coreboot/src/cpu/x86/smm/smm_module_loaderv2.c

665 lines
22 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#include <acpi/acpi_gnvs.h>
#include <stdint.h>
#include <string.h>
#include <rmodule.h>
#include <cpu/x86/smm.h>
#include <commonlib/helpers.h>
#include <console/console.h>
#include <security/intel/stm/SmmStm.h>
#define FXSAVE_SIZE 512
#define SMM_CODE_SEGMENT_SIZE 0x10000
/* FXSAVE area during relocation. While it may not be strictly needed the
SMM stub code relies on the FXSAVE area being non-zero to enable SSE
instructions within SMM mode. */
static uint8_t fxsave_area_relocation[CONFIG_MAX_CPUS][FXSAVE_SIZE]
__attribute__((aligned(16)));
/*
* Components that make up the SMRAM:
* 1. Save state - the total save state memory used
* 2. Stack - stacks for the CPUs in the SMM handler
* 3. Stub - SMM stub code for calling into handler
* 4. Handler - C-based SMM handler.
*
* The components are assumed to consist of one consecutive region.
*/
/* These parameters are used by the SMM stub code. A pointer to the params
* is also passed to the C-base handler. */
struct smm_stub_params {
u32 stack_size;
u32 stack_top;
u32 c_handler;
u32 c_handler_arg;
u32 fxsave_area;
u32 fxsave_area_size;
struct smm_runtime runtime;
} __packed;
/*
* The stub is the entry point that sets up protected mode and stacks for each
* CPU. It then calls into the SMM handler module. It is encoded as an rmodule.
*/
extern unsigned char _binary_smmstub_start[];
/* Per CPU minimum stack size. */
#define SMM_MINIMUM_STACK_SIZE 32
struct cpu_smm_info {
uint8_t active;
uintptr_t smbase;
uintptr_t entry;
uintptr_t ss_start;
uintptr_t code_start;
uintptr_t code_end;
};
struct cpu_smm_info cpus[CONFIG_MAX_CPUS] = { 0 };
/*
* This method creates a map of all the CPU entry points, save state locations
* and the beginning and end of code segments for each CPU. This map is used
* during relocation to properly align as many CPUs that can fit into the SMRAM
* region. For more information on how SMRAM works, refer to the latest Intel
* developer's manuals (volume 3, chapter 34). SMRAM is divided up into the
* following regions:
* +-----------------+ Top of SMRAM
* | | <- MSEG, FXSAVE
* +-----------------+
* | common |
* | smi handler | 64K
* | |
* +-----------------+
* | CPU 0 code seg |
* +-----------------+
* | CPU 1 code seg |
* +-----------------+
* | CPU x code seg |
* +-----------------+
* | |
* | |
* +-----------------+
* | stacks |
* +-----------------+ <- START of SMRAM
*
* The code below checks when a code segment is full and begins placing the remainder
* CPUs in the lower segments. The entry point for each CPU is smbase + 0x8000
* and save state is smbase + 0x8000 + (0x8000 - state save size). Save state
* area grows downward into the CPUs entry point. Therefore staggering too many
* CPUs in one 32K block will corrupt CPU0's entry code as the save states move
* downward.
* input : smbase of first CPU (all other CPUs
* will go below this address)
* input : num_cpus in the system. The map will
* be created from 0 to num_cpus.
