coreboot/src/lib/cbfs.c

520 lines
14 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#include <assert.h>
#include <boot_device.h>
#include <cbfs.h>
#include <cbfs_private.h>
#include <cbmem.h>
#include <commonlib/bsd/compression.h>
#include <commonlib/endian.h>
#include <console/console.h>
#include <fmap.h>
#include <lib.h>
#include <metadata_hash.h>
#include <security/tpm/tspi/crtm.h>
#include <security/vboot/vboot_common.h>
#include <stdlib.h>
#include <string.h>
#include <symbols.h>
#include <timestamp.h>
cb_err_t cbfs_boot_lookup(const char *name, bool force_ro,
union cbfs_mdata *mdata, struct region_device *rdev)
{
const struct cbfs_boot_device *cbd = cbfs_get_boot_device(force_ro);
if (!cbd)
return CB_ERR;
size_t data_offset;
cb_err_t err = CB_CBFS_CACHE_FULL;
if (!CONFIG(NO_CBFS_MCACHE) && !ENV_SMM && cbd->mcache_size)
err = cbfs_mcache_lookup(cbd->mcache, cbd->mcache_size,
name, mdata, &data_offset);
if (err == CB_CBFS_CACHE_FULL) {
struct vb2_hash *metadata_hash = NULL;
if (CONFIG(TOCTOU_SAFETY)) {
if (ENV_SMM) /* Cannot provide TOCTOU safety for SMM */
dead_code();
if (!cbd->mcache_size)
die("Cannot access CBFS TOCTOU-safely in " ENV_STRING " before CBMEM init!\n");
/* We can only reach this for the RW CBFS -- an mcache
overflow in the RO CBFS would have been caught when
building the mcache in cbfs_get_boot_device().
(Note that TOCTOU_SAFETY implies !NO_CBFS_MCACHE.) */
assert(cbd == vboot_get_cbfs_boot_device());
/* TODO: set metadata_hash to RW metadata hash here. */
}
err = cbfs_lookup(&cbd->rdev, name, mdata, &data_offset,
metadata_hash);
}
if (CONFIG(VBOOT_ENABLE_CBFS_FALLBACK) && !force_ro &&
err == CB_CBFS_NOT_FOUND) {
printk(BIOS_INFO, "CBFS: Fall back to RO region for %s\n",
name);
return cbfs_boot_lookup(name, true, mdata, rdev);
}
if (err) {
if (err == CB_CBFS_NOT_FOUND)
printk(BIOS_WARNING, "CBFS: '%s' not found.\n", name);
else if (err == CB_CBFS_HASH_MISMATCH)
printk(BIOS_ERR, "CBFS ERROR: metadata hash mismatch!\n");
else
printk(BIOS_ERR,
"CBFS ERROR: error %d when looking up '%s'\n",
err, name);
return err;
}
if (rdev_chain(rdev, &cbd->rdev, data_offset, be32toh(mdata->h.len)))
return CB_ERR;
if (tspi_measure_cbfs_hook(rdev, name, be32toh(mdata->h.type)))
return CB_ERR;
return CB_SUCCESS;
}
int cbfs_boot_locate(struct cbfsf *fh, const char *name, uint32_t *type)
{
if (cbfs_boot_lookup(name, false, &fh->mdata, &fh->data))
return -1;
size_t msize = be32toh(fh->mdata.h.offset);
if (rdev_chain(&fh->metadata, &addrspace_32bit.rdev,
(uintptr_t)&fh->mdata, msize))
return -1;
if (type) {
if (!*type)
*type = be32toh(fh->mdata.h.type);
else if (*type != be32toh(fh->mdata.h.type))
return -1;
}
return 0;
}
static void *_cbfs_map(const char *name, size_t *size_out, bool force_ro)
{
struct region_device rdev;
union cbfs_mdata mdata;
if (cbfs_boot_lookup(name, force_ro, &mdata, &rdev))
return NULL;
if (size_out != NULL)
*size_out = region_device_sz(&rdev);
return rdev_mmap_full(&rdev);
}
void *cbfs_map(const char *name, size_t *size_out)
{
return _cbfs_map(name, size_out, false);
}
void *cbfs_ro_map(const char *name, size_t *size_out)
{
return _cbfs_map(name, size_out, true);
}
int cbfs_unmap(void *mapping)
{
/* This works because munmap() only works on the root rdev and never
cares about which chained subregion something was mapped from. */
return rdev_munmap(boot_device_ro(), mapping);
}
