca8 == 0) {
MCHBAR8_OR(0x2ca8, 1);
}
MCHBAR32(0x18d8) = 0x120000;
MCHBAR32(0x18dc) = 0x30a484a;
pci_write_config32(QPI_PHY_0, QPI_PHY_EP_SELECT, 0x0);
pci_write_config32(QPI_PHY_0, QPI_PHY_EP_MCTR, 0x9444a);
MCHBAR32(0x18d8) = 0x40000;
MCHBAR32(0x18dc) = 0xb000000;
pci_write_config32(QPI_PHY_0, QPI_PHY_EP_SELECT, 0x60000);
pci_write_config32(QPI_PHY_0, QPI_PHY_EP_MCTR, 0x0);
MCHBAR32(0x18d8) = 0x180000;
MCHBAR32(0x18dc) = 0xc0000142;
pci_write_config32(QPI_PHY_0, QPI_PHY_EP_SELECT, 0x20000);
pci_write_config32(QPI_PHY_0, QPI_PHY_EP_MCTR, 0x142);
MCHBAR32(0x18d8) = 0x1e0000;
gav(MCHBAR32(0x18dc)); // !!!!
MCHBAR32(0x18dc) = 0x3;
gav(MCHBAR32(0x18dc)); // !!!!
if (x2ca8 == 0) {
MCHBAR8_OR(0x2ca8, 1); // guess
}
MCHBAR32(0x188c) = 0x20bc09;
pci_write_config32(QPI_PHY_0, QPI_PHY_PWR_MGMT, 0x40b0c09);
MCHBAR32(0x1a10) = 0x4200010e;
MCHBAR32_OR(0x18b8, 0x200);
gav(MCHBAR32(0x1918)); // !!!!
MCHBAR32(0x1918) = 0x332;
gav(MCHBAR32(0x18b8)); // !!!!
MCHBAR32(0x18b8) = 0xe00;
gav(MCHBAR32(0x182c)); // !!!!
MCHBAR32(0x182c) = 0x10202;
gav(pci_read_config32(QPI_PHY_0, QPI_PHY_PRIM_TIMEOUT)); // !!!!
pci_write_config32(QPI_PHY_0, QPI_PHY_PRIM_TIMEOUT, 0x10202);
MCHBAR32_AND(0x1a1c, 0x8fffffff);
MCHBAR32_OR(0x1a70, 0x100000);
MCHBAR32_AND(0x18b4, 0xffff7fff);
gav(MCHBAR32(0x1a68)); // !!!!
MCHBAR32(0x1a68) = 0x343800;
gav(MCHBAR32(0x1e68)); // !!!!
gav(MCHBAR32(0x1a68)); // !!!!
if (x2ca8 == 0) {
MCHBAR8_OR(0x2ca8, 1); // guess
}
pci_read_config32(QPI_LINK_0, QPI_QPILCL); // !!!!
pci_write_config32(QPI_LINK_0, QPI_QPILCL, 0x140000);
pci_read_config32(QPI_LINK_0, QPI_DEF_RMT_VN_CREDITS); // !!!!
pci_write_config32(QPI_LINK_0, QPI_DEF_RMT_VN_CREDITS, 0x64555);
pci_read_config32(QPI_LINK_0, QPI_DEF_RMT_VN_CREDITS); // !!!!
pci_read_config32(QPI_NON_CORE, MIRROR_PORT_CTL); // !!!!
pci_write_config32(QPI_NON_CORE, MIRROR_PORT_CTL, 0x180);
gav(MCHBAR32(0x1af0)); // !!!!
gav(MCHBAR32(0x1af0)); // !!!!
MCHBAR32(0x1af0) = 0x1f020003;
gav(MCHBAR32(0x1af0)); // !!!!
if (x2ca8 == 0) {
MCHBAR8_OR(0x2ca8, 1); // guess
}
gav(MCHBAR32(0x1890)); // !!!!
MCHBAR32(0x1890) = 0x80102;
gav(MCHBAR32(0x18b4)); // !!!!
