coreboot/src/soc/intel/common/block/smm/smihandler.c

641 lines
15 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#include <arch/hlt.h>
#include <arch/io.h>
#include <device/pci_ops.h>
#include <console/console.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/smm.h>
#include <cpu/intel/em64t100_save_state.h>
#include <cpu/intel/em64t101_save_state.h>
#include <delay.h>
#include <device/pci_def.h>
#include <elog.h>
#include <intelblocks/fast_spi.h>
#include <intelblocks/pmclib.h>
#include <intelblocks/smihandler.h>
#include <intelblocks/tco.h>
#include <intelblocks/uart.h>
#include <smmstore.h>
#include <soc/nvs.h>
#include <soc/pci_devs.h>
#include <soc/pm.h>
#include <soc/gpio.h>
#include <soc/iomap.h>
#include <soc/smbus.h>
#include <spi-generic.h>
#include <stdint.h>
/* SoC overrides. */
__weak const struct smm_save_state_ops *get_smm_save_state_ops(void)
{
return &em64t101_smm_ops;
}
/* Specific SOC SMI handler during ramstage finalize phase */
__weak void smihandler_soc_at_finalize(void)
{
return;
}
__weak int smihandler_soc_disable_busmaster(pci_devfn_t dev)
{
return 1;
}
/*
* Needs to implement the mechanism to know if an illegal attempt
* has been made to write to the BIOS area.
*/
static void smihandler_soc_check_illegal_access(
uint32_t tco_sts)
{
if (!((tco_sts & (1 << 8)) && CONFIG(SPI_FLASH_SMM)
&& fast_spi_wpd_status()))
return;
/*
* BWE is RW, so the SMI was caused by a
* write to BWE, not by a write to the BIOS
*
* This is the place where we notice someone
* is trying to tinker with the BIOS. We are
* trying to be nice and just ignore it. A more
* resolute answer would be to power down the
* box.
*/
printk(BIOS_DEBUG, "Switching back to RO\n");
fast_spi_enable_wp();
}
/* Mainboard overrides. */
__weak void mainboard_smi_gpi_handler(
const struct gpi_status *sts)
{
return;
}
__weak void mainboard_smi_espi_handler(void)
{
return;
}
/* Common Functions */
static void *find_save_state(const struct smm_save_state_ops *save_state_ops,
int cmd)
{
int node;
void *state = NULL;
uint32_t io_misc_info;
uint8_t reg_al;
/* Check all nodes looking for the one that issued the IO */
for (node = 0; node < CONFIG_MAX_CPUS; node++) {
state = smm_get_save_state(node);
io_misc_info = save_state_ops->get_io_misc_info(state);
/* Check for Synchronous IO (bit0==1) */
if (!(io_misc_info & (1 << 0)))
continue;
/* Make sure it was a write (bit4==0) */
if (io_misc_info & (1 << 4))
continue;
/* Check for APMC IO port */
if (((io_misc_info >> 16) & 0xff) != APM_CNT)
continue;
/* Check AL against the requested command */
reg_al = save_state_ops->get_reg(state, RAX);
if (reg_al != cmd)
continue;
break;
}
return state;
}
/* Inherited from cpu/x86/smm.h resulting in a different signature */
void southbridge_smi_set_eos(void)
{
pmc_enable_smi(EOS);
}
static void busmaster_disable_on_bus(int bus)
{
int slot, func;
unsigned int val;
unsigned char hdr;
for (slot = 0; slot < 0x20; slot++) {
for (func = 0; func < 8; func++) {
u16 reg16;
pci_devfn_t dev = PCI_DEV(bus, slot, func);
if (!smihandler_soc_disable_busmaster(dev))
continue;
val = pci_read_config32(dev, PCI_VENDOR_ID);
if (val == 0xffffffff || val == 0x00000000 ||
val == 0x0000ffff || val == 0xffff0000)
continue;
/* Disable Bus Mastering for this one device */
reg16 = pci_read_config16(dev, PCI_COMMAND);
reg16 &= ~PCI_COMMAND_MASTER;
pci_write_config16(dev, PCI_COMMAND, reg16);
/* If it's not a bridge, move on. */
hdr = pci_read_config8(dev, PCI_HEADER_TYPE);
hdr &= 0x7f;
if (hdr != PCI_HEADER_TYPE_BRIDGE &&
hdr != PCI_HEADER_TYPE_CARDBUS)
continue;
/*
* If secondary bus is equal to current bus bypass
* the bridge because it's likely unconfigured and
* would cause infinite recursion.