int cbfs_locate_file_in_region(struct cbfsf *fh, const char *region_name,
const char *name, uint32_t *type)
{
struct region_device rdev;
int ret = 0;
if (fmap_locate_area_as_rdev(region_name, &rdev)) {
LOG("%s region not found while looking for %s\n",
region_name, name);
return -1;
}
uint32_t dummy_type = 0;
if (!type)
type = &dummy_type;
ret = cbfs_locate(fh, &rdev, name, type);
if (!ret)
if (tspi_measure_cbfs_hook(&rdev, name, *type))
return -1;
return ret;
}
static inline bool fsps_env(void)
{
/* FSP-S is assumed to be loaded in ramstage. */
if (ENV_RAMSTAGE)
return true;
return false;
}
static inline bool fspm_env(void)
{
/* FSP-M is assumed to be loaded in romstage. */
if (ENV_ROMSTAGE)
return true;
return false;
}
static inline bool cbfs_lz4_enabled(void)
{
if (fsps_env() && CONFIG(FSP_COMPRESS_FSP_S_LZ4))
return true;
if (fspm_env() && CONFIG(FSP_COMPRESS_FSP_M_LZ4))
return true;
if ((ENV_BOOTBLOCK || ENV_SEPARATE_VERSTAGE) && !CONFIG(COMPRESS_PRERAM_STAGES))
return false;
return true;
}
static inline bool cbfs_lzma_enabled(void)
{
if (fsps_env() && CONFIG(FSP_COMPRESS_FSP_S_LZMA))
return true;
if (fspm_env() && CONFIG(FSP_COMPRESS_FSP_M_LZMA))
return true;
/* We assume here romstage and postcar are never compressed. */
if (ENV_BOOTBLOCK || ENV_SEPARATE_VERSTAGE)
return false;
if (ENV_ROMSTAGE && CONFIG(POSTCAR_STAGE))
return false;
if ((ENV_ROMSTAGE || ENV_POSTCAR)
&& !CONFIG(COMPRESS_RAMSTAGE))
return false;
return true;
}
size_t cbfs_load_and_decompress(const struct region_device *rdev, size_t offset,
size_t in_size, void *buffer, size_t buffer_size, uint32_t compression)
{
size_t out_size;
void *map;
switch (compression) {
case CBFS_COMPRESS_NONE:
if (buffer_size < in_size)
return 0;
if (rdev_readat(rdev, buffer, offset, in_size) != in_size)
return 0;
return in_size;
case CBFS_COMPRESS_LZ4:
if (!cbfs_lz4_enabled())
return 0;
/* cbfs_stage_load_and_decompress() takes care of in-place
lz4 decompression by setting up the rdev to be in memory. */
map = rdev_mmap(rdev, offset, in_size);
if (map == NULL)
return 0;
timestamp_add_now(TS_START_ULZ4F);
out_size = ulz4fn(map, in_size, buffer, buffer_size);
timestamp_add_now(TS_END_ULZ4F);
rdev_munmap(rdev, map);
return out_size;
case CBFS_COMPRESS_LZMA:
if (!cbfs_lzma_enabled())
return 0;
map = rdev_mmap(rdev, offset, in_size);
if (map == NULL)
return 0;
/* Note: timestamp not useful for memory-mapped media (x86) */
timestamp_add_now(TS_START_ULZMA);
out_size = ulzman(map, in_size, buffer, buffer_size);
timestamp_add_now(TS_END_ULZMA);
rdev_munmap(rdev, map);
return out_size;
default:
return 0;
}
}
static size_t cbfs_stage_load_and_decompress(const struct region_device *rdev,
size_t offset, size_t in_size, void *buffer, size_t buffer_size,
uint32_t compression)
{
struct region_device rdev_src;
if (compression == CBFS_COMPRESS_LZ4) {
if (!cbfs_lz4_enabled())
return 0;
/* Load the compressed image to the end of the available memory
* area for in-place decompression. It is the responsibility of
* the caller to ensure that buffer_size is large enough
* (see compression.h, guaranteed by cbfstool for stages). */
void *compr_start = buffer + buffer_size - in_size;
if (rdev_readat(rdev, compr_start, offset, in_size) != in_size)
return 0;
/* Create a region device backed by memory. */
rdev_chain(&rdev_src, &addrspace_32bit.rdev,
(uintptr_t)compr_start, in_size);
return cbfs_load_and_decompress(&rdev_src, 0, in_size, buffer,
