chrome-ec/board/samus/board.c

485 lines
14 KiB
C

/* Copyright 2013 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* EC for Samus board configuration */
#include "als.h"
#include "adc.h"
#include "adc_chip.h"
#include "backlight.h"
#include "battery.h"
#include "capsense.h"
#include "charger.h"
#include "charge_state.h"
#include "common.h"
#include "console.h"
#include "driver/accel_kionix.h"
#include "driver/accel_kxcj9.h"
#include "driver/accelgyro_lsm6ds0.h"
#include "driver/als_isl29035.h"
#include "driver/temp_sensor/tmp006.h"
#include "extpower.h"
#include "fan.h"
#include "gesture.h"
#include "gpio.h"
#include "hooks.h"
#include "host_command.h"
#include "i2c.h"
#include "keyboard_scan.h"
#include "keyboard_8042.h"
#include "keyboard_8042_sharedlib.h"
#include "lid_switch.h"
#include "lightbar.h"
#include "motion_sense.h"
#include "motion_lid.h"
#include "peci.h"
#include "power.h"
#include "power_button.h"
#include "pwm.h"
#include "pwm_chip.h"
#include "registers.h"
#include "switch.h"
#include "system.h"
#include "task.h"
#include "temp_sensor.h"
#include "temp_sensor_chip.h"
#include "timer.h"
#include "thermal.h"
#include "uart.h"
#include "util.h"
static void pd_mcu_interrupt(enum gpio_signal signal)
{
/* Exchange status with PD MCU. */
host_command_pd_send_status(PD_CHARGE_NO_CHANGE);
}
#include "gpio_list.h"
/* power signal list. Must match order of enum power_signal. */
const struct power_signal_info power_signal_list[] = {
{GPIO_PP1050_PGOOD, POWER_SIGNAL_ACTIVE_HIGH, "PGOOD_PP1050"},
{GPIO_PP1200_PGOOD, POWER_SIGNAL_ACTIVE_HIGH, "PGOOD_PP1200"},
{GPIO_PP1800_PGOOD, POWER_SIGNAL_ACTIVE_HIGH, "PGOOD_PP1800"},
{GPIO_VCORE_PGOOD, POWER_SIGNAL_ACTIVE_HIGH, "PGOOD_VCORE"},
{GPIO_PCH_SLP_S0_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S0_DEASSERTED"},
{GPIO_PCH_SLP_S3_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S3_DEASSERTED"},
{GPIO_PCH_SLP_S5_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_S5_DEASSERTED"},
{GPIO_PCH_SLP_SUS_L, POWER_SIGNAL_ACTIVE_HIGH, "SLP_SUS_DEASSERTED"},
{GPIO_PCH_SUSWARN_L, POWER_SIGNAL_ACTIVE_HIGH, "SUSWARN_DEASSERTED"},
};
BUILD_ASSERT(ARRAY_SIZE(power_signal_list) == POWER_SIGNAL_COUNT);
/* ADC channels. Must be in the exactly same order as in enum adc_channel. */
const struct adc_t adc_channels[] = {
/*
* EC internal temperature is calculated by
* 273 + (295 - 450 * ADC_VALUE / ADC_READ_MAX) / 2
* = -225 * ADC_VALUE / ADC_READ_MAX + 420.5
*/
{"ECTemp", LM4_ADC_SEQ0, -225, ADC_READ_MAX, 420,
LM4_AIN_NONE, 0x0e /* TS0 | IE0 | END0 */, 0, 0},
/*
* TODO(crosbug.com/p/23827): We don't know what to expect here, but
* it's an analog input that's pulled high. We're using it as a battery
* presence indicator for now. We'll return just 0 - ADC_READ_MAX for
* now.