*/
static int smm_create_map(uintptr_t smbase, unsigned int num_cpus,
const struct smm_loader_params *params)
{
unsigned int i;
struct rmodule smm_stub;
unsigned int ss_size = params->per_cpu_save_state_size, stub_size;
unsigned int smm_entry_offset = params->smm_main_entry_offset;
unsigned int seg_count = 0, segments = 0, available;
unsigned int cpus_in_segment = 0;
unsigned int base = smbase;
if (rmodule_parse(&_binary_smmstub_start, &smm_stub)) {
printk(BIOS_ERR, "%s: unable to get SMM module size\n", __func__);
return 0;
}
stub_size = rmodule_memory_size(&smm_stub);
/* How many CPUs can fit into one 64K segment? */
available = 0xFFFF - smm_entry_offset - ss_size - stub_size;
if (available > 0) {
cpus_in_segment = available / ss_size;
/* minimum segments needed will always be 1 */
segments = num_cpus / cpus_in_segment + 1;
printk(BIOS_DEBUG,
"%s: cpus allowed in one segment %d\n", __func__, cpus_in_segment);
printk(BIOS_DEBUG,
"%s: min # of segments needed %d\n", __func__, segments);
} else {
printk(BIOS_ERR, "%s: not enough space in SMM to setup all CPUs\n", __func__);
printk(BIOS_ERR, " save state & stub size need to be reduced\n");
printk(BIOS_ERR, " or increase SMRAM size\n");
return 0;
}
if (ARRAY_SIZE(cpus) < num_cpus) {
printk(BIOS_ERR,
"%s: increase MAX_CPUS in Kconfig\n", __func__);
return 0;
}
if (stub_size > ss_size) {
printk(BIOS_ERR, "%s: Save state larger than SMM stub size\n", __func__);
printk(BIOS_ERR, " Decrease stub size or increase the size allocated for the save state\n");
return 0;
}
for (i = 0; i < num_cpus; i++) {
cpus[i].smbase = base;
cpus[i].entry = base + smm_entry_offset;
cpus[i].ss_start = cpus[i].entry + (smm_entry_offset - ss_size);
cpus[i].code_start = cpus[i].entry;
cpus[i].code_end = cpus[i].entry + stub_size;
cpus[i].active = 1;
base -= ss_size;
seg_count++;
if (seg_count >= cpus_in_segment) {
base -= smm_entry_offset;
seg_count = 0;
}
}
if (CONFIG_DEFAULT_CONSOLE_LOGLEVEL >= BIOS_DEBUG) {
seg_count = 0;
for (i = 0; i < num_cpus; i++) {
printk(BIOS_DEBUG, "CPU 0x%x\n", i);
printk(BIOS_DEBUG,
" smbase %zx entry %zx\n",
cpus[i].smbase, cpus[i].entry);
printk(BIOS_DEBUG,
" ss_start %zx code_end %zx\n",
cpus[i].ss_start, cpus[i].code_end);
seg_count++;
if (seg_count >= cpus_in_segment) {
printk(BIOS_DEBUG,
"-------------NEW CODE SEGMENT --------------\n");
seg_count = 0;
}
}
}
return 1;
}
/*
* This method expects the smm relocation map to be complete.
* This method does not read any HW registers, it simply uses a
* map that was created during SMM setup.
* input: cpu_num - cpu number which is used as an index into the
* map to return the smbase
*/
u32 smm_get_cpu_smbase(unsigned int cpu_num)
{
if (cpu_num < CONFIG_MAX_CPUS) {
if (cpus[cpu_num].active)
return cpus[cpu_num].smbase;
}
return 0;
}
/*
* This method assumes that at least 1 CPU has been set up from
* which it will place other CPUs below its smbase ensuring that
* save state does not clobber the first CPUs init code segment. The init
* code which is the smm stub code is the same for all CPUs. They enter
* smm, setup stacks (based on their apic id), enter protected mode
* and then jump to the common smi handler. The stack is allocated
* at the beginning of smram (aka tseg base, not smbase). The stack
* pointer for each CPU is calculated by using its apic id
* (code is in smm_stub.s)
* Each entry point will now have the same stub code which, sets up the CPU
* stack, enters protected mode and then jumps to the smi handler. It is
* important to enter protected mode before the jump because the "jump to
* address" might be larger than the 20bit address supported by real mode.
* SMI entry right now is in real mode.
* input: smbase - this is the smbase of the first cpu not the smbase
* where tseg starts (aka smram_start). All CPUs code segment
* and stack will be below this point except for the common
* SMI handler which is one segment above
* input: num_cpus - number of cpus that need relocation including
* the first CPU (though its code is already loaded)
* input: top of stack (stacks work downward by default in Intel HW)
* output: return -1, if runtime smi code could not be installed. In
* this case SMM will not work and any SMI's generated will
* cause a CPU shutdown or general protection fault because
* the appropriate smi handling code was not installed
*/
static int smm_place_entry_code(uintptr_t smbase, unsigned int num_cpus,
uintptr_t stack_top, const struct smm_loader_params *params)
{
unsigned int i;
unsigned int size;
if (smm_create_map(smbase, num_cpus, params)) {
/*
* Ensure there was enough space and the last CPUs smbase
* did not encroach upon the stack. Stack top is smram start
* + size of stack.
*/
if (cpus[num_cpus].active) {
if (cpus[num_cpus - 1].smbase +
params->smm_main_entry_offset < stack_top) {
printk(BIOS_ERR, "%s: stack encroachment\n", __func__);
printk(BIOS_ERR, "%s: smbase %zx, stack_top %lx\n",
__func__, cpus[num_cpus].smbase, stack_top);
return 0;
}
}
} else {
printk(BIOS_ERR, "%s: unable to place smm entry code\n", __func__);
return 0;
}
printk(BIOS_INFO, "%s: smbase %zx, stack_top %lx\n",
__func__, cpus[num_cpus-1].smbase, stack_top);
/* start at 1, the first CPU stub code is already there */
size = cpus[0].code_end - cpus[0].code_start;
for (i = 1; i < num_cpus; i++) {
memcpy((int *)cpus[i].code_start, (int *)cpus[0].code_start, size);
printk(BIOS_DEBUG,
"SMM Module: placing smm entry code at %zx, cpu # 0x%x\n",
cpus[i].code_start, i);
printk(BIOS_DEBUG, "%s: copying from %zx to %zx 0x%x bytes\n",
__func__, cpus[0].code_start, cpus[i].code_start, size);
}
return 1;
}
/*
* Place stacks in base -> base + size region, but ensure the stacks don't
* overlap the staggered entry points.
*/
static void *smm_stub_place_stacks(char *base, size_t size,
struct smm_loader_params *params)
{
size_t total_stack_size;
char *stacks_top;
/* If stack space is requested assume the space lives in the lower
* half of SMRAM. */
total_stack_size = params->per_cpu_stack_size *
params->num_concurrent_stacks;
printk(BIOS_DEBUG, "%s: cpus: %zx : stack space: needed -> %zx\n",
__func__, params->num_concurrent_stacks,
total_stack_size);
printk(BIOS_DEBUG, " available -> %zx : per_cpu_stack_size : %zx\n",
size, params->per_cpu_stack_size);
/* There has to be at least one stack user. */
if (params->num_concurrent_stacks < 1)
return NULL;
/* Total stack size cannot fit. */
if (total_stack_size > size)
return NULL;
/* Stacks extend down to SMBASE */
stacks_top = &base[total_stack_size];
printk(BIOS_DEBUG, "%s: exit, stack_top %p\n", __func__, stacks_top);
return stacks_top;
}
/*
* Place the staggered entry points for each CPU. The entry points are
* staggered by the per CPU SMM save state size extending down from
* SMM_ENTRY_OFFSET.
*/
static int smm_stub_place_staggered_entry_points(char *base,
const struct smm_loader_params *params, const struct rmodule *smm_stub)
{
size_t stub_entry_offset;
int rc = 1;
stub_entry_offset = rmodule_entry_offset(smm_stub);
/* Each CPU now has its own stub code, which enters protected mode,
* sets up the stack, and then jumps to common SMI handler
*/
if (params->num_concurrent_save_states > 1 || stub_entry_offset != 0) {
rc = smm_place_entry_code((uintptr_t)base,
params->num_concurrent_save_states,
(uintptr_t)params->stack_top, params);
}
return rc;
}
/*
* The stub setup code assumes it is completely contained within the
* default SMRAM size (0x10000) for the default SMI handler (entry at
* 0x30000), but no assumption should be made for the permanent SMI handler.
* The placement of CPU entry points for permanent handler are determined
* by the number of CPUs in the system and the amount of SMRAM.
* There are potentially 3 regions to place
* within the default SMRAM size:
* 1. Save state areas
* 2. Stub code
* 3. Stack areas
*
* The save state and smm stack are treated as contiguous for the number of
* concurrent areas requested. The save state always lives at the top of the
* CPUS smbase (and the entry point is at offset 0x8000). This allows only a certain
* number of CPUs with staggered entry points until the save state area comes
* down far enough to overwrite/corrupt the entry code (stub code). Therefore,
* an SMM map is created to avoid this corruption, see smm_create_map() above.
* This module setup code works for the default (0x30000) SMM handler setup and the
* permanent SMM handler.