buffer_size, compression);
}
/* All other algorithms can use the generic implementation. */
return cbfs_load_and_decompress(rdev, offset, in_size, buffer,
buffer_size, compression);
}
static inline int tohex4(unsigned int c)
{
return (c <= 9) ? (c + '0') : (c - 10 + 'a');
}
static void tohex8(unsigned int val, char *dest)
{
dest[0] = tohex4((val >> 4) & 0xf);
dest[1] = tohex4(val & 0xf);
}
static void tohex16(unsigned int val, char *dest)
{
dest[0] = tohex4(val >> 12);
dest[1] = tohex4((val >> 8) & 0xf);
dest[2] = tohex4((val >> 4) & 0xf);
dest[3] = tohex4(val & 0xf);
}
void *cbfs_boot_map_optionrom(uint16_t vendor, uint16_t device)
{
char name[17] = "pciXXXX,XXXX.rom";
tohex16(vendor, name + 3);
tohex16(device, name + 8);
return cbfs_map(name, NULL);
}
void *cbfs_boot_map_optionrom_revision(uint16_t vendor, uint16_t device, uint8_t rev)
{
char name[20] = "pciXXXX,XXXX,XX.rom";
tohex16(vendor, name + 3);
tohex16(device, name + 8);
tohex8(rev, name + 13);
return cbfs_map(name, NULL);
}
static size_t _cbfs_load(const char *name, void *buf, size_t buf_size,
bool force_ro)
{
struct region_device rdev;
union cbfs_mdata mdata;
if (cbfs_boot_lookup(name, force_ro, &mdata, &rdev))
return 0;
uint32_t compression = CBFS_COMPRESS_NONE;
const struct cbfs_file_attr_compression *attr = cbfs_find_attr(&mdata,
CBFS_FILE_ATTR_TAG_COMPRESSION, sizeof(*attr));
if (attr) {
compression = be32toh(attr->compression);
if (buf_size < be32toh(attr->decompressed_size))
return 0;
}
return cbfs_load_and_decompress(&rdev, 0, region_device_sz(&rdev),
buf, buf_size, compression);
}
size_t cbfs_load(const char *name, void *buf, size_t buf_size)
{
return _cbfs_load(name, buf, buf_size, false);
}
size_t cbfs_ro_load(const char *name, void *buf, size_t buf_size)
{
return _cbfs_load(name, buf, buf_size, true);
}
int cbfs_prog_stage_load(struct prog *pstage)
{
struct cbfs_stage stage;
uint8_t *load;
void *entry;
size_t fsize;
size_t foffset;
const struct region_device *fh = prog_rdev(pstage);
if (rdev_readat(fh, &stage, 0, sizeof(stage)) != sizeof(stage))
return -1;
fsize = region_device_sz(fh);
fsize -= sizeof(stage);
foffset = 0;
foffset += sizeof(stage);
/* cbfs_stage fields are written in little endian despite the other
cbfs data types being encoded in big endian. */
stage.compression = read_le32(&stage.compression);
stage.entry = read_le64(&stage.entry);
stage.load = read_le64(&stage.load);
stage.len = read_le32(&stage.len);
stage.memlen = read_le32(&stage.memlen);
assert(fsize == stage.len);
load = (void *)(uintptr_t)stage.load;
entry = (void *)(uintptr_t)stage.entry;
/* Hacky way to not load programs over read only media. The stages
* that would hit this path initialize themselves. */
if ((ENV_BOOTBLOCK || ENV_SEPARATE_VERSTAGE) &&
!CONFIG(NO_XIP_EARLY_STAGES) && CONFIG(BOOT_DEVICE_MEMORY_MAPPED)) {
void *mapping = rdev_mmap(fh, foffset, fsize);
rdev_munmap(fh, mapping);
if (mapping == load)
goto out;
}
fsize = cbfs_stage_load_and_decompress(fh, foffset, fsize, load,
stage.memlen, stage.compression);
if (!fsize)
return -1;
/* Clear area not covered by file. */
memset(&load[fsize], 0, stage.memlen - fsize);
prog_segment_loaded((uintptr_t)load, stage.memlen, SEG_FINAL);
out:
prog_set_area(pstage, load, stage.memlen);
prog_set_entry(pstage, entry, NULL);
return 0;
}
void cbfs_boot_device_find_mcache(struct cbfs_boot_device *cbd, uint32_t id)
{
if (CONFIG(NO_CBFS_MCACHE) || ENV_SMM)