*/
{"BatteryTemp", LM4_ADC_SEQ2, 1, 1, 0,
LM4_AIN(10), 0x06 /* IE0 | END0 */, LM4_GPIO_B, BIT(4)},
};
BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT);
/* PWM channels. Must be in the exactly same order as in enum pwm_channel. */
const struct pwm_t pwm_channels[] = {
{4, 0},
};
BUILD_ASSERT(ARRAY_SIZE(pwm_channels) == PWM_CH_COUNT);
/* Physical fans. These are logically separate from pwm_channels. */
const struct fan_conf fan_conf_0 = {
.flags = FAN_USE_RPM_MODE,
.ch = 2, /* Use MFT id to control fan */
.pgood_gpio = -1,
.enable_gpio = -1,
};
const struct fan_conf fan_conf_1 = {
.flags = FAN_USE_RPM_MODE,
.ch = 3, /* Use MFT id to control fan */
.pgood_gpio = -1,
.enable_gpio = -1,
};
const struct fan_rpm fan_rpm_0 = {
.rpm_min = 1000,
.rpm_start = 1000,
.rpm_max = 6350,
};
struct fan_t fans[] = {
{ .conf = &fan_conf_0, .rpm = &fan_rpm_0, },
{ .conf = &fan_conf_1, .rpm = &fan_rpm_0, },
};
BUILD_ASSERT(ARRAY_SIZE(fans) == CONFIG_FANS);
/* I2C ports */
const struct i2c_port_t i2c_ports[] = {
{"batt_chg", 0, 100, GPIO_I2C0_SCL, GPIO_I2C0_SDA},
{"lightbar", 1, 400, GPIO_I2C1_SCL, GPIO_I2C1_SDA},
{"thermal", 5, 100, GPIO_I2C5_SCL, GPIO_I2C5_SDA},
};
const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports);
#define TEMP_U40_REG_ADDR ((0x40 << 1) | I2C_FLAG_BIG_ENDIAN)
#define TEMP_U41_REG_ADDR ((0x44 << 1) | I2C_FLAG_BIG_ENDIAN)
#define TEMP_U42_REG_ADDR ((0x41 << 1) | I2C_FLAG_BIG_ENDIAN)
#define TEMP_U43_REG_ADDR ((0x45 << 1) | I2C_FLAG_BIG_ENDIAN)
#define TEMP_U115_REG_ADDR ((0x42 << 1) | I2C_FLAG_BIG_ENDIAN)
#define TEMP_U116_REG_ADDR ((0x43 << 1) | I2C_FLAG_BIG_ENDIAN)
#define TEMP_U40_ADDR TMP006_ADDR(I2C_PORT_THERMAL, TEMP_U40_REG_ADDR)
#define TEMP_U41_ADDR TMP006_ADDR(I2C_PORT_THERMAL, TEMP_U41_REG_ADDR)
#define TEMP_U42_ADDR TMP006_ADDR(I2C_PORT_THERMAL, TEMP_U42_REG_ADDR)
#define TEMP_U43_ADDR TMP006_ADDR(I2C_PORT_THERMAL, TEMP_U43_REG_ADDR)
#define TEMP_U115_ADDR TMP006_ADDR(I2C_PORT_THERMAL, TEMP_U115_REG_ADDR)
#define TEMP_U116_ADDR TMP006_ADDR(I2C_PORT_THERMAL, TEMP_U116_REG_ADDR)
const struct tmp006_t tmp006_sensors[TMP006_COUNT] = {
{"Charger", TEMP_U40_ADDR},
{"CPU", TEMP_U41_ADDR},
{"Left C", TEMP_U42_ADDR},
{"Right C", TEMP_U43_ADDR},
{"Right D", TEMP_U115_ADDR},
{"Left D", TEMP_U116_ADDR},
};
BUILD_ASSERT(ARRAY_SIZE(tmp006_sensors) == TMP006_COUNT);
/* Temperature sensors data; must be in same order as enum temp_sensor_id. */
const struct temp_sensor_t temp_sensors[] = {
{"PECI", TEMP_SENSOR_TYPE_CPU, peci_temp_sensor_get_val, 0, 2},
{"ECInternal", TEMP_SENSOR_TYPE_BOARD, chip_temp_sensor_get_val, 0, 4},
{"I2C-Charger-Die", TEMP_SENSOR_TYPE_BOARD, tmp006_get_val, 0, 7},