*/
static int smm_module_setup_stub(void *smbase, size_t smm_size,
struct smm_loader_params *params,
void *fxsave_area)
{
size_t total_save_state_size;
size_t smm_stub_size;
size_t stub_entry_offset;
char *smm_stub_loc;
void *stacks_top;
size_t size;
char *base;
size_t i;
struct smm_stub_params *stub_params;
struct rmodule smm_stub;
unsigned int total_size_all;
base = smbase;
size = smm_size;
/* The number of concurrent stacks cannot exceed CONFIG_MAX_CPUS. */
if (params->num_concurrent_stacks > CONFIG_MAX_CPUS) {
printk(BIOS_ERR, "%s: not enough stacks\n", __func__);
return -1;
}
/* Fail if can't parse the smm stub rmodule. */
if (rmodule_parse(&_binary_smmstub_start, &smm_stub)) {
printk(BIOS_ERR, "%s: unable to parse smm stub\n", __func__);
return -1;
}
/* Adjust remaining size to account for save state. */
total_save_state_size = params->per_cpu_save_state_size *
params->num_concurrent_save_states;
if (total_save_state_size > size) {
printk(BIOS_ERR,
"%s: more state save space needed:need -> %zx:available->%zx\n",
__func__, total_save_state_size, size);
return -1;
}
size -= total_save_state_size;
/* The save state size encroached over the first SMM entry point. */
if (size <= params->smm_main_entry_offset) {
printk(BIOS_ERR, "%s: encroachment over SMM entry point\n", __func__);
printk(BIOS_ERR, "%s: state save size: %zx : smm_entry_offset -> %lx\n",
__func__, size, params->smm_main_entry_offset);
return -1;
}
/* Need a minimum stack size and alignment. */
if (params->per_cpu_stack_size <= SMM_MINIMUM_STACK_SIZE ||
(params->per_cpu_stack_size & 3) != 0) {
printk(BIOS_ERR, "%s: need minimum stack size\n", __func__);
return -1;
}
smm_stub_loc = NULL;
smm_stub_size = rmodule_memory_size(&smm_stub);
stub_entry_offset = rmodule_entry_offset(&smm_stub);
/* Put the stub at the main entry point */
smm_stub_loc = &base[params->smm_main_entry_offset];
/* Stub is too big to fit. */
if (smm_stub_size > (size - params->smm_main_entry_offset)) {
printk(BIOS_ERR, "%s: stub is too big to fit\n", __func__);
return -1;
}
/* The stacks, if requested, live in the lower half of SMRAM space
* for default handler, but for relocated handler it lives at the beginning
* of SMRAM which is TSEG base
*/
const size_t total_stack_size = params->num_concurrent_stacks *
params->per_cpu_stack_size;
stacks_top = smm_stub_place_stacks((char *)params->smram_start, total_stack_size,
params);
if (stacks_top == NULL) {
printk(BIOS_ERR, "%s: not enough space for stacks\n", __func__);
printk(BIOS_ERR, "%s: ....need -> %p : available -> %zx\n", __func__,
base, total_stack_size);
return -1;
}
params->stack_top = stacks_top;
/* Load the stub. */
if (rmodule_load(smm_stub_loc, &smm_stub)) {
printk(BIOS_ERR, "%s: load module failed\n", __func__);
return -1;
}
if (!smm_stub_place_staggered_entry_points(base, params, &smm_stub)) {
printk(BIOS_ERR, "%s: staggered entry points failed\n", __func__);
return -1;
}
/* Setup the parameters for the stub code. */
stub_params = rmodule_parameters(&smm_stub);
stub_params->stack_top = (uintptr_t)stacks_top;
stub_params->stack_size = params->per_cpu_stack_size;
stub_params->c_handler = (uintptr_t)params->handler;
stub_params->c_handler_arg = (uintptr_t)params->handler_arg;
stub_params->fxsave_area = (uintptr_t)fxsave_area;
stub_params->fxsave_area_size = FXSAVE_SIZE;
stub_params->runtime.smbase = (uintptr_t)smbase;
stub_params->runtime.smm_size = smm_size;
stub_params->runtime.save_state_size = params->per_cpu_save_state_size;
stub_params->runtime.num_cpus = params->num_concurrent_stacks;
stub_params->runtime.gnvs_ptr = (uintptr_t)acpi_get_gnvs();
printk(BIOS_DEBUG, "%s: stack_end = 0x%lx\n",
__func__, stub_params->stack_top - total_stack_size);
printk(BIOS_DEBUG,
"%s: stack_top = 0x%x\n", __func__, stub_params->stack_top);
printk(BIOS_DEBUG, "%s: stack_size = 0x%x\n",
__func__, stub_params->stack_size);
printk(BIOS_DEBUG, "%s: runtime.smbase = 0x%x\n",
__func__, stub_params->runtime.smbase);
printk(BIOS_DEBUG, "%s: runtime.start32_offset = 0x%x\n", __func__,
stub_params->runtime.start32_offset);
printk(BIOS_DEBUG, "%s: runtime.smm_size = 0x%zx\n",
__func__, smm_size);
printk(BIOS_DEBUG, "%s: per_cpu_save_state_size = 0x%x\n",
__func__, stub_params->runtime.save_state_size);
printk(BIOS_DEBUG, "%s: num_cpus = 0x%x\n", __func__,
stub_params->runtime.num_cpus);
printk(BIOS_DEBUG, "%s: total_save_state_size = 0x%x\n",
__func__, (stub_params->runtime.save_state_size *
stub_params->runtime.num_cpus));
total_size_all = stub_params->stack_size +
(stub_params->runtime.save_state_size *
stub_params->runtime.num_cpus);
printk(BIOS_DEBUG, "%s: total_size_all = 0x%x\n", __func__,
total_size_all);
/* Initialize the APIC id to CPU number table to be 1:1 */
for (i = 0; i < params->num_concurrent_stacks; i++)
stub_params->runtime.apic_id_to_cpu[i] = i;
/* Allow the initiator to manipulate SMM stub parameters. */
params->runtime = &stub_params->runtime;
printk(BIOS_DEBUG, "SMM Module: stub loaded at %p. Will call %p(%p)\n",
smm_stub_loc, params->handler, params->handler_arg);
return 0;
}
/*
* smm_setup_relocation_handler assumes the callback is already loaded in
* memory. i.e. Another SMM module isn't chained to the stub. The other
* assumption is that the stub will be entered from the default SMRAM
* location: 0x30000 -> 0x40000.
*/
int smm_setup_relocation_handler(struct smm_loader_params *params)
{
void *smram = (void *)(SMM_DEFAULT_BASE);
printk(BIOS_SPEW, "%s: enter\n", __func__);
/* There can't be more than 1 concurrent save state for the relocation
* handler because all CPUs default to 0x30000 as SMBASE. */
if (params->num_concurrent_save_states > 1)
return -1;
/* A handler has to be defined to call for relocation. */
if (params->handler == NULL)
return -1;
/* Since the relocation handler always uses stack, adjust the number
* of concurrent stack users to be CONFIG_MAX_CPUS. */
if (params->num_concurrent_stacks == 0)
params->num_concurrent_stacks = CONFIG_MAX_CPUS;
params->smm_main_entry_offset = SMM_ENTRY_OFFSET;
params->smram_start = SMM_DEFAULT_BASE;
params->smram_end = SMM_DEFAULT_BASE + SMM_DEFAULT_SIZE;
return smm_module_setup_stub(smram, SMM_DEFAULT_SIZE,
params, fxsave_area_relocation);
printk(BIOS_SPEW, "%s: exit\n", __func__);
}
/*
*The SMM module is placed within the provided region in the following
* manner:
* +-----------------+ <- smram + size
* | BIOS resource |
* | list (STM) |
* +-----------------+
* | fxsave area |
* +-----------------+
* | smi handler |
* | ... |
* +-----------------+ <- cpu0
* | stub code | <- cpu1
* | stub code | <- cpu2
* | stub code | <- cpu3, etc
* | |
* | |
* | |
* | stacks |
* +-----------------+ <- smram start
* It should be noted that this algorithm will not work for
* SMM_DEFAULT_SIZE SMRAM regions such as the A segment. This algorithm
* expects a region large enough to encompass the handler and stacks
* as well as the SMM_DEFAULT_SIZE.