MCHBAR32(0x18b4) = 0x216000;
MCHBAR32(0x18a4) = 0x22222222;
MCHBAR32(0x18a8) = 0x22222222;
MCHBAR32(0x18ac) = 0x22222;
udelay(1000);
info.cached_training = get_cached_training();
if (x2ca8 == 0) {
int j;
if (s3resume && info.cached_training) {
restore_274265(&info);
printk(RAM_SPEW, "reg2ca9_bit0 = %x\n",
info.cached_training->reg2ca9_bit0);
for (i = 0; i < 2; i++)
for (j = 0; j < 3; j++)
printk(RAM_SPEW, "reg274265[%d][%d] = %x\n",
i, j, info.cached_training->reg274265[i][j]);
} else {
set_274265(&info);
printk(RAM_SPEW, "reg2ca9_bit0 = %x\n",
info.training.reg2ca9_bit0);
for (i = 0; i < 2; i++)
for (j = 0; j < 3; j++)
printk(RAM_SPEW, "reg274265[%d][%d] = %x\n",
i, j, info.training.reg274265[i][j]);
}
set_2dxx_series(&info, s3resume);
if (!(deven & 8)) {
MCHBAR32_AND_OR(0x2cb0, 0, 0x40);
}
udelay(1000);
if (deven & 8) {
MCHBAR32_OR(0xff8, 0x1800);
MCHBAR32_AND(0x2cb0, 0x00);
pci_read_config8(PCI_DEV (0, 0x2, 0x0), 0x4c);
pci_read_config8(PCI_DEV (0, 0x2, 0x0), 0x4c);
pci_read_config8(PCI_DEV (0, 0x2, 0x0), 0x4e);
MCHBAR8(0x1150);
MCHBAR8(0x1151);
MCHBAR8(0x1022);
MCHBAR8(0x16d0);
MCHBAR32(0x1300) = 0x60606060;
MCHBAR32(0x1304) = 0x60606060;
MCHBAR32(0x1308) = 0x78797a7b;
MCHBAR32(0x130c) = 0x7c7d7e7f;
MCHBAR32(0x1310) = 0x60606060;
MCHBAR32(0x1314) = 0x60606060;
MCHBAR32(0x1318) = 0x60606060;
MCHBAR32(0x131c) = 0x60606060;
MCHBAR32(0x1320) = 0x50515253;
MCHBAR32(0x1324) = 0x54555657;
MCHBAR32(0x1328) = 0x58595a5b;
MCHBAR32(0x132c) = 0x5c5d5e5f;
MCHBAR32(0x1330) = 0x40414243;
MCHBAR32(0x1334) = 0x44454647;
MCHBAR32(0x1338) = 0x48494a4b;
MCHBAR32(0x133c) = 0x4c4d4e4f;
MCHBAR32(0x1340) = 0x30313233;
MCHBAR32(0x1344) = 0x34353637;
MCHBAR32(0x1348) = 0x38393a3b;
MCHBAR32(0x134c) = 0x3c3d3e3f;
MCHBAR32(0x1350) = 0x20212223;
MCHBAR32(0x1354) = 0x24252627;
MCHBAR32(0x1358) = 0x28292a2b;
MCHBAR32(0x135c) = 0x2c2d2e2f;
MCHBAR32(0x1360) = 0x10111213;
MCHBAR32(0x1364) = 0x14151617;
MCHBAR32(0x1368) = 0x18191a1b;
MCHBAR32(0x136c) = 0x1c1d1e1f;
MCHBAR32(0x1370) = 0x10203;
MCHBAR32(0x1374) = 0x4050607;
MCHBAR32(0x1378) = 0x8090a0b;
MCHBAR32(0x137c) = 0xc0d0e0f;
MCHBAR8(0x11cc) = 0x4e;
MCHBAR32(0x1110) = 0x73970404;
MCHBAR32(0x1114) = 0x72960404;
MCHBAR32(0x1118) = 0x6f950404;
MCHBAR32(0x111c) = 0x6d940404;
MCHBAR32(0x1120) = 0x6a930404;
MCHBAR32(0x1124) = 0x68a41404;
MCHBAR32(0x1128) = 0x66a21404;
MCHBAR32(0x112c) = 0x63a01404;
MCHBAR32(0x1130) = 0x609e1404;
MCHBAR32(0x1134) = 0x5f9c1404;
MCHBAR32(0x1138) = 0x5c961404;
MCHBAR32(0x113c) = 0x58a02404;
MCHBAR32(0x1140) = 0x54942404;
MCHBAR32(0x1190) = 0x900080a;
MCHBAR16(0x11c0) = 0xc40b;
MCHBAR16(0x11c2) = 0x303;
MCHBAR16(0x11c4) = 0x301;
MCHBAR32_AND_OR(0x1190, 0, 0x8900080a);
MCHBAR32(0x11b8) = 0x70c3000;
MCHBAR8(0x11ec) = 0xa;
MCHBAR16(0x1100) = 0x800;
MCHBAR32_AND_OR(0x11bc, 0, 0x1e84800);
MCHBAR16(0x11ca) = 0xfa;
MCHBAR32(0x11e4) = 0x4e20;
MCHBAR8(0x11bc) = 0xf;
MCHBAR16(0x11da) = 0x19;
MCHBAR16(0x11ba) = 0x470c;
MCHBAR32(0x1680) = 0xe6ffe4ff;
MCHBAR32(0x1684) = 0xdeffdaff;
MCHBAR32(0x1688) = 0xd4ffd0ff;
MCHBAR32(0x168c) = 0xccffc6ff;
MCHBAR32(0x1690) = 0xc0ffbeff;
MCHBAR32(0x1694) = 0xb8ffb0ff;
MCHBAR32(0x1698) = 0xa8ff0000;
MCHBAR32(0x169c) = 0xc00;
MCHBAR32(0x1290) = 0x5000000;
}
MCHBAR32(0x124c) = 0x15040d00;
MCHBAR32(0x1250) = 0x7f0000;
MCHBAR32(0x1254) = 0x1e220004;