{"I2C-Charger-Object", TEMP_SENSOR_TYPE_CASE, tmp006_get_val, 1, 7},
{"I2C-CPU-Die", TEMP_SENSOR_TYPE_BOARD, tmp006_get_val, 2, 7},
{"I2C-CPU-Object", TEMP_SENSOR_TYPE_CASE, tmp006_get_val, 3, 7},
{"I2C-Left C-Die", TEMP_SENSOR_TYPE_BOARD, tmp006_get_val, 4, 7},
{"I2C-Left C-Object", TEMP_SENSOR_TYPE_CASE, tmp006_get_val, 5, 7},
{"I2C-Right C-Die", TEMP_SENSOR_TYPE_BOARD, tmp006_get_val, 6, 7},
{"I2C-Right C-Object", TEMP_SENSOR_TYPE_CASE, tmp006_get_val, 7, 7},
{"I2C-Right D-Die", TEMP_SENSOR_TYPE_BOARD, tmp006_get_val, 8, 7},
{"I2C-Right D-Object", TEMP_SENSOR_TYPE_CASE, tmp006_get_val, 9, 7},
{"I2C-Left D-Die", TEMP_SENSOR_TYPE_BOARD, tmp006_get_val, 10, 7},
{"I2C-Left D-Object", TEMP_SENSOR_TYPE_CASE, tmp006_get_val, 11, 7},
{"Battery", TEMP_SENSOR_TYPE_BATTERY, charge_get_battery_temp, 0, 4},
};
BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT);
/* ALS instances. Must be in same order as enum als_id. */
struct als_t als[] = {
{"ISL", isl29035_init, isl29035_read_lux, 5},
};
BUILD_ASSERT(ARRAY_SIZE(als) == ALS_COUNT);
/* Thermal limits for each temp sensor. All temps are in degrees K. Must be in
* same order as enum temp_sensor_id. To always ignore any temp, use 0.
*/
struct ec_thermal_config thermal_params[] = {
/* {Twarn, Thigh, Thalt}, fan_off, fan_max */
{{C_TO_K(95), C_TO_K(101), C_TO_K(104)},
{0, 0, 0}, C_TO_K(55), C_TO_K(90)}, /* PECI */
{{0, 0, 0}, {0, 0, 0}, 0, 0}, /* EC */
{{0, 0, 0}, {0, 0, 0}, C_TO_K(41), C_TO_K(55)}, /* Charger die */
{{0, 0, 0}, {0, 0, 0}, 0, 0},
{{0, 0, 0}, {0, 0, 0}, C_TO_K(35), C_TO_K(49)}, /* CPU die */
{{0, 0, 0}, {0, 0, 0}, 0, 0},
{{0, 0, 0}, {0, 0, 0}, 0, 0}, /* Left C die */
{{0, 0, 0}, {0, 0, 0}, 0, 0},
{{0, 0, 0}, {0, 0, 0}, 0, 0}, /* Right C die */
{{0, 0, 0}, {0, 0, 0}, 0, 0},
{{0, 0, 0}, {0, 0, 0}, 0, 0}, /* Right D die */
{{0, 0, 0}, {0, 0, 0}, 0, 0},
{{0, 0, 0}, {0, 0, 0}, C_TO_K(43), C_TO_K(54)}, /* Left D die */
{{0, 0, 0}, {0, 0, 0}, 0, 0},
{{0, 0, 0}, {0, 0, 0}, 0, 0}, /* Battery */
};
BUILD_ASSERT(ARRAY_SIZE(thermal_params) == TEMP_SENSOR_COUNT);
struct keyboard_scan_config keyscan_config = {
.output_settle_us = 40,
.debounce_down_us = 6 * MSEC,
.debounce_up_us = 30 * MSEC,
.scan_period_us = 1500,
.min_post_scan_delay_us = 1000,
.poll_timeout_us = SECOND,
.actual_key_mask = {
0x14, 0xff, 0xff, 0xff, 0xff, 0xf5, 0xff,
0xa4, 0xff, 0xf6, 0x55, 0xfa, 0xc8 /* full set */
},
};
/* Initialize board. */
static void board_init(void)
{
gpio_enable_interrupt(GPIO_PD_MCU_INT);
}
DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT);
#ifdef CONFIG_BATTERY_PRESENT_CUSTOM
/**
* Physical check of battery presence.
