chrome-ec/board/cheza/board.c

701 lines
18 KiB
C

/* Copyright 2018 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Cheza board-specific configuration */
#include "adc_chip.h"
#include "als.h"
#include "button.h"
#include "charge_manager.h"
#include "charge_state.h"
#include "chipset.h"
#include "extpower.h"
#include "driver/accelgyro_bmi160.h"
#include "driver/als_opt3001.h"
#include "driver/ppc/sn5s330.h"
#include "driver/tcpm/anx74xx.h"
#include "driver/tcpm/ps8xxx.h"
#include "driver/tcpm/tcpci.h"
#include "gpio.h"
#include "hooks.h"
#include "lid_switch.h"
#include "pi3usb9281.h"
#include "power.h"
#include "power_button.h"
#include "pwm.h"
#include "pwm_chip.h"
#include "system.h"
#include "shi_chip.h"
#include "switch.h"
#include "task.h"
#include "usb_charge.h"
#include "usb_mux.h"
#include "usb_pd.h"
#include "usbc_ppc.h"
#include "util.h"
#define CPRINTS(format, args...) cprints(CC_USBCHARGE, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_USBCHARGE, format, ## args)
#define USB_PD_PORT_ANX3429 0
#define USB_PD_PORT_PS8751 1
/* Forward declaration */
static void tcpc_alert_event(enum gpio_signal signal);
static void vbus0_evt(enum gpio_signal signal);
static void vbus1_evt(enum gpio_signal signal);
static void usb0_evt(enum gpio_signal signal);
static void usb1_evt(enum gpio_signal signal);
static void ppc_interrupt(enum gpio_signal signal);
static void anx74xx_cable_det_interrupt(enum gpio_signal signal);
static void usb1_oc_evt(enum gpio_signal signal);
#include "gpio_list.h"
/* GPIO Interrupt Handlers */
static void tcpc_alert_event(enum gpio_signal signal)
{
int port = -1;
switch (signal) {
case GPIO_USB_C0_PD_INT_ODL:
port = 0;
break;
case GPIO_USB_C1_PD_INT_ODL:
port = 1;
break;
default:
return;
}
schedule_deferred_pd_interrupt(port);
}
static void vbus0_evt(enum gpio_signal signal)
{
/* VBUS present GPIO is inverted */
usb_charger_vbus_change(0, !gpio_get_level(GPIO_USB_C0_VBUS_DET_L));
task_wake(TASK_ID_PD_C0);
}
static void vbus1_evt(enum gpio_signal signal)
{
/* VBUS present GPIO is inverted */
usb_charger_vbus_change(1, !gpio_get_level(GPIO_USB_C1_VBUS_DET_L));
task_wake(TASK_ID_PD_C1);
}
static void usb0_evt(enum gpio_signal signal)
{
task_set_event(TASK_ID_USB_CHG_P0, USB_CHG_EVENT_BC12, 0);
}
static void usb1_evt(enum gpio_signal signal)
{
task_set_event(TASK_ID_USB_CHG_P1, USB_CHG_EVENT_BC12, 0);
}
static void anx74xx_cable_det_handler(void)
{
int cable_det = gpio_get_level(GPIO_USB_C0_CABLE_DET);
int reset_n = gpio_get_level(GPIO_USB_C0_PD_RST_R_L);
/*
* A cable_det low->high transition was detected. If following the
* debounce time, cable_det is high, and reset_n is low, then ANX3429 is
* currently in standby mode and needs to be woken up. Set the
* TCPC_RESET event which will bring the ANX3429 out of standby
* mode. Setting this event is gated on reset_n being low because the
* ANX3429 will always set cable_det when transitioning to normal mode
* and if in normal mode, then there is no need to trigger a tcpc reset.