*/
int secbus = pci_read_config8(dev, PCI_SECONDARY_BUS);
if (secbus == bus)
continue;
busmaster_disable_on_bus(secbus);
}
}
}
void smihandler_southbridge_sleep(
const struct smm_save_state_ops *save_state_ops)
{
uint32_t reg32;
uint8_t slp_typ;
/* First, disable further SMIs */
pmc_disable_smi(SLP_SMI_EN);
/* Figure out SLP_TYP */
reg32 = inl(ACPI_BASE_ADDRESS + PM1_CNT);
printk(BIOS_SPEW, "SMI#: SLP = 0x%08x\n", reg32);
slp_typ = acpi_sleep_from_pm1(reg32);
/* Do any mainboard sleep handling */
mainboard_smi_sleep(slp_typ);
/* Log S3, S4, and S5 entry */
if (slp_typ >= ACPI_S3)
elog_gsmi_add_event_byte(ELOG_TYPE_ACPI_ENTER, slp_typ);
/* Clear pending GPE events */
pmc_clear_all_gpe_status();
/* Next, do the deed. */
switch (slp_typ) {
case ACPI_S0:
printk(BIOS_DEBUG, "SMI#: Entering S0 (On)\n");
break;
case ACPI_S3:
printk(BIOS_DEBUG, "SMI#: Entering S3 (Suspend-To-RAM)\n");
gnvs->uior = uart_is_controller_initialized();
/* Invalidate the cache before going to S3 */
wbinvd();
break;
case ACPI_S4:
printk(BIOS_DEBUG, "SMI#: Entering S4 (Suspend-To-Disk)\n");
break;
case ACPI_S5:
printk(BIOS_DEBUG, "SMI#: Entering S5 (Soft Power off)\n");
/* Disable all GPE */
pmc_disable_all_gpe();
/* Set which state system will be after power reapplied */
pmc_set_power_failure_state(false);
/* also iterates over all bridges on bus 0 */
busmaster_disable_on_bus(0);
/*
* Some platforms (e.g. Chromebooks) have observed race between
* SLP SMI and PWRBTN SMI because of the way these SMIs are
* triggered on power button press. Allow adding a delay before
* triggering sleep enable for S5, so that power button
* interrupt does not result into immediate wake.
*/
mdelay(CONFIG_SOC_INTEL_COMMON_BLOCK_SMM_S5_DELAY_MS);
/*
* Ensure any pending power button status bits are cleared as
* the system is entering S5 and doesn't want to be woken up
* right away from older power button events.
*/
pmc_clear_pm1_status();
break;
default:
printk(BIOS_DEBUG, "SMI#: ERROR: SLP_TYP reserved\n");
break;
}
/* Tri-state specific GPIOS to avoid leakage during S3/S5 */
/*
* Write back to the SLP register to cause the originally intended
* event again. We need to set BIT13 (SLP_EN) though to make the
* sleep happen.
*/
pmc_enable_pm1_control(SLP_EN);
/* Make sure to stop executing code here for S3/S4/S5 */
if (slp_typ >= ACPI_S3)
hlt();
/*
* In most sleep states, the code flow of this function ends at
* the line above. However, if we entered sleep state S1 and wake
* up again, we will continue to execute code in this function.
*/
if (pmc_read_pm1_control() & SCI_EN) {
/* The OS is not an ACPI OS, so we set the state to S0 */
pmc_disable_pm1_control(SLP_EN | SLP_TYP);
}
}
static void southbridge_smi_gsmi(
const struct smm_save_state_ops *save_state_ops)
{
u8 sub_command, ret;
void *io_smi = NULL;
uint32_t reg_ebx;
io_smi = find_save_state(save_state_ops, APM_CNT_ELOG_GSMI);
if (!io_smi)
return;
/* Command and return value in EAX */
sub_command = (save_state_ops->get_reg(io_smi, RAX) >> 8)
& 0xff;
/* Parameter buffer in EBX */
reg_ebx = save_state_ops->get_reg(io_smi, RBX);
/* drivers/elog/gsmi.c */
ret = gsmi_exec(sub_command, &reg_ebx);
save_state_ops->set_reg(io_smi, RAX, ret);
}
static void southbridge_smi_store(
const struct smm_save_state_ops *save_state_ops)
{
u8 sub_command, ret;
void *io_smi;