*/
int smm_load_module(void *smram, size_t size, struct smm_loader_params *params)
{
struct rmodule smm_mod;
size_t total_stack_size;
size_t handler_size;
size_t module_alignment;
size_t alignment_size;
size_t fxsave_size;
void *fxsave_area;
size_t total_size = 0;
char *base;
if (size <= SMM_DEFAULT_SIZE)
return -1;
/* Load main SMI handler at the top of SMRAM
* everything else will go below
*/
base = smram;
base += size;
params->smram_start = (uintptr_t)smram;
params->smram_end = params->smram_start + size;
params->smm_main_entry_offset = SMM_ENTRY_OFFSET;
/* Fail if can't parse the smm rmodule. */
if (rmodule_parse(&_binary_smm_start, &smm_mod))
return -1;
/* Clear SMM region */
if (CONFIG(DEBUG_SMI))
memset(smram, 0xcd, size);
total_stack_size = params->per_cpu_stack_size *
params->num_concurrent_stacks;
total_size += total_stack_size;
/* Stacks are the base of SMRAM */
params->stack_top = smram + total_stack_size;
/* MSEG starts at the top of SMRAM and works down */
if (CONFIG(STM)) {
base -= CONFIG_MSEG_SIZE + CONFIG_BIOS_RESOURCE_LIST_SIZE;
total_size += CONFIG_MSEG_SIZE + CONFIG_BIOS_RESOURCE_LIST_SIZE;
}
/* FXSAVE goes below MSEG */
if (CONFIG(SSE)) {
fxsave_size = FXSAVE_SIZE * params->num_concurrent_stacks;
fxsave_area = base - fxsave_size;
base -= fxsave_size;
total_size += fxsave_size;
} else {
fxsave_size = 0;
fxsave_area = NULL;
}
handler_size = rmodule_memory_size(&smm_mod);
base -= handler_size;
total_size += handler_size;
module_alignment = rmodule_load_alignment(&smm_mod);
alignment_size = module_alignment -
((uintptr_t)base % module_alignment);
if (alignment_size != module_alignment) {
handler_size += alignment_size;
base += alignment_size;
}
printk(BIOS_DEBUG,
"%s: total_smm_space_needed %zx, available -> %zx\n",
__func__, total_size, size);
/* Does the required amount of memory exceed the SMRAM region size? */
if (total_size > size) {
printk(BIOS_ERR, "%s: need more SMRAM\n", __func__);
return -1;
}
if (handler_size > SMM_CODE_SEGMENT_SIZE) {
printk(BIOS_ERR, "%s: increase SMM_CODE_SEGMENT_SIZE: handler_size = %zx\n",
__func__, handler_size);
return -1;
}
if (rmodule_load(base, &smm_mod))
return -1;
params->handler = rmodule_entry(&smm_mod);
params->handler_arg = rmodule_parameters(&smm_mod);
printk(BIOS_DEBUG, "%s: smram_start: 0x%p\n",
__func__, smram);
printk(BIOS_DEBUG, "%s: smram_end: %p\n",
__func__, smram + size);
printk(BIOS_DEBUG, "%s: stack_top: %p\n",
__func__, params->stack_top);
printk(BIOS_DEBUG, "%s: handler start %p\n",
__func__, params->handler);
printk(BIOS_DEBUG, "%s: handler_size %zx\n",
__func__, handler_size);
printk(BIOS_DEBUG, "%s: handler_arg %p\n",
__func__, params->handler_arg);
printk(BIOS_DEBUG, "%s: fxsave_area %p\n",
__func__, fxsave_area);
printk(BIOS_DEBUG, "%s: fxsave_size %zx\n",
__func__, fxsave_size);
printk(BIOS_DEBUG, "%s: CONFIG_MSEG_SIZE 0x%x\n",
__func__, CONFIG_MSEG_SIZE);
printk(BIOS_DEBUG, "%s: CONFIG_BIOS_RESOURCE_LIST_SIZE 0x%x\n",
__func__, CONFIG_BIOS_RESOURCE_LIST_SIZE);
/* CPU 0 smbase goes first, all other CPUs
* will be staggered below
*/
base -= SMM_CODE_SEGMENT_SIZE;
printk(BIOS_DEBUG, "%s: cpu0 entry: %p\n",
__func__, base);
params->smm_entry = (uintptr_t)base + params->smm_main_entry_offset;
return smm_module_setup_stub(base, size, params, fxsave_area);
}