*/
if (cable_det && !reset_n)
task_set_event(TASK_ID_PD_C0, PD_EVENT_TCPC_RESET, 0);
}
DECLARE_DEFERRED(anx74xx_cable_det_handler);
static void anx74xx_cable_det_interrupt(enum gpio_signal signal)
{
/* debounce for 2 msec */
hook_call_deferred(&anx74xx_cable_det_handler_data, (2 * MSEC));
}
static void ppc_interrupt(enum gpio_signal signal)
{
/* Only port-0 uses PPC chip */
sn5s330_interrupt(0);
}
static void usb1_oc_evt_deferred(void)
{
/* Only port-1 has overcurrent GPIO interrupt */
board_overcurrent_event(1, 1);
}
DECLARE_DEFERRED(usb1_oc_evt_deferred);
static void usb1_oc_evt(enum gpio_signal signal)
{
/* Switch the context to handle the event */
hook_call_deferred(&usb1_oc_evt_deferred_data, 0);
}
/* Wake-up pins for hibernate */
const enum gpio_signal hibernate_wake_pins[] = {
GPIO_LID_OPEN,
GPIO_AC_PRESENT,
GPIO_POWER_BUTTON_L,
GPIO_EC_RST_ODL,
};
const int hibernate_wake_pins_used = ARRAY_SIZE(hibernate_wake_pins);
/* ADC channels */
const struct adc_t adc_channels[] = {
/* Base detection */
[ADC_BASE_DET] = {
"BASE_DET",
NPCX_ADC_CH0,
ADC_MAX_VOLT,
ADC_READ_MAX + 1,
0
},
/* Measure VBUS through a 1/10 voltage divider */
[ADC_VBUS] = {
"VBUS",
NPCX_ADC_CH1,
ADC_MAX_VOLT * 10,
ADC_READ_MAX + 1,
0
},
/*
* Adapter current output or battery charging/discharging current (uV)
* 18x amplification on charger side.
*/
[ADC_AMON_BMON] = {
"AMON_BMON",
NPCX_ADC_CH2,
ADC_MAX_VOLT * 1000 / 18,
ADC_READ_MAX + 1,
0
},
/*
* ISL9238 PSYS output is 1.44 uA/W over 5.6K resistor, to read
* 0.8V @ 99 W, i.e. 124000 uW/mV. Using ADC_MAX_VOLT*124000 and
* ADC_READ_MAX+1 as multiplier/divider leads to overflows, so we
* only divide by 2 (enough to avoid precision issues).
*/
[ADC_PSYS] = {
"PSYS",
NPCX_ADC_CH3,
ADC_MAX_VOLT * 124000 * 2 / (ADC_READ_MAX + 1),
2,
0
},
};
BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT);
const struct pwm_t pwm_channels[] = {
/* TODO(waihong): Assign a proper frequency. */
[PWM_CH_DISPLIGHT] = { 5, 0, 4800 },
};
BUILD_ASSERT(ARRAY_SIZE(pwm_channels) == PWM_CH_COUNT);
/* Power signal list. Must match order of enum power_signal. */
const struct power_signal_info power_signal_list[] = {
[SDM845_AP_RST_ASSERTED] = {
GPIO_AP_RST_L,
POWER_SIGNAL_ACTIVE_LOW | POWER_SIGNAL_DISABLE_AT_BOOT,
"AP_RST_ASSERTED"},
[SDM845_PS_HOLD] = {
GPIO_PS_HOLD,
POWER_SIGNAL_ACTIVE_HIGH,
"PS_HOLD"},
[SDM845_PMIC_FAULT_L] = {
GPIO_PMIC_FAULT_L,
POWER_SIGNAL_ACTIVE_HIGH | POWER_SIGNAL_DISABLE_AT_BOOT,
"PMIC_FAULT_L"},
[SDM845_POWER_GOOD] = {
GPIO_POWER_GOOD,
POWER_SIGNAL_ACTIVE_HIGH,
"POWER_GOOD"},
[SDM845_WARM_RESET] = {
GPIO_WARM_RESET_L,
POWER_SIGNAL_ACTIVE_HIGH,
"WARM_RESET_L"},
};
BUILD_ASSERT(ARRAY_SIZE(power_signal_list) == POWER_SIGNAL_COUNT);
/* I2C port map */
const struct i2c_port_t i2c_ports[] = {
{"power", I2C_PORT_POWER, 100, GPIO_I2C0_SCL, GPIO_I2C0_SDA},
/* TODO(b/78189419): ANX7428 operates at 400kHz initially. */
{"tcpc0", I2C_PORT_TCPC0, 400, GPIO_I2C1_SCL, GPIO_I2C1_SDA},
{"tcpc1", I2C_PORT_TCPC1, 1000, GPIO_I2C2_SCL, GPIO_I2C2_SDA},
{"eeprom", I2C_PORT_EEPROM, 400, GPIO_I2C5_SCL, GPIO_I2C5_SDA},
{"sensor", I2C_PORT_SENSOR, 400, GPIO_I2C7_SCL, GPIO_I2C7_SDA},
};
const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports);
/* Power Path Controller */
struct ppc_config_t ppc_chips[] = {
{
.i2c_port = I2C_PORT_TCPC0,
.i2c_addr_flags = SN5S330_ADDR0_FLAGS,
.drv = &sn5s330_drv
},
/*
* Port 1 uses two power switches instead:
* NX5P3290: to source VBUS
* NX20P5090: to sink VBUS (charge battery)
* which are controlled directly by EC GPIOs.
