chrome-ec/board/poppy/board.c

875 lines
24 KiB
C

/* Copyright 2016 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Poppy board-specific configuration */
#include "adc.h"
#include "adc_chip.h"
#include "als.h"
#include "bd99992gw.h"
#include "board_config.h"
#include "button.h"
#include "charge_manager.h"
#include "charge_state.h"
#include "charge_ramp.h"
#include "charger.h"
#include "chipset.h"
#include "console.h"
#include "driver/accelgyro_bmi160.h"
#include "driver/als_opt3001.h"
#include "driver/baro_bmp280.h"
#include "driver/tcpm/anx74xx.h"
#include "driver/tcpm/ps8xxx.h"
#include "driver/tcpm/tcpci.h"
#include "driver/tcpm/tcpm.h"
#include "driver/temp_sensor/bd99992gw.h"
#include "extpower.h"
#include "gpio.h"
#include "hooks.h"
#include "host_command.h"
#include "i2c.h"
#include "lid_switch.h"
#include "math_util.h"
#include "motion_lid.h"
#include "motion_sense.h"
#include "pi3usb9281.h"
#include "power.h"
#include "power_button.h"
#include "spi.h"
#include "switch.h"
#include "system.h"
#include "tablet_mode.h"
#include "task.h"
#include "temp_sensor.h"
#include "timer.h"
#include "uart.h"
#include "usb_charge.h"
#include "usb_mux.h"
#include "usb_pd.h"
#include "usb_pd_tcpm.h"
#include "util.h"
#include "espi.h"
#define CPRINTS(format, args...) cprints(CC_USBCHARGE, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_USBCHARGE, format, ## args)
#define USB_PD_PORT_ANX74XX 0
/* Minimum input current limit. */
#define ILIM_MIN_MA 472
static void tcpc_alert_event(enum gpio_signal signal)
{
if ((signal == GPIO_USB_C0_PD_INT_ODL) &&
!gpio_get_level(GPIO_USB_C0_PD_RST_L))
return;
else if ((signal == GPIO_USB_C1_PD_INT_ODL) &&
!gpio_get_level(GPIO_USB_C1_PD_RST_L))
return;
#ifdef HAS_TASK_PDCMD
/* Exchange status with TCPCs */
host_command_pd_send_status(PD_CHARGE_NO_CHANGE);
#endif
}
/* Set PD discharge whenever VBUS detection is high (i.e. below threshold). */
static void vbus_discharge_handler(void)
{
if (system_get_board_version() >= 2) {
pd_set_vbus_discharge(0,
gpio_get_level(GPIO_USB_C0_VBUS_WAKE_L));
pd_set_vbus_discharge(1,
gpio_get_level(GPIO_USB_C1_VBUS_WAKE_L));
}
}
DECLARE_DEFERRED(vbus_discharge_handler);
void vbus0_evt(enum gpio_signal signal)
{
/* VBUS present GPIO is inverted */
usb_charger_vbus_change(0, !gpio_get_level(signal));
task_wake(TASK_ID_PD_C0);
hook_call_deferred(&vbus_discharge_handler_data, 0);
}
void vbus1_evt(enum gpio_signal signal)
{
/* VBUS present GPIO is inverted */
usb_charger_vbus_change(1, !gpio_get_level(signal));
task_wake(TASK_ID_PD_C1);
hook_call_deferred(&vbus_discharge_handler_data, 0);
}
void usb0_evt(enum gpio_signal signal)
{
task_set_event(TASK_ID_USB_CHG_P0, USB_CHG_EVENT_BC12, 0);
}
void usb1_evt(enum gpio_signal signal)
{
task_set_event(TASK_ID_USB_CHG_P1, USB_CHG_EVENT_BC12, 0);
}
#ifdef CONFIG_USB_PD_TCPC_LOW_POWER
static void anx74xx_cable_det_handler(void)
{
int cable_det = gpio_get_level(GPIO_USB_C0_CABLE_DET);
int reset_n = gpio_get_level(GPIO_USB_C0_PD_RST_L);
/*
* A cable_det low->high transition was detected. If following the
* debounce time, cable_det is high, and reset_n is low, then ANX3429 is
* currently in standby mode and needs to be woken up. Set the
* TCPC_RESET event which will bring the ANX3429 out of standby
* mode. Setting this event is gated on reset_n being low because the
* ANX3429 will always set cable_det when transitioning to normal mode
* and if in normal mode, then there is no need to trigger a tcpc reset.