*/
enum battery_present battery_is_present(void)
{
/*
* This pin has a pullup, so if it's not completely pegged there's
* something attached. Probably a battery.
*/
int analog_val = adc_read_channel(ADC_CH_BAT_TEMP);
return analog_val < (9 * ADC_READ_MAX / 10) ? BP_YES : BP_NO;
}
#endif
static int discharging_on_ac;
/**
* Discharge battery when on AC power for factory test.
*/
int board_discharge_on_ac(int enable)
{
int rv = charger_discharge_on_ac(enable);
if (rv == EC_SUCCESS)
discharging_on_ac = enable;
return rv;
}
/**
* Check if we are discharging while connected to AC
*/
int board_is_discharging_on_ac(void)
{
return discharging_on_ac;
}
/**
* Reset PD MCU
*/
void board_reset_pd_mcu(void)
{
gpio_set_level(GPIO_USB_MCU_RST, 1);
usleep(100);
gpio_set_level(GPIO_USB_MCU_RST, 0);
}
void sensor_board_proc_double_tap(void)
{
lightbar_sequence(LIGHTBAR_TAP);
}
const int usb_port_enable[CONFIG_USB_PORT_POWER_SMART_PORT_COUNT] = {
GPIO_USB1_ENABLE,
GPIO_USB2_ENABLE,
};
/* Base Sensor mutex */
static struct mutex g_base_mutex;
/* Lid Sensor mutex */
static struct mutex g_lid_mutex;
/* kxcj9 local/private data */
struct kionix_accel_data g_kxcj9_data;
/* lsm6ds0 local sensor data (per-sensor) */
struct lsm6ds0_data g_saved_data[2];
/* Four Motion sensors */
/* Matrix to rotate accelrator into standard reference frame */
const mat33_fp_t base_standard_ref = {
{FLOAT_TO_FP(-1), 0, 0},
{ 0, FLOAT_TO_FP(-1), 0},
{ 0, 0, FLOAT_TO_FP(-1)}
};
const mat33_fp_t lid_standard_ref = {
{ 0, FLOAT_TO_FP(1), 0},
{FLOAT_TO_FP(-1), 0, 0},
{ 0, 0, FLOAT_TO_FP(-1)}
};
struct motion_sensor_t motion_sensors[] = {
/*
* Note: lsm6ds0: supports accelerometer and gyro sensor
* Requirement: accelerometer sensor must init before gyro sensor
* DO NOT change the order of the following table.
*/
{.name = "Base",
.active_mask = SENSOR_ACTIVE_S0_S3_S5,
.chip = MOTIONSENSE_CHIP_LSM6DS0,
.type = MOTIONSENSE_TYPE_ACCEL,
.location = MOTIONSENSE_LOC_BASE,
.drv = &lsm6ds0_drv,
.mutex = &g_base_mutex,
.drv_data = &g_saved_data[0],
.port = I2C_PORT_ACCEL,
.addr = LSM6DS0_ADDR1,
.rot_standard_ref = &base_standard_ref,
.default_range = 2, /* g, enough for laptop. */
.min_frequency = LSM6DS0_ACCEL_MIN_FREQ,
.max_frequency = LSM6DS0_ACCEL_MAX_FREQ,
.config = {
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S0] = {
.odr = 119000 | ROUND_UP_FLAG,
.ec_rate = 100 * MSEC,
},
/* Used for double tap */
[SENSOR_CONFIG_EC_S3] = {
.odr = TAP_ODR_LSM6DS0 | ROUND_UP_FLAG,
.ec_rate = CONFIG_GESTURE_SAMPLING_INTERVAL_MS * MSEC,
},
[SENSOR_CONFIG_EC_S5] = {
.odr = TAP_ODR_LSM6DS0 | ROUND_UP_FLAG,
.ec_rate = CONFIG_GESTURE_SAMPLING_INTERVAL_MS * MSEC,
},
},
},
{.name = "Lid",
.active_mask = SENSOR_ACTIVE_S0,
.chip = MOTIONSENSE_CHIP_KXCJ9,
.type = MOTIONSENSE_TYPE_ACCEL,
.location = MOTIONSENSE_LOC_LID,
.drv = &kionix_accel_drv,
.mutex = &g_lid_mutex,
.drv_data = &g_kxcj9_data,
.port = I2C_PORT_ACCEL,