*/
};
unsigned int ppc_cnt = ARRAY_SIZE(ppc_chips);
/* TCPC mux configuration */
const struct tcpc_config_t tcpc_config[CONFIG_USB_PD_PORT_COUNT] = {
/* Alert is active-low, open-drain */
[USB_PD_PORT_ANX3429] = {
.bus_type = EC_BUS_TYPE_I2C,
.i2c_info = {
.port = I2C_PORT_TCPC0,
.addr_flags = 0x28,
},
.drv = &anx74xx_tcpm_drv,
.flags = TCPC_FLAGS_ALERT_OD,
},
[USB_PD_PORT_PS8751] = {
.bus_type = EC_BUS_TYPE_I2C,
.i2c_info = {
.port = I2C_PORT_TCPC1,
.addr_flags = 0x0B,
},
.drv = &ps8xxx_tcpm_drv,
},
};
/*
* Port-0 USB mux driver.
*
* The USB mux is handled by TCPC chip and the HPD is handled by AP.
* Redirect to anx74xx_tcpm_usb_mux_driver but override the get() function
* to check the HPD_IRQ mask from virtual_usb_mux_driver.
*/
static int port0_usb_mux_init(int port)
{
return anx74xx_tcpm_usb_mux_driver.init(port);
}
static int port0_usb_mux_set(int i2c_addr, mux_state_t mux_state)
{
return anx74xx_tcpm_usb_mux_driver.set(i2c_addr, mux_state);
}
static int port0_usb_mux_get(int port, mux_state_t *mux_state)
{
int rv;
mux_state_t virtual_mux_state;
rv = anx74xx_tcpm_usb_mux_driver.get(port, mux_state);
rv |= virtual_usb_mux_driver.get(port, &virtual_mux_state);
if (virtual_mux_state & USB_PD_MUX_HPD_IRQ)
*mux_state |= USB_PD_MUX_HPD_IRQ;
return rv;
}
const struct usb_mux_driver port0_usb_mux_driver = {
.init = port0_usb_mux_init,
.set = port0_usb_mux_set,
.get = port0_usb_mux_get,
};
/*
* Port-1 USB mux driver.
*
* The USB mux is handled by TCPC chip and the HPD is handled by AP.
* Redirect to tcpci_tcpm_usb_mux_driver but override the get() function
* to check the HPD_IRQ mask from virtual_usb_mux_driver.