*/
if (cable_det && !reset_n)
task_set_event(TASK_ID_PD_C0, PD_EVENT_TCPC_RESET, 0);
}
DECLARE_DEFERRED(anx74xx_cable_det_handler);
void anx74xx_cable_det_interrupt(enum gpio_signal signal)
{
/* debounce for 2 msec */
hook_call_deferred(&anx74xx_cable_det_handler_data, (2 * MSEC));
}
#endif
#include "gpio_list.h"
/* Hibernate wake configuration */
const enum gpio_signal hibernate_wake_pins[] = {
GPIO_AC_PRESENT,
GPIO_POWER_BUTTON_L,
};
const int hibernate_wake_pins_used = ARRAY_SIZE(hibernate_wake_pins);
/* ADC channels */
const struct adc_t adc_channels[] = {
/* Base detection */
[ADC_BASE_DET] = {"BASE_DET", NPCX_ADC_CH0,
ADC_MAX_VOLT, ADC_READ_MAX+1, 0},
/* Vbus sensing (10x voltage divider). */
[ADC_VBUS] = {"VBUS", NPCX_ADC_CH2, ADC_MAX_VOLT*10, ADC_READ_MAX+1, 0},
/*
* Adapter current output or battery charging/discharging current (uV)
* 18x amplification on charger side.
*/
[ADC_AMON_BMON] = {"AMON_BMON", NPCX_ADC_CH1, ADC_MAX_VOLT*1000/18,
ADC_READ_MAX+1, 0},
#ifdef BOARD_LUX
/*
* ISL9238 PSYS output is 1.44 uA/W over 12.4K resistor, to read
* 0.8V @ 45 W, i.e. 56250 uW/mV. Using ADC_MAX_VOLT*56250 and
* ADC_READ_MAX+1 as multiplier/divider leads to overflows, so we
* only divide by 2 (enough to avoid precision issues).
*/
[ADC_PSYS] = {"PSYS", NPCX_ADC_CH3,
ADC_MAX_VOLT*56250*2/(ADC_READ_MAX+1), 2, 0},
#endif
};
BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT);
/* I2C port map */
const struct i2c_port_t i2c_ports[] = {
{"tcpc", NPCX_I2C_PORT0_0, 400, GPIO_I2C0_0_SCL, GPIO_I2C0_0_SDA},
{"als", NPCX_I2C_PORT0_1, 400, GPIO_I2C0_1_SCL, GPIO_I2C0_1_SDA},
{"charger", NPCX_I2C_PORT1, 100, GPIO_I2C1_SCL, GPIO_I2C1_SDA},
{"pmic", NPCX_I2C_PORT2, 400, GPIO_I2C2_SCL, GPIO_I2C2_SDA},
{"accelgyro", NPCX_I2C_PORT3, 400, GPIO_I2C3_SCL, GPIO_I2C3_SDA},
};
const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports);
/* TCPC mux configuration */
const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_COUNT] = {
{
.bus_type = EC_BUS_TYPE_I2C,
.i2c_info = {
.port = NPCX_I2C_PORT0_0,
.addr_flags = ANX74XX_I2C_ADDR1_FLAGS,
},
.drv = &anx74xx_tcpm_drv,
},
{
.bus_type = EC_BUS_TYPE_I2C,
.i2c_info = {
.port = NPCX_I2C_PORT0_0,
.addr_flags = PS8751_I2C_ADDR1_FLAGS,
},
.drv = &ps8xxx_tcpm_drv,
},
};
struct usb_mux usb_muxes[CONFIG_USB_PD_PORT_COUNT] = {
{
.driver = &anx74xx_tcpm_usb_mux_driver,
.hpd_update = &anx74xx_tcpc_update_hpd_status,
},
{
.driver = &tcpci_tcpm_usb_mux_driver,
.hpd_update = &ps8xxx_tcpc_update_hpd_status,
}
};
struct pi3usb9281_config pi3usb9281_chips[] = {
{
.i2c_port = I2C_PORT_USB_CHARGER_0,
.mux_lock = NULL,
},
{
.i2c_port = I2C_PORT_USB_CHARGER_1,
.mux_lock = NULL,
},
};
BUILD_ASSERT(ARRAY_SIZE(pi3usb9281_chips) ==
CONFIG_BC12_DETECT_PI3USB9281_CHIP_COUNT);
/**
* Power on (or off) a single TCPC.
* minimum on/off delays are included.
*
* @param port Port number of TCPC.
* @param mode 0: power off, 1: power on.
*/
void board_set_tcpc_power_mode(int port, int mode)
{
if (port != USB_PD_PORT_ANX74XX)
return;
if (mode) {
gpio_set_level(GPIO_USB_C0_TCPC_PWR, 1);
msleep(ANX74XX_PWR_H_RST_H_DELAY_MS);
gpio_set_level(GPIO_USB_C0_PD_RST_L, 1);
} else {
gpio_set_level(GPIO_USB_C0_PD_RST_L, 0);
msleep(ANX74XX_RST_L_PWR_L_DELAY_MS);
gpio_set_level(GPIO_USB_C0_TCPC_PWR, 0);
msleep(ANX74XX_PWR_L_PWR_H_DELAY_MS);
}
}
void board_reset_pd_mcu(void)
{
/* Assert reset */
gpio_set_level(GPIO_USB_C0_PD_RST_L, 0);
gpio_set_level(GPIO_USB_C1_PD_RST_L, 0);
msleep(MAX(1, ANX74XX_RST_L_PWR_L_DELAY_MS));
gpio_set_level(GPIO_USB_C1_PD_RST_L, 1);
/* Disable TCPC0 (anx3429) power */
gpio_set_level(GPIO_USB_C0_TCPC_PWR, 0);
msleep(ANX74XX_PWR_L_PWR_H_DELAY_MS);
board_set_tcpc_power_mode(USB_PD_PORT_ANX74XX, 1);
}
void board_tcpc_init(void)
{
int port, reg;
/* Only reset TCPC if not sysjump */
if (!system_jumped_to_this_image()) {
gpio_set_level(GPIO_PP3300_USB_PD, 1);
/* TODO(crosbug.com/p/61098): How long do we need to wait? */
msleep(10);
board_reset_pd_mcu();
}
/*
* TODO: Remove when Poppy is updated with PS8751 A3.
*
* Force PS8751 A2 to wake from low power mode.
* If PS8751 remains in low power mode after sysjump,
* TCPM_INIT will fail due to not able to access PS8751.
*
* NOTE: PS8751 A3 will wake on any I2C access.
*/
i2c_read8(NPCX_I2C_PORT0_1, 0x08, 0xA0, &reg);
/* Enable TCPC interrupts */
gpio_enable_interrupt(GPIO_USB_C0_PD_INT_ODL);
gpio_enable_interrupt(GPIO_USB_C1_PD_INT_ODL);
#ifdef CONFIG_USB_PD_TCPC_LOW_POWER
/* Enable CABLE_DET interrupt for ANX3429 wake from standby */
gpio_enable_interrupt(GPIO_USB_C0_CABLE_DET);
#endif
/*
* Initialize HPD to low; after sysjump SOC needs to see
* HPD pulse to enable video path
*/
for (port = 0; port < CONFIG_USB_PD_PORT_COUNT; port++) {
const struct usb_mux *mux = &usb_muxes[port];
mux->hpd_update(port, 0, 0);
}
}
DECLARE_HOOK(HOOK_INIT, board_tcpc_init, HOOK_PRIO_INIT_I2C+1);
uint16_t tcpc_get_alert_status(void)
{
uint16_t status = 0;
if (!gpio_get_level(GPIO_USB_C0_PD_INT_ODL)) {
if (gpio_get_level(GPIO_USB_C0_PD_RST_L))
status |= PD_STATUS_TCPC_ALERT_0;
}
if (!gpio_get_level(GPIO_USB_C1_PD_INT_ODL)) {
if (gpio_get_level(GPIO_USB_C1_PD_RST_L))
status |= PD_STATUS_TCPC_ALERT_1;
}
return status;
}
const struct temp_sensor_t temp_sensors[] = {
{"Battery", TEMP_SENSOR_TYPE_BATTERY, charge_get_battery_temp, 0, 4},
/* These BD99992GW temp sensors are only readable in S0 */
{"Ambient", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val,
BD99992GW_ADC_CHANNEL_SYSTHERM0, 4},
{"Charger", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val,
BD99992GW_ADC_CHANNEL_SYSTHERM1, 4},
{"DRAM", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val,
BD99992GW_ADC_CHANNEL_SYSTHERM2, 4},
{"eMMC", TEMP_SENSOR_TYPE_BOARD, bd99992gw_get_val,
BD99992GW_ADC_CHANNEL_SYSTHERM3, 4},
};
BUILD_ASSERT(ARRAY_SIZE(temp_sensors) == TEMP_SENSOR_COUNT);
/*
* Check if PMIC fault registers indicate VR fault. If yes, print out fault
* register info to console. Additionally, set panic reason so that the OS can
* check for fault register info by looking at offset 0x14(PWRSTAT1) and
* 0x15(PWRSTAT2) in cros ec panicinfo.
*/
static void board_report_pmic_fault(const char *str)
{
int vrfault, pwrstat1 = 0, pwrstat2 = 0;
uint32_t info;
/* RESETIRQ1 -- Bit 4: VRFAULT */
if (i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x8, &vrfault)
!= EC_SUCCESS)
return;
if (!(vrfault & BIT(4)))
return;
/* VRFAULT has occurred, print VRFAULT status bits. */
/* PWRSTAT1 */
i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x16, &pwrstat1);
/* PWRSTAT2 */
i2c_read8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x17, &pwrstat2);
CPRINTS("PMIC VRFAULT: %s", str);
CPRINTS("PMIC VRFAULT: PWRSTAT1=0x%02x PWRSTAT2=0x%02x", pwrstat1,
pwrstat2);
/* Clear all faults -- Write 1 to clear. */
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x8, BIT(4));
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x16, pwrstat1);
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x17, pwrstat2);
/*
* Status of the fault registers can be checked in the OS by looking at
* offset 0x14(PWRSTAT1) and 0x15(PWRSTAT2) in cros ec panicinfo.
*/
info = ((pwrstat2 & 0xFF) << 8) | (pwrstat1 & 0xFF);
panic_set_reason(PANIC_SW_PMIC_FAULT, info, 0);
}
static void board_pmic_disable_slp_s0_vr_decay(void)
{
/*
* VCCIOCNT:
* Bit 6 (0) - Disable decay of VCCIO on SLP_S0# assertion
* Bits 5:4 (00) - Nominal output voltage: 0.850V
* Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion
* Bits 1:0 (10) - VR set to AUTO operating mode
*/
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x30, 0x3a);
/*
* V18ACNT:
* Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion
* Bits 5:4 (10) - Nominal voltage set to 1.8V
* Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion
* Bits 1:0 (10) - VR set to AUTO operating mode
*/
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x34, 0x2a);
/*
* V100ACNT:
* Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion
* Bits 5:4 (01) - Nominal voltage 1.0V
* Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion
* Bits 1:0 (10) - VR set to AUTO operating mode
*/
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x37, 0x1a);
/*
* V085ACNT:
* Bits 7:6 (00) - Disable low power mode on SLP_S0# assertion
* Bits 5:4 (11) - Nominal voltage 1.0V
* Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion
* Bits 1:0 (10) - VR set to AUTO operating mode
*/
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x38, 0x3a);
}
static void board_pmic_enable_slp_s0_vr_decay(void)
{
/*
* VCCIOCNT:
* Bit 6 (1) - Enable decay of VCCIO on SLP_S0# assertion
* Bits 5:4 (00) - Nominal output voltage: 0.850V
* Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion
* Bits 1:0 (10) - VR set to AUTO operating mode
*/
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x30, 0x7a);
/*
* V18ACNT:
* Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion
* Bits 5:4 (10) - Nominal voltage set to 1.8V
* Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion
* Bits 1:0 (10) - VR set to AUTO operating mode
*/
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x34, 0x6a);
/*
* V100ACNT:
* Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion
* Bits 5:4 (01) - Nominal voltage 1.0V
* Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion
* Bits 1:0 (10) - VR set to AUTO operating mode
*/
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x37, 0x5a);
/*
* V085ACNT:
* Bits 7:6 (01) - Enable low power mode on SLP_S0# assertion
* Bits 5:4 (11) - Nominal voltage 1.0V
* Bits 3:2 (10) - VR set to AUTO on SLP_S0# de-assertion
* Bits 1:0 (10) - VR set to AUTO operating mode
*/
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x38, 0x7a);
}
void power_board_handle_host_sleep_event(enum host_sleep_event state)
{
if (state == HOST_SLEEP_EVENT_S0IX_SUSPEND)
board_pmic_enable_slp_s0_vr_decay();
else if (state == HOST_SLEEP_EVENT_S0IX_RESUME)
board_pmic_disable_slp_s0_vr_decay();
}
static void board_pmic_init(void)
{
board_report_pmic_fault("SYSJUMP");
if (system_jumped_to_this_image())
return;
/* DISCHGCNT3 - enable 100 ohm discharge on V1.00A */
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x3e, 0x04);
board_pmic_disable_slp_s0_vr_decay();
/* VRMODECTRL - disable low-power mode for all rails */
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x3b, 0x1f);
/* Disable power button shutdown timer. */
i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS, 0x14, 0x00);
}
DECLARE_DEFERRED(board_pmic_init);
/* Initialize board. */
static void board_init(void)
{
/*
* This enables pull-down on F_DIO1 (SPI MISO), and F_DIO0 (SPI MOSI),
* whenever the EC is not doing SPI flash transactions. This avoids
* floating SPI buffer input (MISO), which causes power leakage (see
* b/64797021).
*/
NPCX_PUPD_EN1 |= BIT(NPCX_DEVPU1_F_SPI_PUD_EN);
/* Provide AC status to the PCH */
gpio_set_level(GPIO_PCH_ACOK, extpower_is_present());
/* Enable sensors power supply */
gpio_set_level(GPIO_PP1800_DX_SENSOR, 1);
gpio_set_level(GPIO_PP3300_DX_SENSOR, 1);
/* Enable VBUS interrupt */
if (system_get_board_version() == 0) {
/*
* crosbug.com/p/61929: rev0 does not have VBUS detection,
* force detection on both ports.