MCHBAR32(0x1258) = 0x4000004;
MCHBAR32(0x1278) = 0x0;
MCHBAR32(0x125c) = 0x0;
MCHBAR32(0x1260) = 0x0;
MCHBAR32(0x1264) = 0x0;
MCHBAR32(0x1268) = 0x0;
MCHBAR32(0x126c) = 0x0;
MCHBAR32(0x1270) = 0x0;
MCHBAR32(0x1274) = 0x0;
}
if ((deven & 8) && x2ca8 == 0) {
MCHBAR16(0x1214) = 0x320;
MCHBAR32(0x1600) = 0x40000000;
MCHBAR32_AND_OR(0x11f4, 0, 0x10000000);
MCHBAR16_AND_OR(0x1230, 0, 0x8000);
MCHBAR32(0x1400) = 0x13040020;
MCHBAR32(0x1404) = 0xe090120;
MCHBAR32(0x1408) = 0x5120220;
MCHBAR32(0x140c) = 0x5120330;
MCHBAR32(0x1410) = 0xe090220;
MCHBAR32(0x1414) = 0x1010001;
MCHBAR32(0x1418) = 0x1110000;
MCHBAR32(0x141c) = 0x9020020;
MCHBAR32(0x1420) = 0xd090220;
MCHBAR32(0x1424) = 0x2090220;
MCHBAR32(0x1428) = 0x2090330;
MCHBAR32(0x142c) = 0xd090220;
MCHBAR32(0x1430) = 0x1010001;
MCHBAR32(0x1434) = 0x1110000;
MCHBAR32(0x1438) = 0x11040020;
MCHBAR32(0x143c) = 0x4030220;
MCHBAR32(0x1440) = 0x1060220;
MCHBAR32(0x1444) = 0x1060330;
MCHBAR32(0x1448) = 0x4030220;
MCHBAR32(0x144c) = 0x1010001;
MCHBAR32(0x1450) = 0x1110000;
MCHBAR32(0x1454) = 0x4010020;
MCHBAR32(0x1458) = 0xb090220;
MCHBAR32(0x145c) = 0x1090220;
MCHBAR32(0x1460) = 0x1090330;
MCHBAR32(0x1464) = 0xb090220;
MCHBAR32(0x1468) = 0x1010001;
MCHBAR32(0x146c) = 0x1110000;
MCHBAR32(0x1470) = 0xf040020;
MCHBAR32(0x1474) = 0xa090220;
MCHBAR32(0x1478) = 0x1120220;
MCHBAR32(0x147c) = 0x1120330;
MCHBAR32(0x1480) = 0xa090220;
MCHBAR32(0x1484) = 0x1010001;
MCHBAR32(0x1488) = 0x1110000;
MCHBAR32(0x148c) = 0x7020020;
MCHBAR32(0x1490) = 0x1010220;
MCHBAR32(0x1494) = 0x10210;
MCHBAR32(0x1498) = 0x10320;
MCHBAR32(0x149c) = 0x1010220;
MCHBAR32(0x14a0) = 0x1010001;
MCHBAR32(0x14a4) = 0x1110000;
MCHBAR32(0x14a8) = 0xd040020;
MCHBAR32(0x14ac) = 0x8090220;
MCHBAR32(0x14b0) = 0x1111310;
MCHBAR32(0x14b4) = 0x1111420;
MCHBAR32(0x14b8) = 0x8090220;
MCHBAR32(0x14bc) = 0x1010001;
MCHBAR32(0x14c0) = 0x1110000;
MCHBAR32(0x14c4) = 0x3010020;
MCHBAR32(0x14c8) = 0x7090220;
MCHBAR32(0x14cc) = 0x1081310;
MCHBAR32(0x14d0) = 0x1081420;
MCHBAR32(0x14d4) = 0x7090220;
MCHBAR32(0x14d8) = 0x1010001;
MCHBAR32(0x14dc) = 0x1110000;
MCHBAR32(0x14e0) = 0xb040020;
MCHBAR32(0x14e4) = 0x2030220;
MCHBAR32(0x14e8) = 0x1051310;
MCHBAR32(0x14ec) = 0x1051420;
MCHBAR32(0x14f0) = 0x2030220;
MCHBAR32(0x14f4) = 0x1010001;
MCHBAR32(0x14f8) = 0x1110000;
MCHBAR32(0x14fc) = 0x5020020;
MCHBAR32(0x1500) = 0x5090220;
MCHBAR32(0x1504) = 0x2071310;
MCHBAR32(0x1508) = 0x2071420;
MCHBAR32(0x150c) = 0x5090220;
MCHBAR32(0x1510) = 0x1010001;
MCHBAR32(0x1514) = 0x1110000;
MCHBAR32(0x1518) = 0x7040120;
MCHBAR32(0x151c) = 0x2090220;
MCHBAR32(0x1520) = 0x70b1210;
MCHBAR32(0x1524) = 0x70b1310;
MCHBAR32(0x1528) = 0x2090220;
MCHBAR32(0x152c) = 0x1010001;
MCHBAR32(0x1530) = 0x1110000;
MCHBAR32(0x1534) = 0x1010110;
MCHBAR32(0x1538) = 0x1081310;
MCHBAR32(0x153c) = 0x5041200;
MCHBAR32(0x1540) = 0x5041310;
MCHBAR32(0x1544) = 0x1081310;
MCHBAR32(0x1548) = 0x1010001;
MCHBAR32(0x154c) = 0x1110000;
MCHBAR32(0x1550) = 0x1040120;
MCHBAR32(0x1554) = 0x4051210;
MCHBAR32(0x1558) = 0xd051200;
MCHBAR32(0x155c) = 0xd051200;
MCHBAR32(0x1560) = 0x4051210;
MCHBAR32(0x1564) = 0x1010001;
MCHBAR32(0x1568) = 0x1110000;
MCHBAR16(0x1222) = 0x220a;
MCHBAR16(0x123c) = 0x1fc0;
MCHBAR16(0x1220) = 0x1388;
}
MCHBAR32_AND_OR(0x2c80, 0, 0x1053688); // !!!!