*/
static int port1_usb_mux_init(int port)
{
return tcpci_tcpm_usb_mux_driver.init(port);
}
static int port1_usb_mux_set(int i2c_addr, mux_state_t mux_state)
{
return tcpci_tcpm_usb_mux_driver.set(i2c_addr, mux_state);
}
static int port1_usb_mux_get(int port, mux_state_t *mux_state)
{
int rv;
mux_state_t virtual_mux_state;
rv = tcpci_tcpm_usb_mux_driver.get(port, mux_state);
rv |= virtual_usb_mux_driver.get(port, &virtual_mux_state);
if (virtual_mux_state & USB_PD_MUX_HPD_IRQ)
*mux_state |= USB_PD_MUX_HPD_IRQ;
return rv;
}
static int port1_usb_mux_enter_low_power(int port)
{
return tcpci_tcpm_usb_mux_driver.enter_low_power_mode(port);
}
const struct usb_mux_driver port1_usb_mux_driver = {
.init = &port1_usb_mux_init,
.set = &port1_usb_mux_set,
.get = &port1_usb_mux_get,
.enter_low_power_mode = &port1_usb_mux_enter_low_power,
};
struct usb_mux usb_muxes[CONFIG_USB_PD_PORT_COUNT] = {
{
.driver = &port0_usb_mux_driver,
.hpd_update = &virtual_hpd_update,
},
{
.driver = &port1_usb_mux_driver,
.hpd_update = &virtual_hpd_update,
}
};
/* BC1.2 */
struct pi3usb9281_config pi3usb9281_chips[] = {
{
.i2c_port = I2C_PORT_POWER,
},
{
.i2c_port = I2C_PORT_EEPROM,
},
};
BUILD_ASSERT(ARRAY_SIZE(pi3usb9281_chips) ==
CONFIG_BC12_DETECT_PI3USB9281_CHIP_COUNT);
/* Initialize board. */
static void board_init(void)
{
/* Enable BC1.2 VBUS detection */
gpio_enable_interrupt(GPIO_USB_C0_VBUS_DET_L);
gpio_enable_interrupt(GPIO_USB_C1_VBUS_DET_L);
/* Enable BC1.2 interrupts */
gpio_enable_interrupt(GPIO_USB_C0_BC12_INT_L);
gpio_enable_interrupt(GPIO_USB_C1_BC12_INT_L);
/* Enable interrupt for BMI160 sensor */
gpio_enable_interrupt(GPIO_ACCEL_GYRO_INT_L);
}
DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT);
void board_tcpc_init(void)
{
int port;
/* Only reset TCPC if not sysjump */
if (!system_jumped_to_this_image()) {
/* TODO(crosbug.com/p/61098): How long do we need to wait? */
board_reset_pd_mcu();
}
/* Enable PPC interrupts */
gpio_enable_interrupt(GPIO_USB_C0_SWCTL_INT_ODL);
/* Enable TCPC interrupts */
gpio_enable_interrupt(GPIO_USB_C0_PD_INT_ODL);
gpio_enable_interrupt(GPIO_USB_C1_PD_INT_ODL);
/* Enable CABLE_DET interrupt for ANX3429 wake from standby */
gpio_enable_interrupt(GPIO_USB_C0_CABLE_DET);
/*
* Initialize HPD to low; after sysjump SOC needs to see
* HPD pulse to enable video path
*/
for (port = 0; port < CONFIG_USB_PD_PORT_COUNT; port++) {
const struct usb_mux *mux = &usb_muxes[port];
mux->hpd_update(port, 0, 0);
}
}
DECLARE_HOOK(HOOK_INIT, board_tcpc_init, HOOK_PRIO_INIT_I2C+1);
/* Called on AP S0 -> S3 transition */
static void board_chipset_suspend(void)
{
/*
* Turn off display backlight in S3. AP has its own control. The EC's
* and the AP's will be AND'ed together in hardware.
*/
gpio_set_level(GPIO_ENABLE_BACKLIGHT, 0);
}
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, board_chipset_suspend, HOOK_PRIO_DEFAULT);
/* Called on AP S3 -> S0 transition */
static void board_chipset_resume(void)
{
/* Turn on display backlight in S0. */
gpio_set_level(GPIO_ENABLE_BACKLIGHT, 1);
}
DECLARE_HOOK(HOOK_CHIPSET_RESUME, board_chipset_resume, HOOK_PRIO_DEFAULT);
/* Called on AP S5 -> S3 transition */
static void board_chipset_startup(void)
{
gpio_set_flags(GPIO_USB_C1_OC_ODL, GPIO_INT_FALLING | GPIO_PULL_UP);
gpio_enable_interrupt(GPIO_USB_C1_OC_ODL);
}
DECLARE_HOOK(HOOK_CHIPSET_STARTUP, board_chipset_startup, HOOK_PRIO_DEFAULT);
/* Called on AP S3 -> S5 transition */
static void board_chipset_shutdown(void)
{
/* 5V is off in S5. Disable pull-up to prevent current leak. */
gpio_disable_interrupt(GPIO_USB_C1_OC_ODL);
gpio_set_flags(GPIO_USB_C1_OC_ODL, GPIO_INT_FALLING);
}
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, board_chipset_shutdown, HOOK_PRIO_DEFAULT);
/**
* Power on (or off) a single TCPC.