return;
if (cbd->mcache_size)
return;
const struct cbmem_entry *entry;
if (cbmem_possibly_online() &&
(entry = cbmem_entry_find(id))) {
cbd->mcache = cbmem_entry_start(entry);
cbd->mcache_size = cbmem_entry_size(entry);
} else if (ENV_ROMSTAGE_OR_BEFORE) {
u8 *boundary = _ecbfs_mcache - REGION_SIZE(cbfs_mcache) *
CONFIG_CBFS_MCACHE_RW_PERCENTAGE / 100;
boundary = (u8 *)ALIGN_DOWN((uintptr_t)boundary,
CBFS_MCACHE_ALIGNMENT);
if (id == CBMEM_ID_CBFS_RO_MCACHE) {
cbd->mcache = _cbfs_mcache;
cbd->mcache_size = boundary - _cbfs_mcache;
} else if (id == CBMEM_ID_CBFS_RW_MCACHE) {
cbd->mcache = boundary;
cbd->mcache_size = _ecbfs_mcache - boundary;
}
}
}
cb_err_t cbfs_init_boot_device(const struct cbfs_boot_device *cbd,
struct vb2_hash *metadata_hash)
{
/* If we have an mcache, mcache_build() will also check mdata hash. */
if (!CONFIG(NO_CBFS_MCACHE) && !ENV_SMM && cbd->mcache_size > 0)
return cbfs_mcache_build(&cbd->rdev, cbd->mcache,
cbd->mcache_size, metadata_hash);
/* No mcache and no verification means we have nothing special to do. */
if (!CONFIG(CBFS_VERIFICATION) || !metadata_hash)
return CB_SUCCESS;
/* Verification only: use cbfs_walk() without a walker() function to
just run through the CBFS once, will return NOT_FOUND by default. */
cb_err_t err = cbfs_walk(&cbd->rdev, NULL, NULL, metadata_hash, 0);
if (err == CB_CBFS_NOT_FOUND)
err = CB_SUCCESS;
return err;
}
const struct cbfs_boot_device *cbfs_get_boot_device(bool force_ro)
{
static struct cbfs_boot_device ro;
/* Ensure we always init RO mcache, even if first file is from RW.
Otherwise it may not be available when needed in later stages. */
if (ENV_INITIAL_STAGE && !force_ro && !region_device_sz(&ro.rdev))
cbfs_get_boot_device(true);
if (!force_ro) {
const struct cbfs_boot_device *rw = vboot_get_cbfs_boot_device();
/* This will return NULL if vboot isn't enabled, didn't run yet
or decided to boot into recovery mode. */
if (rw)
return rw;
}
/* In rare cases post-RAM stages may run this before cbmem_initialize(),
so we can't lock in the result of find_mcache() on the first try and
should keep trying every time until an mcache is found. */
cbfs_boot_device_find_mcache(&ro, CBMEM_ID_CBFS_RO_MCACHE);
if (region_device_sz(&ro.rdev))
return &ro;
if (fmap_locate_area_as_rdev("COREBOOT", &ro.rdev))
die("Cannot locate primary CBFS");
if (ENV_INITIAL_STAGE) {
cb_err_t err = cbfs_init_boot_device(&ro, metadata_hash_get());
if (err == CB_CBFS_HASH_MISMATCH)
die("RO CBFS metadata hash verification failure");
else if (CONFIG(TOCTOU_SAFETY) && err == CB_CBFS_CACHE_FULL)
die("RO mcache overflow breaks TOCTOU safety!\n");
else if (err && err != CB_CBFS_CACHE_FULL)
die("RO CBFS initialization error: %d", err);
}
return &ro;
}
#if !CONFIG(NO_CBFS_MCACHE)
static void mcache_to_cbmem(const struct cbfs_boot_device *cbd, u32 cbmem_id)
{
if (!cbd)
return;
size_t real_size = cbfs_mcache_real_size(cbd->mcache, cbd->mcache_size);
void *cbmem_mcache = cbmem_add(cbmem_id, real_size);
if (!cbmem_mcache) {
printk(BIOS_ERR, "ERROR: Cannot allocate CBMEM mcache %#x (%#zx bytes)!\n",
cbmem_id, real_size);
return;
}
memcpy(cbmem_mcache, cbd->mcache, real_size);
}
static void cbfs_mcache_migrate(int unused)
{
mcache_to_cbmem(vboot_get_cbfs_boot_device(), CBMEM_ID_CBFS_RW_MCACHE);
mcache_to_cbmem(cbfs_get_boot_device(true), CBMEM_ID_CBFS_RO_MCACHE);
}
ROMSTAGE_CBMEM_INIT_HOOK(cbfs_mcache_migrate)
#endif