MCHBAR32(0x1c04); // !!!!
MCHBAR32(0x1804) = 0x406080;
MCHBAR8(0x2ca8);
if (x2ca8 == 0) {
MCHBAR8_AND(0x2ca8, ~3);
MCHBAR8(0x2ca8) = MCHBAR8(0x2ca8) + 4; // "+" or "|"?
/* This issues a CPU reset without resetting the platform */
printk(BIOS_DEBUG, "Issuing a CPU reset\n");
/* Write back the S3 state to PM1_CNT to let the reset CPU
know it also needs to take the s3 path. */
if (s3resume)
write_pmbase32(PM1_CNT, read_pmbase32(PM1_CNT)
| (SLP_TYP_S3 << 10));
MCHBAR32_OR(0x1af0, 0x10);
halt();
}
MCHBAR8(0x2ca8) = MCHBAR8(0x2ca8);
MCHBAR32_AND_OR(0x2c80, 0, 0x53688); // !!!!
pci_write_config32(QPI_NON_CORE, MAX_RTIDS, 0x20220);
MCHBAR16(0x2c20); // !!!!
MCHBAR16(0x2c10); // !!!!
MCHBAR16(0x2c00); // !!!!
MCHBAR16(0x2c00) = 0x8c0;
udelay(1000);
write_1d0(0, 0x33d, 0, 0);
write_500(&info, 0, 0, 0xb61, 0, 0);
write_500(&info, 1, 0, 0xb61, 0, 0);
MCHBAR32(0x1a30) = 0x0;
MCHBAR32(0x1a34) = 0x0;
MCHBAR16(0x614) = 0xb5b | (info.populated_ranks[1][0][0] * 0x404) |
(info.populated_ranks[0][0][0] * 0xa0);
MCHBAR16(0x616) = 0x26a;
MCHBAR32(0x134) = 0x856000;
MCHBAR32(0x160) = 0x5ffffff;
MCHBAR32_AND_OR(0x114, 0, 0xc2024440); // !!!!
MCHBAR32_AND_OR(0x118, 0, 0x4); // !!!!
for (channel = 0; channel < NUM_CHANNELS; channel++)
MCHBAR32(0x260 + (channel << 10)) = 0x30809ff |
((info.populated_ranks_mask[channel] & 3) << 20);
for (channel = 0; channel < NUM_CHANNELS; channel++) {
MCHBAR16(0x31c + (channel << 10)) = 0x101;
MCHBAR16(0x360 + (channel << 10)) = 0x909;
MCHBAR16(0x3a4 + (channel << 10)) = 0x101;
MCHBAR16(0x3e8 + (channel << 10)) = 0x101;
MCHBAR32(0x320 + (channel << 10)) = 0x29002900;
MCHBAR32(0x324 + (channel << 10)) = 0x0;
MCHBAR32(0x368 + (channel << 10)) = 0x32003200;
MCHBAR16(0x352 + (channel << 10)) = 0x505;
MCHBAR16(0x354 + (channel << 10)) = 0x3c3c;
MCHBAR16(0x356 + (channel << 10)) = 0x1040;
MCHBAR16(0x39a + (channel << 10)) = 0x73e4;
MCHBAR16(0x3de + (channel << 10)) = 0x77ed;
MCHBAR16(0x422 + (channel << 10)) = 0x1040;
}
write_1d0(0x4, 0x151, 4, 1);
write_1d0(0, 0x142, 3, 1);
rdmsr(0x1ac); // !!!!
write_500(&info, 1, 1, 0x6b3, 4, 1);
write_500(&info, 1, 1, 0x6cf, 4, 1);
rmw_1d0(0x21c, 0x38, 0, 6);
write_1d0(((!info.populated_ranks[1][0][0]) << 1) | ((!info.
populated_ranks[0]
[0][0]) << 0),
0x1d1, 3, 1);
for (channel = 0; channel < NUM_CHANNELS; channel++) {
MCHBAR16(0x38e + (channel << 10)) = 0x5f5f;
MCHBAR16(0x3d2 + (channel << 10)) = 0x5f5f;
}
set_334(0);
program_base_timings(&info);
MCHBAR8_OR(0x5ff, 0x80);
write_1d0(0x2, 0x1d5, 2, 1);
write_1d0(0x20, 0x166, 7, 1);
write_1d0(0x0, 0xeb, 3, 1);
write_1d0(0x0, 0xf3, 6, 1);
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (lane = 0; lane < 9; lane++) {
u16 addr = 0x125 + get_lane_offset(0, 0, lane);
u8 a;
a = read_500(&info, channel, addr, 6); // = 0x20040080 //!!!!
write_500(&info, channel, a, addr, 6, 1);
}
udelay(1000);
if (s3resume) {
if (info.cached_training == NULL) {
u32 reg32;
printk(BIOS_ERR,
"Couldn't find training data. Rebooting\n");
reg32 = inl(DEFAULT_PMBASE + 0x04);
outl(reg32 & ~(7 << 10), DEFAULT_PMBASE + 0x04);
full_reset();
}
int tm;
info.training = *info.cached_training;
for (tm = 0; tm < 4; tm++)
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
for (lane = 0; lane < 9; lane++)
write_500(&info,
channel,
info.training.
lane_timings
[tm][channel]
[slot][rank]
[lane],
get_timing_register_addr
(lane, tm,
slot, rank),
9, 0);
write_1d0(info.cached_training->reg_178, 0x178, 7, 1);
write_1d0(info.cached_training->reg_10b, 0x10b, 6, 1);
}
MCHBAR32_AND_OR(0x1f4, 0, 0x20000); // !!!!
MCHBAR32(0x1f0) = 0x1d000200;
MCHBAR8_AND_OR(0x1f0, 0, 0x1); // !!!!
MCHBAR8(0x1f0); // !!!!
program_board_delay(&info);
MCHBAR8(0x5ff) = 0x0;
MCHBAR8(0x5ff) = 0x80;
MCHBAR8(0x5f4) = 0x1;
MCHBAR32_AND(0x130, 0xfffffffd); // | 2 when ?
while (MCHBAR32(0x130) & 1)
;
gav(read_1d0(0x14b, 7)); // = 0x81023100
write_1d0(0x30, 0x14b, 7, 1);
read_1d0(0xd6, 6); // = 0xfa008080 // !!!!
write_1d0(7, 0xd6, 6, 1);
read_1d0(0x328, 6); // = 0xfa018080 // !!!!
write_1d0(7, 0x328, 6, 1);
for (channel = 0; channel < NUM_CHANNELS; channel++)
set_4cf(&info, channel,
info.populated_ranks[channel][0][0] ? 8 : 0);
read_1d0(0x116, 4); // = 0x4040432 // !!!!
write_1d0(2, 0x116, 4, 1);
read_1d0(0xae, 6); // = 0xe8088080 // !!!!
write_1d0(0, 0xae, 6, 1);
read_1d0(0x300, 4); // = 0x48088080 // !!!!
write_1d0(0, 0x300, 6, 1);
MCHBAR16_AND_OR(0x356, 0, 0x1040); // !!!!
MCHBAR16_AND_OR(0x756, 0, 0x1040); // !!!!
MCHBAR32_AND(0x140, ~0x07000000);
MCHBAR32_AND(0x138, ~0x07000000);
MCHBAR32(0x130) = 0x31111301;
/* Wait until REG130b0 is 1. */
while (MCHBAR32(0x130) & 1)
;
{
u32 t;
u8 val_a1;
val_a1 = read_1d0(0xa1, 6); // = 0x1cf4040 // !!!!
t = read_1d0(0x2f3, 6); // = 0x10a4040 // !!!!
rmw_1d0(0x320, 0x07,
(t & 4) | ((t & 8) >> 2) | ((t & 0x10) >> 4), 6);
rmw_1d0(0x14b, 0x78,
((((val_a1 >> 2) & 4) | (val_a1 & 8)) >> 2) | (val_a1 &
4), 7);
rmw_1d0(0xce, 0x38,
((((val_a1 >> 2) & 4) | (val_a1 & 8)) >> 2) | (val_a1 &
4), 6);
}
for (channel = 0; channel < NUM_CHANNELS; channel++)
set_4cf(&info, channel,
info.populated_ranks[channel][0][0] ? 9 : 1);
rmw_1d0(0x116, 0xe, 1, 4); // = 0x4040432 // !!!!
MCHBAR32(0x144); // !!!!
write_1d0(2, 0xae, 6, 1);
write_1d0(2, 0x300, 6, 1);
write_1d0(2, 0x121, 3, 1);
read_1d0(0xd6, 6); // = 0xfa00c0c7 // !!!!
write_1d0(4, 0xd6, 6, 1);
read_1d0(0x328, 6); // = 0xfa00c0c7 // !!!!
write_1d0(4, 0x328, 6, 1);
for (channel = 0; channel < NUM_CHANNELS; channel++)
set_4cf(&info, channel,
info.populated_ranks[channel][0][0] ? 9 : 0);
MCHBAR32(0x130) = 0x11111301 | (info.populated_ranks[1][0][0] << 30) |
(info.populated_ranks[0][0][0] << 29);
while (MCHBAR8(0x130) & 1)
;
read_1d0(0xa1, 6); // = 0x1cf4054 // !!!!
read_1d0(0x2f3, 6); // = 0x10a4054 // !!!!
read_1d0(0x21c, 6); // = 0xafa00c0 // !!!!
write_1d0(0, 0x21c, 6, 1);
read_1d0(0x14b, 7); // = 0x810231b0 // !!!!
write_1d0(0x35, 0x14b, 7, 1);
for (channel = 0; channel < NUM_CHANNELS; channel++)
set_4cf(&info, channel,
info.populated_ranks[channel][0][0] ? 0xb : 0x2);
set_334(1);
MCHBAR8(0x1e8) = 0x4;
for (channel = 0; channel < NUM_CHANNELS; channel++) {
write_500(&info, channel,
0x3 & ~(info.populated_ranks_mask[channel]), 0x6b7, 2,
1);
write_500(&info, channel, 0x3, 0x69b, 2, 1);
}
MCHBAR32_AND_OR(0x2d0, 0xff2c01ff, 0x200000);
MCHBAR16(0x6c0) = 0x14a0;
MCHBAR32_AND_OR(0x6d0, 0xff0080ff, 0x8000);
MCHBAR16(0x232) = 0x8;
/* 0x40004 or 0 depending on ? */
MCHBAR32_AND_OR(0x234, 0xfffbfffb, 0x40004);
MCHBAR32_AND_OR(0x34, 0xfffffffd, 5);
MCHBAR32(0x128) = 0x2150d05;
MCHBAR8(0x12c) = 0x1f;
MCHBAR8(0x12d) = 0x56;
MCHBAR8(0x12e) = 0x31;
MCHBAR8(0x12f) = 0x0;
MCHBAR8(0x271) = 0x2;
MCHBAR8(0x671) = 0x2;
MCHBAR8(0x1e8) = 0x4;
for (channel = 0; channel < NUM_CHANNELS; channel++)
MCHBAR32(0x294 + (channel << 10)) =
(info.populated_ranks_mask[channel] & 3) << 16;
MCHBAR32_AND_OR(0x134, 0xfc01ffff, 0x10000);
MCHBAR32_AND_OR(0x134, 0xfc85ffff, 0x850000);
for (channel = 0; channel < NUM_CHANNELS; channel++)
MCHBAR32_AND_OR(0x260 + (channel << 10), ~0xf00000, 0x8000000 |
((info.populated_ranks_mask[channel] & 3) << 20));
if (!s3resume)
jedec_init(&info);
int totalrank = 0;
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
if (info.populated_ranks[channel][slot][rank]) {
jedec_read(&info, channel, slot, rank,
totalrank, 0xa, 0x400);
totalrank++;
}
MCHBAR8(0x12c) = 0x9f;
MCHBAR8_AND_OR(0x271, 0, 0xe); // 2 // !!!!
MCHBAR8_AND_OR(0x671, 0, 0xe); // !!!!
if (!s3resume) {
for (channel = 0; channel < NUM_CHANNELS; channel++) {
MCHBAR32(0x294 + (channel << 10)) =
(info.populated_ranks_mask[channel] & 3) << 16;
MCHBAR16(0x298 + (channel << 10)) =
info.populated_ranks[channel][0][0] |
(info.populated_ranks[channel][0][1] << 5);
MCHBAR32(0x29c + (channel << 10)) = 0x77a;
}
MCHBAR32_AND_OR(0x2c0, 0, 0x6009cc00); // !!!!
{
u8 a, b;
a = MCHBAR8(0x243);
b = MCHBAR8(0x643);
MCHBAR8(0x243) = a | 2;
MCHBAR8(0x643) = b | 2;
}
write_1d0(7, 0x19b, 3, 1);
write_1d0(7, 0x1c0, 3, 1);
write_1d0(4, 0x1c6, 4, 1);
write_1d0(4, 0x1cc, 4, 1);
read_1d0(0x151, 4); // = 0x408c6d74 // !!!!
write_1d0(4, 0x151, 4, 1);
MCHBAR32(0x584) = 0xfffff;
MCHBAR32(0x984) = 0xfffff;
for (channel = 0; channel < NUM_CHANNELS; channel++)
for (slot = 0; slot < NUM_SLOTS; slot++)
for (rank = 0; rank < NUM_RANKS; rank++)
if (info.
populated_ranks[channel][slot]
[rank])
config_rank(&info, s3resume,
channel, slot,
rank);
MCHBAR8(0x243) = 0x1;
MCHBAR8(0x643) = 0x1;
}
/* was == 1 but is common */
pci_write_config16(NORTHBRIDGE, 0xc8, 3);
write_26c(0, 0x820);
write_26c(1, 0x820);
MCHBAR32_OR(0x130, 2);
/* end */
if (s3resume) {
for (channel = 0; channel < NUM_CHANNELS; channel++) {
MCHBAR32(0x294 + (channel << 10)) =
(info.populated_ranks_mask[channel] & 3) << 16;
MCHBAR16(0x298 + (channel << 10)) =
info.populated_ranks[channel][0][0] |
(info.populated_ranks[channel][0][1] << 5);
MCHBAR32(0x29c + (channel << 10)) = 0x77a;
}
MCHBAR32_AND_OR(0x2c0, 0, 0x6009cc00); // !!!!
}
MCHBAR32_AND(0xfa4, ~0x01000002);
MCHBAR32(0xfb0) = 0x2000e019;
/* Before training. */
timestamp_add_now(103);
if (!s3resume)
ram_training(&info);
/* After training. */
timestamp_add_now(104);
dump_timings(&info);
program_modules_memory_map(&info, 0);
program_total_memory_map(&info);
if (info.non_interleaved_part_mb != 0 && info.interleaved_part_mb != 0)
MCHBAR8(0x111) = 0x20 | (0 << 2) | (1 << 6) | (0 << 7);
else if (have_match_ranks(&info, 0, 4) && have_match_ranks(&info, 1, 4))
MCHBAR8(0x111) = 0x20 | (3 << 2) | (0 << 6) | (1 << 7);
else if (have_match_ranks(&info, 0, 2) && have_match_ranks(&info, 1, 2))
MCHBAR8(0x111) = 0x20 | (3 << 2) | (0 << 6) | (0 << 7);
else
MCHBAR8(0x111) = 0x20 | (3 << 2) | (1 << 6) | (0 << 7);
MCHBAR32_AND(0xfac, ~0x80000000);
MCHBAR32(0xfb4) = 0x4800;
MCHBAR32(0xfb8) = (info.revision < 8) ? 0x20 : 0x0;
MCHBAR32(0xe94) = 0x7ffff;
MCHBAR32(0xfc0) = 0x80002040;
MCHBAR32(0xfc4) = 0x701246;
MCHBAR8_AND(0xfc8, ~0x70);
MCHBAR32_OR(0xe5c, 0x1000000);
MCHBAR32_AND_OR(0x1a70, ~0x00100000, 0x00200000);
MCHBAR32(0x50) = 0x700b0;
MCHBAR32(0x3c) = 0x10;
MCHBAR8(0x1aa8) = (MCHBAR8(0x1aa8) & ~0x35) | 0xa;
MCHBAR8_OR(0xff4, 0x2);
MCHBAR32_AND_OR(0xff8, ~0xe008, 0x1020);
MCHBAR32(0xd00) = IOMMU_BASE2 | 1;
MCHBAR32(0xd40) = IOMMU_BASE1 | 1;
MCHBAR32(0xdc0) = IOMMU_BASE4 | 1;
write32p(IOMMU_BASE1 | 0xffc, 0x80000000);
write32p(IOMMU_BASE2 | 0xffc, 0xc0000000);
write32p(IOMMU_BASE4 | 0xffc, 0x80000000);
{
u32 eax;
eax = info.fsb_frequency / 9;
MCHBAR32_AND_OR(0xfcc, 0xfffc0000,
(eax * 0x280) | (eax * 0x5000) | eax | 0x40000);
MCHBAR32(0x20) = 0x33001;
}
for (channel = 0; channel < NUM_CHANNELS; channel++) {
MCHBAR32_AND(0x220 + (channel << 10), ~0x7770);
if (info.max_slots_used_in_channel == 1)
MCHBAR16_OR(0x237 + (channel << 10), 0x0201);
else
MCHBAR16_AND(0x237 + (channel << 10), ~0x0201);
MCHBAR8_OR(0x241 + (channel << 10), 1);
if (info.clock_speed_index <= 1 && (info.silicon_revision == 2