* minimum on/off delays are included.
*
* @param port Port number of TCPC.
* @param mode 0: power off, 1: power on.
*/
void board_set_tcpc_power_mode(int port, int mode)
{
if (port != USB_PD_PORT_ANX3429)
return;
if (mode) {
gpio_set_level(GPIO_EN_USB_C0_TCPC_PWR, 1);
msleep(ANX74XX_PWR_H_RST_H_DELAY_MS);
gpio_set_level(GPIO_USB_C0_PD_RST_R_L, 1);
} else {
gpio_set_level(GPIO_USB_C0_PD_RST_R_L, 0);
msleep(ANX74XX_RST_L_PWR_L_DELAY_MS);
gpio_set_level(GPIO_EN_USB_C0_TCPC_PWR, 0);
msleep(ANX74XX_PWR_L_PWR_H_DELAY_MS);
}
}
void board_reset_pd_mcu(void)
{
/* Assert reset */
gpio_set_level(GPIO_USB_C0_PD_RST_R_L, 0);
gpio_set_level(GPIO_USB_C1_PD_RST_ODL, 0);
msleep(MAX(1, ANX74XX_RST_L_PWR_L_DELAY_MS));
gpio_set_level(GPIO_USB_C1_PD_RST_ODL, 1);
/* Disable TCPC0 (anx3429) power */
gpio_set_level(GPIO_EN_USB_C0_TCPC_PWR, 0);
msleep(ANX74XX_PWR_L_PWR_H_DELAY_MS);
board_set_tcpc_power_mode(USB_PD_PORT_ANX3429, 1);
}
int board_vbus_sink_enable(int port, int enable)
{
if (port == USB_PD_PORT_ANX3429) {
/* Port 0 is controlled by a PPC SN5S330 */
return ppc_vbus_sink_enable(port, enable);
} else if (port == USB_PD_PORT_PS8751) {
/* Port 1 is controlled by a power switch NX20P5090 */
gpio_set_level(GPIO_EN_USB_C1_CHARGE_EC_L, !enable);
return EC_SUCCESS;
}
return EC_ERROR_INVAL;
}
int board_is_sourcing_vbus(int port)
{
if (port == USB_PD_PORT_ANX3429) {
/* Port 0 is controlled by a PPC SN5S330 */
return ppc_is_sourcing_vbus(port);
} else if (port == USB_PD_PORT_PS8751) {
/* Port 1 is controlled by a power switch NX5P3290 */
return gpio_get_level(GPIO_EN_USB_C1_5V_OUT);
}
return EC_ERROR_INVAL;
}
void board_overcurrent_event(int port, int is_overcurrented)
{
/* TODO(b/120231371): Notify AP */
CPRINTS("p%d: overcurrent!", port);
}
int board_set_active_charge_port(int port)
{
int is_real_port = (port >= 0 &&
port < CONFIG_USB_PD_PORT_COUNT);
int i;
int rv;
if (!is_real_port && port != CHARGE_PORT_NONE)
return EC_ERROR_INVAL;
CPRINTS("New chg p%d", port);
if (port == CHARGE_PORT_NONE) {
/* Disable all ports. */
for (i = 0; i < CONFIG_USB_PD_PORT_COUNT; i++) {
rv = board_vbus_sink_enable(i, 0);
if (rv) {
CPRINTS("Disabling p%d sink path failed.", i);
return rv;
}
}
return EC_SUCCESS;
}
/* Check if the port is sourcing VBUS. */
if (board_is_sourcing_vbus(port)) {
CPRINTF("Skip enable p%d", port);
return EC_ERROR_INVAL;
}
/*
* Turn off the other ports' sink path FETs, before enabling the
* requested charge port.
*/
for (i = 0; i < CONFIG_USB_PD_PORT_COUNT; i++) {
if (i == port)
continue;
if (board_vbus_sink_enable(i, 0))
CPRINTS("p%d: sink path disable failed.", i);
}
/* Enable requested charge port. */
if (board_vbus_sink_enable(port, 1)) {
CPRINTS("p%d: sink path enable failed.");
return EC_ERROR_UNKNOWN;
}
return EC_SUCCESS;
}
void board_set_charge_limit(int port, int supplier, int charge_ma,
int max_ma, int charge_mv)
{
/*
* Ignore lower charge ceiling on PD transition if our battery is
* critical, as we may brownout.