uint32_t reg_ebx;
io_smi = find_save_state(save_state_ops, APM_CNT_SMMSTORE);
if (!io_smi)
return;
/* Command and return value in EAX */
sub_command = (save_state_ops->get_reg(io_smi, RAX) >> 8) & 0xff;
/* Parameter buffer in EBX */
reg_ebx = save_state_ops->get_reg(io_smi, RBX);
/* drivers/smmstore/smi.c */
ret = smmstore_exec(sub_command, (void *)reg_ebx);
save_state_ops->set_reg(io_smi, RAX, ret);
}
static void finalize(void)
{
static int finalize_done;
if (finalize_done) {
printk(BIOS_DEBUG, "SMM already finalized.\n");
return;
}
finalize_done = 1;
if (CONFIG(SPI_FLASH_SMM))
/* Re-init SPI driver to handle locked BAR */
fast_spi_init();
/* Specific SOC SMI handler during ramstage finalize phase */
smihandler_soc_at_finalize();
}
void smihandler_southbridge_apmc(
const struct smm_save_state_ops *save_state_ops)
{
uint8_t reg8;
void *state = NULL;
static int smm_initialized = 0;
/* Emulate B2 register as the FADT / Linux expects it */
reg8 = inb(APM_CNT);
switch (reg8) {
case APM_CNT_CST_CONTROL:
/*
* Calling this function seems to cause
* some kind of race condition in Linux
* and causes a kernel oops
*/
printk(BIOS_DEBUG, "C-state control\n");
break;
case APM_CNT_PST_CONTROL:
/*
* Calling this function seems to cause
* some kind of race condition in Linux
* and causes a kernel oops
*/
printk(BIOS_DEBUG, "P-state control\n");
break;
case APM_CNT_ACPI_DISABLE:
pmc_disable_pm1_control(SCI_EN);
printk(BIOS_DEBUG, "SMI#: ACPI disabled.\n");
break;
case APM_CNT_ACPI_ENABLE:
pmc_enable_pm1_control(SCI_EN);
printk(BIOS_DEBUG, "SMI#: ACPI enabled.\n");
break;
case APM_CNT_GNVS_UPDATE:
if (smm_initialized) {
printk(BIOS_DEBUG,
"SMI#: SMM structures already initialized!\n");
return;
}
state = find_save_state(save_state_ops, reg8);
if (state) {
/* EBX in the state save contains the GNVS pointer */
uint32_t reg_ebx = save_state_ops->get_reg(state, RBX);
gnvs = (struct global_nvs *)(uintptr_t)reg_ebx;
smm_initialized = 1;
printk(BIOS_DEBUG, "SMI#: Setting GNVS to %p\n", gnvs);
}
break;
case APM_CNT_ELOG_GSMI:
if (CONFIG(ELOG_GSMI))
southbridge_smi_gsmi(save_state_ops);
break;
case APM_CNT_SMMSTORE:
if (CONFIG(SMMSTORE))
southbridge_smi_store(save_state_ops);
break;
case APM_CNT_FINALIZE:
finalize();
break;
}
mainboard_smi_apmc(reg8);
}
void smihandler_southbridge_pm1(
const struct smm_save_state_ops *save_state_ops)
{
uint16_t pm1_sts = pmc_clear_pm1_status();
u16 pm1_en = pmc_read_pm1_enable();
/*
* While OSPM is not active, poweroff immediately
* on a power button event.
*/
if ((pm1_sts & PWRBTN_STS) && (pm1_en & PWRBTN_EN)) {
/* power button pressed */
elog_gsmi_add_event(ELOG_TYPE_POWER_BUTTON);
pmc_disable_pm1_control(-1UL);
pmc_enable_pm1_control(SLP_EN | (SLP_TYP_S5 << SLP_TYP_SHIFT));
}
}
void smihandler_southbridge_gpe0(
const struct smm_save_state_ops *save_state_ops)
{
pmc_clear_all_gpe_status();
}
void smihandler_southbridge_tco(
const struct smm_save_state_ops *save_state_ops)
{
uint32_t tco_sts = pmc_clear_tco_status();
/* Any TCO event? */
if (!tco_sts)
return;
smihandler_soc_check_illegal_access(tco_sts);
if (tco_sts & TCO_TIMEOUT) { /* TIMEOUT */
/* Handle TCO timeout */
printk(BIOS_DEBUG, "TCO Timeout.\n");
}
if (tco_sts & (TCO_INTRD_DET << 16)) { /* INTRUDER# assertion */
/*
* Handle intrusion event
* If we ever get here, probably the case has been opened.
*/
printk(BIOS_CRIT, "Case intrusion detected.\n");
}
}
void smihandler_southbridge_periodic(
const struct smm_save_state_ops *save_state_ops)
{
uint32_t reg32;
reg32 = pmc_get_smi_en();
/* Are periodic SMIs enabled? */
if ((reg32 & PERIODIC_EN) == 0)
return;
printk(BIOS_DEBUG, "Periodic SMI.\n");
}
void smihandler_southbridge_gpi(
const struct smm_save_state_ops *save_state_ops)
{
struct gpi_status smi_sts;
gpi_clear_get_smi_status(&smi_sts);
mainboard_smi_gpi_handler(&smi_sts);
/* Clear again after mainboard handler */
gpi_clear_get_smi_status(&smi_sts);
}
void smihandler_southbridge_espi(
const struct smm_save_state_ops *save_state_ops)
{
mainboard_smi_espi_handler();
}
/* SMI handlers that should be serviced in SCI mode too. */
static uint32_t smihandler_soc_get_sci_mask(void)
{
uint32_t sci_mask =
SMI_HANDLER_SCI_EN(APM_STS_BIT) |
SMI_HANDLER_SCI_EN(SMI_ON_SLP_EN_STS_BIT);
return sci_mask;
}
void southbridge_smi_handler(void)
{
int i;
uint32_t smi_sts;
const struct smm_save_state_ops *save_state_ops;
/*
* We need to clear the SMI status registers, or we won't see what's
* happening in the following calls.
*/
smi_sts = pmc_clear_smi_status();
/*
* In SCI mode, execute only those SMI handlers that have
* declared themselves as available for service in that mode
* using smihandler_soc_get_sci_mask.
*/
if (pmc_read_pm1_control() & SCI_EN)
smi_sts &= smihandler_soc_get_sci_mask();
if (!smi_sts)
return;
save_state_ops = get_smm_save_state_ops();
/* Call SMI sub handler for each of the status bits */
for (i = 0; i < ARRAY_SIZE(southbridge_smi); i++) {
if (!(smi_sts & (1 << i)))
continue;
if (southbridge_smi[i] != NULL) {
southbridge_smi[i](save_state_ops);
} else {
printk(BIOS_DEBUG,
"SMI_STS[%d] occurred, but no "
"handler available.\n", i);
}
}
}
static uint32_t em64t100_smm_save_state_get_io_misc_info(void *state)
{
em64t100_smm_state_save_area_t *smm_state = state;
return smm_state->io_misc_info;
}
static uint64_t em64t100_smm_save_state_get_reg(void *state, enum smm_reg reg)
{
uintptr_t value = 0;
em64t100_smm_state_save_area_t *smm_state = state;
switch (reg) {
case RAX:
value = smm_state->rax;
break;
case RBX:
value = smm_state->rbx;
break;
case RCX:
value = smm_state->rcx;
break;
case RDX:
value = smm_state->rdx;
break;
default:
break;
}
return value;
}
static void em64t100_smm_save_state_set_reg(void *state, enum smm_reg reg,
uint64_t val)
{
em64t100_smm_state_save_area_t *smm_state = state;
switch (reg) {
case RAX:
smm_state->rax = val;
break;
case RBX:
smm_state->rbx = val;
break;
case RCX:
smm_state->rcx = val;
break;
case RDX:
smm_state->rdx = val;
break;
default:
break;
}
}
static uint32_t em64t101_smm_save_state_get_io_misc_info(void *state)
{
em64t101_smm_state_save_area_t *smm_state = state;
return smm_state->io_misc_info;
}
static uint64_t em64t101_smm_save_state_get_reg(void *state, enum smm_reg reg)
{
uintptr_t value = 0;
em64t101_smm_state_save_area_t *smm_state = state;
switch (reg) {
case RAX:
value = smm_state->rax;
break;
case RBX:
value = smm_state->rbx;
break;
case RCX:
value = smm_state->rcx;
break;
case RDX:
value = smm_state->rdx;
break;
default:
break;
}
return value;
}
static void em64t101_smm_save_state_set_reg(void *state, enum smm_reg reg,
uint64_t val)
{
em64t101_smm_state_save_area_t *smm_state = state;
switch (reg) {
case RAX:
smm_state->rax = val;
break;
case RBX:
smm_state->rbx = val;
break;
case RCX:
smm_state->rcx = val;
break;
case RDX:
smm_state->rdx = val;
break;
default:
break;
}
}
const struct smm_save_state_ops em64t100_smm_ops = {
.get_io_misc_info = em64t100_smm_save_state_get_io_misc_info,
.get_reg = em64t100_smm_save_state_get_reg,
.set_reg = em64t100_smm_save_state_set_reg,
};
const struct smm_save_state_ops em64t101_smm_ops = {
.get_io_misc_info = em64t101_smm_save_state_get_io_misc_info,
.get_reg = em64t101_smm_save_state_get_reg,
.set_reg = em64t101_smm_save_state_set_reg,
};