|| info.silicon_revision == 3))
MCHBAR32_OR(0x248 + (channel << 10), 0x00102000);
else
MCHBAR32_AND(0x248 + (channel << 10), ~0x00102000);
}
MCHBAR32_OR(0x115, 0x1000000);
{
u8 al;
al = 0xd;
if (!(info.silicon_revision == 0 || info.silicon_revision == 1))
al += 2;
al |= ((1 << (info.max_slots_used_in_channel - 1)) - 1) << 4;
MCHBAR32(0x210) = (al << 16) | 0x20;
}
for (channel = 0; channel < NUM_CHANNELS; channel++) {
MCHBAR32(0x288 + (channel << 10)) = 0x70605040;
MCHBAR32(0x28c + (channel << 10)) = 0xfffec080;
MCHBAR32(0x290 + (channel << 10)) = 0x282091c |
((info.max_slots_used_in_channel - 1) << 0x16);
}
u32 reg1c;
pci_read_config32(NORTHBRIDGE, 0x40); // = DEFAULT_EPBAR | 0x001 // OK
reg1c = EPBAR32(EPVC1RCAP); // = 0x8001 // OK
pci_read_config32(NORTHBRIDGE, 0x40); // = DEFAULT_EPBAR | 0x001 // OK
EPBAR32(EPVC1RCAP) = reg1c; // OK
MCHBAR8(0xe08); // = 0x0
pci_read_config32(NORTHBRIDGE, 0xe4); // = 0x316126
MCHBAR8_OR(0x1210, 2);
MCHBAR32(0x1200) = 0x8800440;
MCHBAR32(0x1204) = 0x53ff0453;
MCHBAR32(0x1208) = 0x19002043;
MCHBAR16(0x1214) = 0x320;
if (info.revision == 0x10 || info.revision == 0x11) {
MCHBAR16(0x1214) = 0x220;
MCHBAR8_OR(0x1210, 0x40);
}
MCHBAR8_OR(0x1214, 0x4);
MCHBAR8(0x120c) = 0x1;
MCHBAR8(0x1218) = 0x3;
MCHBAR8(0x121a) = 0x3;
MCHBAR8(0x121c) = 0x3;
MCHBAR16(0xc14) = 0x0;
MCHBAR16(0xc20) = 0x0;
MCHBAR32(0x1c) = 0x0;
/* revision dependent here. */
MCHBAR16_OR(0x1230, 0x1f07);
if (info.uma_enabled)
MCHBAR32_OR(0x11f4, 0x10000000);
MCHBAR16_OR(0x1230, 0x8000);
MCHBAR8_OR(0x1214, 1);
u8 bl, ebpb;
u16 reg_1020;
reg_1020 = MCHBAR32(0x1020); // = 0x6c733c // OK
MCHBAR8(0x1070) = 0x1;
MCHBAR32(0x1000) = 0x100;
MCHBAR8(0x1007) = 0x0;
if (reg_1020 != 0) {
MCHBAR16(0x1018) = 0x0;
bl = reg_1020 >> 8;
ebpb = reg_1020 & 0xff;
} else {
ebpb = 0;
bl = 8;
}
rdmsr(0x1a2);
MCHBAR32(0x1014) = 0xffffffff;
MCHBAR32(0x1010) = ((((ebpb + 0x7d) << 7) / bl) & 0xff) * (!!reg_1020);
MCHBAR8(0x101c) = 0xb8;
MCHBAR8(0x123e) = (MCHBAR8(0x123e) & 0xf) | 0x60;
if (reg_1020 != 0) {
MCHBAR32_AND_OR(0x123c, ~0x00900000, 0x600000);
MCHBAR8(0x101c) = 0xb8;
}
setup_heci_uma(&info);
if (info.uma_enabled) {
u16 ax;
MCHBAR32_OR(0x11b0, 0x4000);
MCHBAR32_OR(0x11b4, 0x4000);
MCHBAR16_OR(0x1190, 0x4000);
ax = MCHBAR16(0x1190) & 0xf00; // = 0x480a // OK
MCHBAR16(0x1170) = ax | (MCHBAR16(0x1170) & 0x107f) | 0x4080;
MCHBAR16_OR(0x1170, 0x1000);
udelay(1000);
u16 ecx;
for (ecx = 0xffff; ecx && (MCHBAR16(0x1170) & 0x1000); ecx--)
;
MCHBAR16_AND(0x1190, ~0x4000);
}
pci_write_config8(SOUTHBRIDGE, GEN_PMCON_2,
pci_read_config8(SOUTHBRIDGE, GEN_PMCON_2) & ~0x80);
udelay(10000);
MCHBAR16(0x2ca8) = 0x8;
udelay(1000);
dump_timings(&info);
cbmem_wasnot_inited = cbmem_recovery(s3resume);
if (!s3resume)
save_timings(&info);
if (s3resume && cbmem_wasnot_inited) {
u32 reg32;
printk(BIOS_ERR, "Failed S3 resume.\n");
ram_check_nodie(1 * MiB);
/* Clear SLP_TYPE. */
reg32 = inl(DEFAULT_PMBASE + 0x04);
outl(reg32 & ~(7 << 10), DEFAULT_PMBASE + 0x04);
/* Failed S3 resume, reset to come up cleanly */
full_reset();
}
}