coreboot/src/lib/bootmem.c

267 lines
5.8 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#include <console/console.h>
#include <bootmem.h>
#include <cbmem.h>
#include <device/resource.h>
#include <stdlib.h>
#include <symbols.h>
#include <assert.h>
static int initialized;
static int table_written;
static struct memranges bootmem;
static struct memranges bootmem_os;
static int bootmem_is_initialized(void)
{
return initialized;
}
static int bootmem_memory_table_written(void)
{
return table_written;
}
/* Platform hook to add bootmem areas the platform / board controls. */
void __attribute__((weak)) bootmem_platform_add_ranges(void)
{
}
/* Convert bootmem tag to LB_MEM tag */
static uint32_t bootmem_to_lb_tag(const enum bootmem_type tag)
{
switch (tag) {
case BM_MEM_RAM:
return LB_MEM_RAM;
case BM_MEM_RESERVED:
return LB_MEM_RESERVED;
case BM_MEM_ACPI:
return LB_MEM_ACPI;
case BM_MEM_NVS:
return LB_MEM_NVS;
case BM_MEM_UNUSABLE:
return LB_MEM_UNUSABLE;
case BM_MEM_VENDOR_RSVD:
return LB_MEM_VENDOR_RSVD;
case BM_MEM_OPENSBI:
return LB_MEM_RESERVED;
case BM_MEM_BL31:
return LB_MEM_RESERVED;
case BM_MEM_TABLE:
return LB_MEM_TABLE;
default:
printk(BIOS_ERR, "ERROR: Unsupported tag %u\n", tag);
return LB_MEM_RESERVED;
}
}
static void bootmem_init(void)
{
const unsigned long cacheable = IORESOURCE_CACHEABLE;
const unsigned long reserved = IORESOURCE_RESERVE;
struct memranges *bm = &bootmem;
initialized = 1;
/*
* Fill the memory map out. The order of operations is important in
* that each overlapping range will take over the next. Therefore,
* add cacheable resources as RAM then add the reserved resources.
*/
memranges_init(bm, cacheable, cacheable, BM_MEM_RAM);
memranges_add_resources(bm, reserved, reserved, BM_MEM_RESERVED);
memranges_clone(&bootmem_os, bm);
/* Add memory used by CBMEM. */
cbmem_add_bootmem();
bootmem_add_range((uintptr_t)_stack, REGION_SIZE(stack),
BM_MEM_RAMSTAGE);
bootmem_add_range((uintptr_t)_program, REGION_SIZE(program),
BM_MEM_RAMSTAGE);
bootmem_arch_add_ranges();
bootmem_platform_add_ranges();
}
void bootmem_add_range(uint64_t start, uint64_t size,
const enum bootmem_type tag)
{
assert(tag > BM_MEM_FIRST && tag < BM_MEM_LAST);
assert(bootmem_is_initialized());
memranges_insert(&bootmem, start, size, tag);
if (tag <= BM_MEM_OS_CUTOFF) {
/* Can't change OS tables anymore after they are written out. */
assert(!bootmem_memory_table_written());
memranges_insert(&bootmem_os, start, size, tag);
};
}
void bootmem_write_memory_table(struct lb_memory *mem)
{
const struct range_entry *r;
struct lb_memory_range *lb_r;
lb_r = &mem->map[0];
bootmem_init();
bootmem_dump_ranges();
memranges_each_entry(r, &bootmem_os) {
lb_r->start = pack_lb64(range_entry_base(r));
lb_r->size = pack_lb64(range_entry_size(r));
lb_r->type = bootmem_to_lb_tag(range_entry_tag(r));
lb_r++;
mem->size += sizeof(struct lb_memory_range);
}
table_written = 1;
}
struct range_strings {
enum bootmem_type tag;
const char *str;
};
static const struct range_strings type_strings[] = {
{ BM_MEM_RAM, "RAM" },
{ BM_MEM_RESERVED, "RESERVED" },
{ BM_MEM_ACPI, "ACPI" },
{ BM_MEM_NVS, "NVS" },
{ BM_MEM_UNUSABLE, "UNUSABLE" },
{ BM_MEM_VENDOR_RSVD, "VENDOR RESERVED" },
{ BM_MEM_BL31, "BL31" },
{ BM_MEM_OPENSBI, "OPENSBI" },
{ BM_MEM_TABLE, "CONFIGURATION TABLES" },
{ BM_MEM_RAMSTAGE, "RAMSTAGE" },
{ BM_MEM_PAYLOAD, "PAYLOAD" },
};
static const char *bootmem_range_string(const enum bootmem_type tag)
{
int i;
for (i = 0; i < ARRAY_SIZE(type_strings); i++) {
if (type_strings[i].tag == tag)
return type_strings[i].str;
}
return "UNKNOWN!";
}
void bootmem_dump_ranges(void)
{
int i;
const struct range_entry *r;
i = 0;
memranges_each_entry(r, &bootmem) {
printk(BIOS_DEBUG, "%2d. %016llx-%016llx: %s\n",
i, range_entry_base(r), range_entry_end(r) - 1,
bootmem_range_string(range_entry_tag(r)));
i++;
}
}
bool bootmem_walk_os_mem(range_action_t action, void *arg)
{
const struct range_entry *r;
assert(bootmem_is_initialized());
memranges_each_entry(r, &bootmem_os) {
if (!action(r, arg))
return true;
}
return false;
}
bool bootmem_walk(range_action_t action, void *arg)
{
const struct range_entry *r;
assert(bootmem_is_initialized());
memranges_each_entry(r, &bootmem) {
if (!action(r, arg))
return true;
}
return false;
}
int bootmem_region_targets_type(uint64_t start, uint64_t size,
enum bootmem_type dest_type)
{
const struct range_entry *r;
uint64_t end = start + size;
memranges_each_entry(r, &bootmem) {
/* All further bootmem entries are beyond this range. */
if (end <= range_entry_base(r))
break;
if (start >= range_entry_base(r) && end <= range_entry_end(r)) {
if (range_entry_tag(r) == dest_type)
return 1;
}
}
return 0;
}
void *bootmem_allocate_buffer(size_t size)
{
const struct range_entry *r;
const struct range_entry *region;
/* All allocated buffers fall below the 32-bit boundary. */
const resource_t max_addr = 1ULL << 32;
resource_t begin;
resource_t end;
if (!bootmem_is_initialized()) {
printk(BIOS_ERR, "%s: lib uninitialized!\n", __func__);
return NULL;
}
/* 4KiB alignment. */
size = ALIGN(size, 4096);
region = NULL;
memranges_each_entry(r, &bootmem) {
if (range_entry_base(r) >= max_addr)
break;
if (range_entry_size(r) < size)
continue;
if (range_entry_tag(r) != BM_MEM_RAM)
continue;
end = range_entry_end(r);
if (end > max_addr)
end = max_addr;
if ((end - range_entry_base(r)) < size)
continue;
region = r;
}
if (region == NULL)
return NULL;
/* region now points to the highest usable region for the given size. */
end = range_entry_end(region);
if (end > max_addr)
end = max_addr;
begin = end - size;
/* Mark buffer as unusable for future buffer use. */
bootmem_add_range(begin, size, BM_MEM_PAYLOAD);
return (void *)(uintptr_t)begin;
}