*/
gpio_set_flags(GPIO_USB_C0_VBUS_WAKE_L,
GPIO_INPUT | GPIO_PULL_DOWN);
gpio_set_flags(GPIO_USB_C1_VBUS_WAKE_L,
GPIO_INPUT | GPIO_PULL_DOWN);
vbus0_evt(GPIO_USB_C0_VBUS_WAKE_L);
vbus1_evt(GPIO_USB_C1_VBUS_WAKE_L);
} else {
gpio_enable_interrupt(GPIO_USB_C0_VBUS_WAKE_L);
gpio_enable_interrupt(GPIO_USB_C1_VBUS_WAKE_L);
}
/* Enable pericom BC1.2 interrupts */
gpio_enable_interrupt(GPIO_USB_C0_BC12_INT_L);
gpio_enable_interrupt(GPIO_USB_C1_BC12_INT_L);
/*
* Set unused GPIO_LED_YELLO_C0[_OLD] as INPUT | PULL_UP
* for better S0ix/S3 power
*/
if (system_get_board_version() >= 5)
gpio_set_flags(GPIO_LED_YELLOW_C0_OLD,
GPIO_INPUT | GPIO_PULL_UP);
else
gpio_set_flags(GPIO_LED_YELLOW_C0,
GPIO_INPUT | GPIO_PULL_UP);
#ifdef BOARD_SORAKA
/*
* TODO(b/64503543): Add proper options(#ifdef ) for Non-LTE SKU
* Set unused LTE related pins as INPUT | PULL_UP
* for better S0ix/S3 power
*/
if (system_get_board_version() >= 4) {
gpio_set_flags(GPIO_WLAN_PE_RST,
GPIO_INPUT | GPIO_PULL_UP);
gpio_set_flags(GPIO_PP3300_DX_LTE,
GPIO_INPUT | GPIO_PULL_UP);
gpio_set_flags(GPIO_LTE_GPS_OFF_L,
GPIO_INPUT | GPIO_PULL_UP);
gpio_set_flags(GPIO_LTE_BODY_SAR_L,
GPIO_INPUT | GPIO_PULL_UP);
gpio_set_flags(GPIO_LTE_WAKE_L,
GPIO_INPUT | GPIO_PULL_UP);
gpio_set_flags(GPIO_LTE_OFF_ODL,
GPIO_INPUT | GPIO_PULL_UP);
}
#endif
/* Enable Gyro interrupts */
gpio_enable_interrupt(GPIO_ACCELGYRO3_INT_L);
/* Initialize PMIC */
hook_call_deferred(&board_pmic_init_data, 0);
}
DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT);
/**
* Buffer the AC present GPIO to the PCH.
*/
static void board_extpower(void)
{
gpio_set_level(GPIO_PCH_ACOK, extpower_is_present());
}
DECLARE_HOOK(HOOK_AC_CHANGE, board_extpower, HOOK_PRIO_DEFAULT);
/**
* Set active charge port -- only one port can be active at a time.
*
* @param charge_port Charge port to enable.
*
* Returns EC_SUCCESS if charge port is accepted and made active,
* EC_ERROR_* otherwise.
*/
int board_set_active_charge_port(int charge_port)
{
/* charge port is a physical port */
int is_real_port = (charge_port >= 0 &&
charge_port < CONFIG_USB_PD_PORT_COUNT);
/* check if we are source VBUS on the port */
int source = gpio_get_level(charge_port == 0 ? GPIO_USB_C0_5V_EN :
GPIO_USB_C1_5V_EN);
if (is_real_port && source) {
CPRINTF("Skip enable p%d", charge_port);
return EC_ERROR_INVAL;
}
CPRINTF("New chg p%d", charge_port);
if (charge_port == CHARGE_PORT_NONE) {
/* Disable both ports */
gpio_set_level(GPIO_USB_C0_CHARGE_L, 1);
gpio_set_level(GPIO_USB_C1_CHARGE_L, 1);
} else {
#ifdef BOARD_LUX
/* Disable cross-power with base, charger task will reenable. */
board_enable_base_power(0);
#endif
/* Make sure non-charging port is disabled */
gpio_set_level(charge_port ? GPIO_USB_C0_CHARGE_L :
GPIO_USB_C1_CHARGE_L, 1);
/* Enable charging port */
gpio_set_level(charge_port ? GPIO_USB_C1_CHARGE_L :
GPIO_USB_C0_CHARGE_L, 0);
}
return EC_SUCCESS;
}
/**
* Set the charge limit based upon desired maximum.
*
* @param port Port number.
* @param supplier Charge supplier type.
* @param charge_ma Desired charge limit (mA).
* @param charge_mv Negotiated charge voltage (mV).
*/
void board_set_charge_limit(int port, int supplier, int charge_ma,
int max_ma, int charge_mv)
{
/* Adjust ILIM according to measurements to eliminate overshoot. */
charge_ma = (charge_ma - 500) * 31 / 32 + 472;
/* 5V is significantly more accurate than other voltages. */
if (charge_mv > 5000)
charge_ma -= 52;
charge_set_input_current_limit(MAX(charge_ma, ILIM_MIN_MA), charge_mv);
}
void board_hibernate(void)
{
CPRINTS("Triggering PMIC shutdown.");
uart_flush_output();
/* Trigger PMIC shutdown. */
if (i2c_write8(I2C_PORT_PMIC, I2C_ADDR_BD99992_FLAGS,
0x49, 0x01)) {
/*
* If we can't tell the PMIC to shutdown, instead reset
* and don't start the AP. Hopefully we'll be able to
* communicate with the PMIC next time.
*/
CPRINTS("PMIC i2c failed.");
system_reset(SYSTEM_RESET_LEAVE_AP_OFF);
}
/* Await shutdown. */
while (1)
;
}
int board_get_version(void)
{
static int ver = -1;
uint8_t id4;
if (ver != -1)
return ver;
ver = 0;
/* First 3 strappings are binary. */
if (gpio_get_level(GPIO_BOARD_VERSION1))
ver |= 0x01;
if (gpio_get_level(GPIO_BOARD_VERSION2))
ver |= 0x02;
if (gpio_get_level(GPIO_BOARD_VERSION3))
ver |= 0x04;
/*
* 4th bit is using tristate strapping, ternary encoding:
* Hi-Z (id4=2) => 0, (id4=0) => 1, (id4=1) => 2
*/
id4 = gpio_get_ternary(GPIO_BOARD_VERSION4);
ver |= ((id4 + 1) % 3) * 0x08;
CPRINTS("Board ID = %d", ver);
return ver;
}
/* Lid Sensor mutex */
static struct mutex g_lid_mutex;
static struct bmi160_drv_data_t g_bmi160_data;
static struct opt3001_drv_data_t g_opt3001_data = {
.scale = 1,
.uscale = 0,
.offset = 0,
};
/* Matrix to rotate accelrator into standard reference frame */
const mat33_fp_t mag_standard_ref = {
{ FLOAT_TO_FP(-1), 0, 0},
{ 0, FLOAT_TO_FP(1), 0},
{ 0, 0, FLOAT_TO_FP(-1)}
};
#ifdef BOARD_SORAKA
const mat33_fp_t lid_standard_ref = {
{ 0, FLOAT_TO_FP(-1), 0},
{FLOAT_TO_FP(1), 0, 0},
{ 0, 0, FLOAT_TO_FP(1)}
};
/* For rev3 and older */
const mat33_fp_t lid_standard_ref_old = {
{FLOAT_TO_FP(-1), 0, 0},
{ 0, FLOAT_TO_FP(-1), 0},
{ 0, 0, FLOAT_TO_FP(1)}
};
#else
const mat33_fp_t lid_standard_ref = {
{FLOAT_TO_FP(-1), 0, 0},
{ 0, FLOAT_TO_FP(-1), 0},
{ 0, 0, FLOAT_TO_FP(1)}
};
#endif
struct motion_sensor_t motion_sensors[] = {
[LID_ACCEL] = {
.name = "Lid Accel",
.active_mask = SENSOR_ACTIVE_S0,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_ACCEL,
.location = MOTIONSENSE_LOC_LID,
.drv = &bmi160_drv,
.mutex = &g_lid_mutex,
.drv_data = &g_bmi160_data,
.port = I2C_PORT_GYRO,
.i2c_spi_addr_flags = BMI160_ADDR0_FLAGS,
.rot_standard_ref = &lid_standard_ref,
.default_range = 2, /* g, enough for laptop. */
.min_frequency = BMI160_ACCEL_MIN_FREQ,
.max_frequency = BMI160_ACCEL_MAX_FREQ,
.config = {
/* EC use accel for angle detection */
[SENSOR_CONFIG_EC_S0] = {
.odr = 10000 | ROUND_UP_FLAG,
.ec_rate = 100 * MSEC,
},
},
},
[LID_GYRO] = {
.name = "Lid Gyro",