*/
if (supplier == CHARGE_SUPPLIER_PD &&
charge_ma < 1500 &&
charge_get_percent() < CONFIG_CHARGER_MIN_BAT_PCT_FOR_POWER_ON) {
CPRINTS("Using max ilim %d", max_ma);
charge_ma = max_ma;
}
charge_set_input_current_limit(MAX(charge_ma,
CONFIG_CHARGER_INPUT_CURRENT),
charge_mv);
}
uint16_t tcpc_get_alert_status(void)
{
uint16_t status = 0;
if (!gpio_get_level(GPIO_USB_C0_PD_INT_ODL))
if (gpio_get_level(GPIO_USB_C0_PD_RST_R_L))
status |= PD_STATUS_TCPC_ALERT_0;
if (!gpio_get_level(GPIO_USB_C1_PD_INT_ODL))
if (gpio_get_level(GPIO_USB_C1_PD_RST_ODL))
status |= PD_STATUS_TCPC_ALERT_1;
return status;
}
/* Mutexes */
static struct mutex g_lid_mutex;
static struct bmi160_drv_data_t g_bmi160_data;
static struct opt3001_drv_data_t g_opt3001_data = {
.scale = 1,
.uscale = 0,
.offset = 0,
};
/* Matrix to rotate accelerometer into standard reference frame */
const mat33_fp_t base_standard_ref = {
{ FLOAT_TO_FP(-1), 0, 0},
{ 0, FLOAT_TO_FP(-1), 0},
{ 0, 0, FLOAT_TO_FP(1)}
};
struct motion_sensor_t motion_sensors[] = {
/*
* Note: bmi160: supports accelerometer and gyro sensor
* Requirement: accelerometer sensor must init before gyro sensor
* DO NOT change the order of the following table.
*/
[LID_ACCEL] = {
.name = "Accel",
.active_mask = SENSOR_ACTIVE_S0_S3_S5,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_ACCEL,
.location = MOTIONSENSE_LOC_LID,
.drv = &bmi160_drv,
.mutex = &g_lid_mutex,
.drv_data = &g_bmi160_data,
.port = I2C_PORT_SENSOR,
.i2c_spi_addr_flags = BMI160_ADDR0_FLAGS,
.rot_standard_ref = &base_standard_ref,
.default_range = 4, /* g */
.min_frequency = BMI160_ACCEL_MIN_FREQ,
.max_frequency = BMI160_ACCEL_MAX_FREQ,
.config = {
[SENSOR_CONFIG_EC_S0] = {
.odr = 10000 | ROUND_UP_FLAG,
},
},
},
[LID_GYRO] = {
.name = "Gyro",
.active_mask = SENSOR_ACTIVE_S0_S3_S5,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_GYRO,
.location = MOTIONSENSE_LOC_LID,
.drv = &bmi160_drv,
.mutex = &g_lid_mutex,
.drv_data = &g_bmi160_data,
.port = I2C_PORT_SENSOR,
.i2c_spi_addr_flags = BMI160_ADDR0_FLAGS,
.default_range = 1000, /* dps */
.rot_standard_ref = &base_standard_ref,
.min_frequency = BMI160_GYRO_MIN_FREQ,
.max_frequency = BMI160_GYRO_MAX_FREQ,
},
[LID_ALS] = {
.name = "Light",
.active_mask = SENSOR_ACTIVE_S0,
.chip = MOTIONSENSE_CHIP_OPT3001,
.type = MOTIONSENSE_TYPE_LIGHT,
.location = MOTIONSENSE_LOC_LID,
.drv = &opt3001_drv,
.drv_data = &g_opt3001_data,
.port = I2C_PORT_SENSOR,
.i2c_spi_addr_flags = OPT3001_I2C_ADDR_FLAGS,
.rot_standard_ref = NULL,
.default_range = 0x10000, /* scale = 1; uscale = 0 */
.min_frequency = OPT3001_LIGHT_MIN_FREQ,
.max_frequency = OPT3001_LIGHT_MAX_FREQ,
.config = {
[SENSOR_CONFIG_EC_S0] = {
.odr = 1000,
},
},
},
};
const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors);