coreboot/src/northbridge/intel/haswell/northbridge.c

601 lines
17 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#include <commonlib/helpers.h>
#include <console/console.h>
#include <acpi/acpi.h>
#include <stdint.h>
#include <delay.h>
#include <cpu/intel/haswell/haswell.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_def.h>
#include <device/pci_ids.h>
#include <device/pci_ops.h>
#include <boot/tables.h>
#include <security/intel/txt/txt_register.h>
#include <southbridge/intel/lynxpoint/pch.h>
#include "chip.h"
#include "haswell.h"
static const char *northbridge_acpi_name(const struct device *dev)
{
if (dev->path.type == DEVICE_PATH_DOMAIN)
return "PCI0";
if (dev->path.type != DEVICE_PATH_PCI || dev->bus->secondary != 0)
return NULL;
switch (dev->path.pci.devfn) {
case PCI_DEVFN(0, 0):
return "MCHC";
}
return NULL;
}
/*
* TODO: We could determine how many PCIe busses we need in the bar.
* For now, that number is hardcoded to a max of 64.
*/
static struct device_operations pci_domain_ops = {
.read_resources = pci_domain_read_resources,
.set_resources = pci_domain_set_resources,
.scan_bus = pci_domain_scan_bus,
.acpi_name = northbridge_acpi_name,
.write_acpi_tables = northbridge_write_acpi_tables,
};
static int get_bar(struct device *dev, unsigned int index, u32 *base, u32 *len)
{
u32 bar = pci_read_config32(dev, index);
/* If not enabled don't report it */
if (!(bar & 0x1))
return 0;
/* Knock down the enable bit */
*base = bar & ~1;
return 1;
}
/*
* There are special BARs that actually are programmed in the MCHBAR. These Intel special
* features, but they do consume resources that need to be accounted for.
*/
static int get_bar_in_mchbar(struct device *dev, unsigned int index, u32 *base, u32 *len)
{
u32 bar = MCHBAR32(index);
/* If not enabled don't report it */
if (!(bar & 0x1))
return 0;
/* Knock down the enable bit */
*base = bar & ~1;
return 1;
}
struct fixed_mmio_descriptor {
unsigned int index;
u32 size;
int (*get_resource)(struct device *dev, unsigned int index, u32 *base, u32 *size);
const char *description;
};
#define SIZE_KB(x) ((x) * 1024)
struct fixed_mmio_descriptor mc_fixed_resources[] = {
{ MCHBAR, SIZE_KB(32), get_bar, "MCHBAR" },
{ DMIBAR, SIZE_KB(4), get_bar, "DMIBAR" },
{ EPBAR, SIZE_KB(4), get_bar, "EPBAR" },
{ GDXCBAR, SIZE_KB(4), get_bar_in_mchbar, "GDXCBAR" },
{ EDRAMBAR, SIZE_KB(16), get_bar_in_mchbar, "EDRAMBAR" },
};
#undef SIZE_KB
/* Add all known fixed MMIO ranges that hang off the host bridge/memory controller device. */
static void mc_add_fixed_mmio_resources(struct device *dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(mc_fixed_resources); i++) {
u32 base;
u32 size;
struct resource *resource;
unsigned int index;
size = mc_fixed_resources[i].size;
index = mc_fixed_resources[i].index;
if (!mc_fixed_resources[i].get_resource(dev, index, &base, &size))
continue;
resource = new_resource(dev, mc_fixed_resources[i].index);
resource->flags = IORESOURCE_MEM | IORESOURCE_FIXED | IORESOURCE_STORED |
IORESOURCE_RESERVE | IORESOURCE_ASSIGNED;
resource->base = base;
resource->size = size;
printk(BIOS_DEBUG, "%s: Adding %s @ %x 0x%08lx-0x%08lx.\n",
__func__, mc_fixed_resources[i].description, index,
(unsigned long)base, (unsigned long)(base + size - 1));
}
mmconf_resource(dev, PCIEXBAR);
}
/*
* Host Memory Map:
*
* +--------------------------+ TOUUD
* | |
* +--------------------------+ 4GiB
* | PCI Address Space |
* +--------------------------+ TOLUD (also maps into MC address space)
* | iGD |
* +--------------------------+ BDSM
* | GTT |
* +--------------------------+ BGSM
* | TSEG |
* +--------------------------+ TSEGMB
* | DPR |
* +--------------------------+ (DPR top - DPR size)
* | Usage DRAM |
* +--------------------------+ 0
*
* Some of the base registers above can be equal, making the size of the regions within 0.
* This is because the memory controller internally subtracts the base registers from each
* other to determine sizes of the regions. In other words, the memory map regions are always
* in a fixed order, no matter what sizes they have.
*/
struct map_entry {
int reg;
int is_64_bit;
int is_limit;
const char *description;
};
static void read_map_entry(struct device *dev, struct map_entry *entry, uint64_t *result)
{
uint64_t value;
uint64_t mask;
/* All registers have a 1MiB granularity */
mask = ((1ULL << 20) - 1);
mask = ~mask;
value = 0;
if (entry->is_64_bit) {
value = pci_read_config32(dev, entry->reg + 4);
value <<= 32;
}
value |= pci_read_config32(dev, entry->reg);
value &= mask;
if (entry->is_limit)
value |= ~mask;
*result = value;
}
#define MAP_ENTRY(reg_, is_64_, is_limit_, desc_) \
{ \
.reg = reg_, \
.is_64_bit = is_64_, \
.is_limit = is_limit_, \
.description = desc_, \
}
#define MAP_ENTRY_BASE_32(reg_, desc_) MAP_ENTRY(reg_, 0, 0, desc_)
#define MAP_ENTRY_BASE_64(reg_, desc_) MAP_ENTRY(reg_, 1, 0, desc_)
#define MAP_ENTRY_LIMIT_64(reg_, desc_) MAP_ENTRY(reg_, 1, 1, desc_)
enum {
TOM_REG,
TOUUD_REG,
MESEG_BASE_REG,
MESEG_LIMIT_REG,
REMAP_BASE_REG,
REMAP_LIMIT_REG,
TOLUD_REG,
BGSM_REG,
BDSM_REG,
TSEG_REG,
/* Must be last */
NUM_MAP_ENTRIES,
};
static struct map_entry memory_map[NUM_MAP_ENTRIES] = {
[TOM_REG] = MAP_ENTRY_BASE_64(TOM, "TOM"),
[TOUUD_REG] = MAP_ENTRY_BASE_64(TOUUD, "TOUUD"),
[MESEG_BASE_REG] = MAP_ENTRY_BASE_64(MESEG_BASE, "MESEG_BASE"),
[MESEG_LIMIT_REG] = MAP_ENTRY_LIMIT_64(MESEG_LIMIT, "MESEG_LIMIT"),
[REMAP_BASE_REG] = MAP_ENTRY_BASE_64(REMAPBASE, "REMAP_BASE"),
[REMAP_LIMIT_REG] = MAP_ENTRY_LIMIT_64(REMAPLIMIT, "REMAP_LIMIT"),
[TOLUD_REG] = MAP_ENTRY_BASE_32(TOLUD, "TOLUD"),
[BDSM_REG] = MAP_ENTRY_BASE_32(BDSM, "BDSM"),
[BGSM_REG] = MAP_ENTRY_BASE_32(BGSM, "BGSM"),
[TSEG_REG] = MAP_ENTRY_BASE_32(TSEG, "TSEGMB"),
};
static void mc_read_map_entries(struct device *dev, uint64_t *values)
{
int i;
for (i = 0; i < NUM_MAP_ENTRIES; i++) {
read_map_entry(dev, &memory_map[i], &values[i]);
}
}
static void mc_report_map_entries(struct device *dev, uint64_t *values)
{
int i;
for (i = 0; i < NUM_MAP_ENTRIES; i++) {
printk(BIOS_DEBUG, "MC MAP: %s: 0x%llx\n",
memory_map[i].description, values[i]);
}
/* One can validate the BDSM and BGSM against the GGC */
printk(BIOS_DEBUG, "MC MAP: GGC: 0x%x\n", pci_read_config16(dev, GGC));
}
static void mc_add_dram_resources(struct device *dev, int *resource_cnt)
{
unsigned long base_k, size_k, touud_k, index;
struct resource *resource;
uint64_t mc_values[NUM_MAP_ENTRIES];
/* Read in the MAP registers and report their values */
mc_read_map_entries(dev, &mc_values[0]);
mc_report_map_entries(dev, &mc_values[0]);
/* The DPR register is special */
const union dpr_register dpr = {
.raw = pci_read_config32(dev, DPR),
};
printk(BIOS_DEBUG, "MC MAP: DPR: 0x%x\n", dpr.raw);
/*
* These are the host memory ranges that should be added:
* - 0 -> 0xa0000: cacheable
* - 0xc0000 -> TSEG: cacheable
* - TSEG -> BGSM: cacheable with standard MTRRs and reserved
* - BGSM -> TOLUD: not cacheable with standard MTRRs and reserved
* - 4GiB -> TOUUD: cacheable
*
* The default SMRAM space is reserved so that the range doesn't have to be saved
* during S3 Resume. Once marked reserved the OS cannot use the memory. This is a
* bit of an odd place to reserve the region, but the CPU devices don't have
* dev_ops->read_resources() called on them.
*
* The range 0xa0000 -> 0xc0000 does not have any resources associated with it to
* handle legacy VGA memory. If this range is not omitted the mtrr code will setup
* the area as cacheable, causing VGA access to not work.
*
* The TSEG region is mapped as cacheable so that one can perform SMRAM relocation
* faster. Once the SMRR is enabled, the SMRR takes precedence over the existing
* MTRRs covering this region.
*
* It should be noted that cacheable entry types need to be added in order. The reason
* is that the current MTRR code assumes this and falls over itself if it isn't.
*
* The resource index starts low and should not meet or exceed PCI_BASE_ADDRESS_0.
*/
index = *resource_cnt;
/* 0 - > 0xa0000 */
base_k = 0;
size_k = (0xa0000 >> 10) - base_k;
ram_resource(dev, index++, base_k, size_k);
/* 0xc0000 -> DPR base */
base_k = 0xc0000 >> 10;
size_k = (unsigned long)(mc_values[TSEG_REG] >> 10) - (base_k + dpr.size);
ram_resource(dev, index++, base_k, size_k);
/* DPR base -> TSEG */
if (dpr.size) {
resource = new_resource(dev, index++);
resource->base = (dpr.top - dpr.size) * MiB;
resource->size = dpr.size * MiB;
resource->flags = IORESOURCE_MEM | IORESOURCE_STORED | IORESOURCE_CACHEABLE |
IORESOURCE_RESERVE | IORESOURCE_ASSIGNED | IORESOURCE_FIXED;
}
/* TSEG -> BGSM */
resource = new_resource(dev, index++);
resource->base = mc_values[TSEG_REG];
resource->size = mc_values[BGSM_REG] - resource->base;
resource->flags = IORESOURCE_MEM | IORESOURCE_FIXED | IORESOURCE_STORED |
IORESOURCE_RESERVE | IORESOURCE_ASSIGNED | IORESOURCE_CACHEABLE;
/* BGSM -> TOLUD. If the IGD is disabled, BGSM can equal TOLUD. */
if (mc_values[BGSM_REG] != mc_values[TOLUD_REG]) {
resource = new_resource(dev, index++);
resource->base = mc_values[BGSM_REG];
resource->size = mc_values[TOLUD_REG] - resource->base;
resource->flags = IORESOURCE_MEM | IORESOURCE_FIXED | IORESOURCE_STORED |
IORESOURCE_RESERVE | IORESOURCE_ASSIGNED;
}
/* 4GiB -> TOUUD */
base_k = 4096 * 1024; /* 4GiB */
touud_k = mc_values[TOUUD_REG] >> 10;
size_k = touud_k - base_k;
if (touud_k > base_k)
ram_resource(dev, index++, base_k, size_k);
/* Reserve everything between A segment and 1MB:
*
* 0xa0000 - 0xbffff: Legacy VGA
* 0xc0000 - 0xfffff: RAM
*/
mmio_resource(dev, index++, (0xa0000 >> 10), (0xc0000 - 0xa0000) >> 10);
reserved_ram_resource(dev, index++, (0xc0000 >> 10), (0x100000 - 0xc0000) >> 10);
*resource_cnt = index;
}
static void mc_read_resources(struct device *dev)
{
int index = 0;
const bool vtd_capable = !(pci_read_config32(dev, CAPID0_A) & VTD_DISABLE);
/* Read standard PCI resources */
pci_dev_read_resources(dev);
/* Add all fixed MMIO resources */
mc_add_fixed_mmio_resources(dev);
/* Add VT-d MMIO resources, if capable */
if (vtd_capable) {
mmio_resource(dev, index++, GFXVT_BASE_ADDRESS / KiB, GFXVT_BASE_SIZE / KiB);
mmio_resource(dev, index++, VTVC0_BASE_ADDRESS / KiB, VTVC0_BASE_SIZE / KiB);
}
/* Calculate and add DRAM resources */
mc_add_dram_resources(dev, &index);
}
/*
* The Mini-HD audio device is disabled whenever the IGD is. This is because it provides
* audio over the integrated graphics port(s), which requires the IGD to be functional.
*/
static void disable_devices(void)
{
static const struct {
const unsigned int devfn;
const u32 mask;
const char *const name;
} nb_devs[] = {
{ PCI_DEVFN(1, 2), DEVEN_D1F2EN, "PEG12" },
{ PCI_DEVFN(1, 1), DEVEN_D1F1EN, "PEG11" },
{ PCI_DEVFN(1, 0), DEVEN_D1F0EN, "PEG10" },
{ PCI_DEVFN(2, 0), DEVEN_D2EN | DEVEN_D3EN, "IGD" },
{ PCI_DEVFN(3, 0), DEVEN_D3EN, "Mini-HD audio" },
{ PCI_DEVFN(4, 0), DEVEN_D4EN, "\"device 4\"" },
{ PCI_DEVFN(7, 0), DEVEN_D7EN, "\"device 7\"" },
};
struct device *host_dev = pcidev_on_root(0, 0);
u32 deven;
size_t i;
if (!host_dev)
return;
deven = pci_read_config32(host_dev, DEVEN);
for (i = 0; i < ARRAY_SIZE(nb_devs); i++) {
struct device *dev = pcidev_path_on_root(nb_devs[i].devfn);
if (!dev || !dev->enabled) {
printk(BIOS_DEBUG, "Disabling %s.\n", nb_devs[i].name);
deven &= ~nb_devs[i].mask;
}
}
pci_write_config32(host_dev, DEVEN, deven);
}
static void init_egress(void)
{
/* VC0: Enable, ID0, TC0 */
EPBAR32(EPVC0RCTL) = (1 << 31) | (0 << 24) | (1 << 0);
/* No Low Priority Extended VCs, one Extended VC */
EPBAR32(EPPVCCAP1) = (0 << 4) | (1 << 0);
/* VC1: Enable, ID1, TC1 */
EPBAR32(EPVC1RCTL) = (1 << 31) | (1 << 24) | (1 << 1);
/* Poll the VC1 Negotiation Pending bit */
while ((EPBAR16(EPVC1RSTS) & (1 << 1)) != 0)
;
}
static void northbridge_dmi_init(void)
{
const bool is_haswell_h = !CONFIG(INTEL_LYNXPOINT_LP);
u16 reg16;
u32 reg32;
/* Steps prior to DMI ASPM */
if (is_haswell_h) {
/* Configure DMI De-Emphasis */
reg16 = DMIBAR16(DMILCTL2);
reg16 |= (1 << 6); /* 0b: -6.0 dB, 1b: -3.5 dB */
DMIBAR16(DMILCTL2) = reg16;
reg32 = DMIBAR32(DMIL0SLAT);
reg32 |= (1 << 31);
DMIBAR32(DMIL0SLAT) = reg32;
reg32 = DMIBAR32(DMILLTC);
reg32 |= (1 << 29);
DMIBAR32(DMILLTC) = reg32;
reg32 = DMIBAR32(DMI_AFE_PM_TMR);
reg32 &= ~0x1f;
reg32 |= 0x13;
DMIBAR32(DMI_AFE_PM_TMR) = reg32;
}
/* Clear error status bits */
DMIBAR32(DMIUESTS) = 0xffffffff;
DMIBAR32(DMICESTS) = 0xffffffff;
if (is_haswell_h) {
/* Enable ASPM L0s and L1 on SA link, should happen before PCH link */
reg16 = DMIBAR16(DMILCTL);
reg16 |= (1 << 1) | (1 << 0);
DMIBAR16(DMILCTL) = reg16;
}
}
static void northbridge_topology_init(void)
{
const u32 eple_a[3] = { EPLE2A, EPLE3A, EPLE4A };
const u32 eple_d[3] = { EPLE2D, EPLE3D, EPLE4D };
u32 reg32;
/* Set the CID1 Egress Port 0 Root Topology */
reg32 = EPBAR32(EPESD);
reg32 &= ~(0xff << 16);
reg32 |= 1 << 16;
EPBAR32(EPESD) = reg32;
reg32 = EPBAR32(EPLE1D);
reg32 &= ~(0xff << 16);
reg32 |= 1 | (1 << 16);
EPBAR32(EPLE1D) = reg32;
EPBAR64(EPLE1A) = CONFIG_FIXED_DMIBAR_MMIO_BASE;
for (unsigned int i = 0; i <= 2; i++) {
const struct device *const dev = pcidev_on_root(1, i);
if (!dev || !dev->enabled)
continue;
EPBAR64(eple_a[i]) = (u64)PCI_DEV(0, 1, i);
reg32 = EPBAR32(eple_d[i]);
reg32 &= ~(0xff << 16);
reg32 |= 1 | (1 << 16);
EPBAR32(eple_d[i]) = reg32;
pci_update_config32(dev, PEG_ESD, ~(0xff << 16), (1 << 16));
pci_write_config32(dev, PEG_LE1A, CONFIG_FIXED_EPBAR_MMIO_BASE);
pci_write_config32(dev, PEG_LE1A + 4, 0);
pci_update_config32(dev, PEG_LE1D, ~(0xff << 16), (1 << 16) | 1);
/* Read and write to lock register */
pci_or_config32(dev, PEG_DCAP2, 0);
}
/* Set the CID1 DMI Port Root Topology */
reg32 = DMIBAR32(DMIESD);
reg32 &= ~(0xff << 16);
reg32 |= 1 << 16;
DMIBAR32(DMIESD) = reg32;
reg32 = DMIBAR32(DMILE1D);
reg32 &= ~(0xffff << 16);
reg32 |= 1 | (2 << 16);
DMIBAR32(DMILE1D) = reg32;
DMIBAR64(DMILE1A) = CONFIG_FIXED_RCBA_MMIO_BASE;
DMIBAR64(DMILE2A) = CONFIG_FIXED_EPBAR_MMIO_BASE;
reg32 = DMIBAR32(DMILE2D);
reg32 &= ~(0xff << 16);
reg32 |= 1 | (1 << 16);
DMIBAR32(DMILE2D) = reg32;
/* Program RO and Write-Once Registers */
DMIBAR32(DMIPVCCAP1) = DMIBAR32(DMIPVCCAP1);
DMIBAR32(DMILCAP) = DMIBAR32(DMILCAP);
}
static void northbridge_init(struct device *dev)
{
u8 bios_reset_cpl, pair;
init_egress();
northbridge_dmi_init();
northbridge_topology_init();
/* Enable Power Aware Interrupt Routing. */
pair = MCHBAR8(INTRDIRCTL);
pair &= ~0x7; /* Clear 2:0 */
pair |= 0x4; /* Fixed Priority */
MCHBAR8(INTRDIRCTL) = pair;
disable_devices();
/*
* Set bits 0 + 1 of BIOS_RESET_CPL to indicate to the CPU
* that BIOS has initialized memory and power management.
*/
bios_reset_cpl = MCHBAR8(BIOS_RESET_CPL);
bios_reset_cpl |= 3;
MCHBAR8(BIOS_RESET_CPL) = bios_reset_cpl;
printk(BIOS_DEBUG, "Set BIOS_RESET_CPL\n");
/* Configure turbo power limits 1ms after reset complete bit. */
mdelay(1);
set_power_limits(28);
/* Set here before graphics PM init. */
MCHBAR32(MMIO_PAVP_MSG) = 0x00100001;
}
static struct device_operations mc_ops = {
.read_resources = mc_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_dev_enable_resources,
.init = northbridge_init,
.acpi_fill_ssdt = generate_cpu_entries,
.ops_pci = &pci_dev_ops_pci,
};
static const unsigned short mc_pci_device_ids[] = {
0x0c00, /* Desktop */
0x0c04, /* Mobile */
0x0a04, /* ULT */
0x0c08, /* Server */
0x0d00, /* Crystal Well Desktop */
0x0d04, /* Crystal Well Mobile */
0x0d08, /* Crystal Well Server (by extrapolation) */
0
};
static const struct pci_driver mc_driver_hsw __pci_driver = {
.ops = &mc_ops,
.vendor = PCI_VENDOR_ID_INTEL,
.devices = mc_pci_device_ids,
};
static struct device_operations cpu_bus_ops = {
.read_resources = noop_read_resources,
.set_resources = noop_set_resources,
.init = mp_cpu_bus_init,
};
static void enable_dev(struct device *dev)
{
/* Set the operations if it is a special bus type. */
if (dev->path.type == DEVICE_PATH_DOMAIN) {
dev->ops = &pci_domain_ops;
} else if (dev->path.type == DEVICE_PATH_CPU_CLUSTER) {
dev->ops = &cpu_bus_ops;
}
}
struct chip_operations northbridge_intel_haswell_ops = {
CHIP_NAME("Intel Haswell integrated Northbridge")
.enable_dev = enable_dev,
};