.active_mask = SENSOR_ACTIVE_S0,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_GYRO,
.location = MOTIONSENSE_LOC_LID,
.drv = &bmi160_drv,
.mutex = &g_lid_mutex,
.drv_data = &g_bmi160_data,
.port = I2C_PORT_GYRO,
.i2c_spi_addr_flags = BMI160_ADDR0_FLAGS,
.default_range = 1000, /* dps */
.rot_standard_ref = &lid_standard_ref,
.min_frequency = BMI160_GYRO_MIN_FREQ,
.max_frequency = BMI160_GYRO_MAX_FREQ,
},
[LID_MAG] = {
.name = "Lid Mag",
.active_mask = SENSOR_ACTIVE_S0,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_MAG,
.location = MOTIONSENSE_LOC_LID,
.drv = &bmi160_drv,
.mutex = &g_lid_mutex,
.drv_data = &g_bmi160_data,
.port = I2C_PORT_GYRO,
.i2c_spi_addr_flags = BMI160_ADDR0_FLAGS,
.default_range = BIT(11), /* 16LSB / uT, fixed */
.rot_standard_ref = &mag_standard_ref,
.min_frequency = BMM150_MAG_MIN_FREQ,
.max_frequency = BMM150_MAG_MAX_FREQ(SPECIAL),
},
[LID_ALS] = {
.name = "Light",
.active_mask = SENSOR_ACTIVE_S0,
.chip = MOTIONSENSE_CHIP_OPT3001,
.type = MOTIONSENSE_TYPE_LIGHT,
.location = MOTIONSENSE_LOC_LID,
.drv = &opt3001_drv,
.drv_data = &g_opt3001_data,
.port = I2C_PORT_ALS,
.i2c_spi_addr_flags = OPT3001_I2C_ADDR_FLAGS,
.rot_standard_ref = NULL,
.default_range = 0x10000, /* scale = 1; uscale = 0 */
.min_frequency = OPT3001_LIGHT_MIN_FREQ,
.max_frequency = OPT3001_LIGHT_MAX_FREQ,
.config = {
[SENSOR_CONFIG_EC_S0] = {
.odr = 1000,
},
},
},
};
const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors);
/* ALS instances when LPC mapping is needed. Each entry directs to a sensor. */
const struct motion_sensor_t *motion_als_sensors[] = {
&motion_sensors[LID_ALS],
};
BUILD_ASSERT(ARRAY_SIZE(motion_als_sensors) == ALS_COUNT);
#ifdef BOARD_SORAKA
static void board_sensor_init(void)
{
/* Old soraka use a different reference matrix */
if (system_get_board_version() <= 3) {
motion_sensors[LID_ACCEL].rot_standard_ref =
&lid_standard_ref_old;
motion_sensors[LID_GYRO].rot_standard_ref =
&lid_standard_ref_old;
}
}
DECLARE_HOOK(HOOK_INIT, board_sensor_init, HOOK_PRIO_DEFAULT);
#endif
static void board_chipset_reset(void)
{
board_report_pmic_fault("CHIPSET RESET");
}
DECLARE_HOOK(HOOK_CHIPSET_RESET, board_chipset_reset, HOOK_PRIO_DEFAULT);
/* Called on AP S3 -> S0 transition */
static void board_chipset_resume(void)
{
gpio_set_level(GPIO_ENABLE_BACKLIGHT, 1);
}
DECLARE_HOOK(HOOK_CHIPSET_RESUME, board_chipset_resume, HOOK_PRIO_DEFAULT);
/* Called on AP S0 -> S3 transition */
static void board_chipset_suspend(void)
{
gpio_set_level(GPIO_ENABLE_BACKLIGHT, 0);
}
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, board_chipset_suspend, HOOK_PRIO_DEFAULT);
int board_has_working_reset_flags(void)
{
int version = system_get_board_version();
/* Boards Rev1 and Rev2 will lose reset flags on power cycle. */
if ((version == 1) || (version == 2))
return 0;
/* All other board versions should have working reset flags */
return 1;
}