.addr = KXCJ9_ADDR0,
.rot_standard_ref = &lid_standard_ref,
.default_range = 2, /* g, enough for laptop. */
.min_frequency = KXCJ9_ACCEL_MIN_FREQ,
.max_frequency = KXCJ9_ACCEL_MAX_FREQ,
.config = {
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S0] = {
.odr = 100000 | ROUND_UP_FLAG,
.ec_rate = 100 * MSEC,
},
},
},
{.name = "Base Gyro",
.active_mask = SENSOR_ACTIVE_S0_S3_S5,
.chip = MOTIONSENSE_CHIP_LSM6DS0,
.type = MOTIONSENSE_TYPE_GYRO,
.location = MOTIONSENSE_LOC_BASE,
.drv = &lsm6ds0_drv,
.mutex = &g_base_mutex,
.drv_data = &g_saved_data[1],
.port = I2C_PORT_ACCEL,
.addr = LSM6DS0_ADDR1,
.rot_standard_ref = NULL,
.default_range = 2000, /* g, enough for laptop. */
.min_frequency = LSM6DS0_GYRO_MIN_FREQ,
.max_frequency = LSM6DS0_GYRO_MAX_FREQ,
},
};
const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors);
#ifdef CONFIG_LOW_POWER_IDLE
void jtag_interrupt(enum gpio_signal signal)
{
/*
* This interrupt is the first sign someone is trying to use
* the JTAG. Disable slow speed sleep so that the JTAG action
* can take place.
*/
disable_sleep(SLEEP_MASK_JTAG);
/*
* Once we get this interrupt, disable it from occurring again
* to avoid repeated interrupts when debugging via JTAG.
*/
gpio_disable_interrupt(GPIO_JTAG_TCK);
}
#endif /* CONFIG_LOW_POWER_IDLE */
enum ec_error_list keyboard_scancode_callback(uint16_t *make_code,
int8_t pressed)
{
const uint16_t k = *make_code;
static uint8_t s;
static const uint16_t a[] = {
SCANCODE_UP, SCANCODE_UP, SCANCODE_DOWN, SCANCODE_DOWN,
SCANCODE_LEFT, SCANCODE_RIGHT, SCANCODE_LEFT, SCANCODE_RIGHT,
SCANCODE_B, SCANCODE_A};
if (!pressed)
return EC_SUCCESS;
/* Lightbar demo mode: keyboard can fake the battery state */
switch (k) {
case SCANCODE_UP:
demo_battery_level(1);
break;
case SCANCODE_DOWN:
demo_battery_level(-1);
break;
case SCANCODE_LEFT:
demo_is_charging(0);
break;
case SCANCODE_RIGHT:
demo_is_charging(1);
break;
case SCANCODE_F6: /* dim */
demo_brightness(-1);
break;
case SCANCODE_F7: /* bright */
demo_brightness(1);
break;
case SCANCODE_T:
demo_tap();
break;
}
if (k == a[s])
s++;
else if (k != a[0])
s = 0;
else if (s != 2)
s = 1;
if (s == ARRAY_SIZE(a)) {
s = 0;
lightbar_sequence(LIGHTBAR_KONAMI);
}
return EC_SUCCESS;
}
/*
* Use to define going in to hibernate early if low on battery.
* HIBERNATE_BATT_PCT specifies the low battery threshold
* for going into hibernate early, and HIBERNATE_BATT_SEC defines
* the minimum amount of time to stay in G3 before checking for low
* battery hibernate.
*/
#define HIBERNATE_BATT_PCT 10
#define HIBERNATE_BATT_SEC (3600 * 24)
enum critical_shutdown board_system_is_idle(uint64_t last_shutdown_time,
uint64_t *target, uint64_t now)
{
if (charge_get_percent() <= HIBERNATE_BATT_PCT) {
uint64_t t = last_shutdown_time + HIBERNATE_BATT_SEC * SEC_UL;
*target = MIN(*target, t);
}
return now > *target ?
CRITICAL_SHUTDOWN_HIBERNATE : CRITICAL_SHUTDOWN_IGNORE;
}