chrome-ec/util/iteflash.c

2414 lines
58 KiB
C

/* Copyright 2013 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* ITE83xx SoC in-system programming tool
*/
#include <errno.h>
#include <fcntl.h>
#include <ftdi.h>
#include <getopt.h>
#include <linux/i2c-dev.h>
#include <linux/i2c.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <time.h>
#include <unistd.h>
#include "compile_time_macros.h"
#include "usb_if.h"
/* Default FTDI device : Servo v2. */
#define SERVO_USB_VID 0x18d1
#define SERVO_USB_PID 0x5002
#define SERVO_INTERFACE INTERFACE_B
/* Default CCD device: Cr50. */
#define CR50_USB_VID 0x18d1
#define CR50_USB_PID 0x5014
/* Cr50 exposed properties of the USB I2C endpoint. */
#define CR50_I2C_SUBCLASS 82
#define CR50_I2C_PROTOCOL 1
#define CROS_CMD_ADDR 0x78 /* USB_I2C_CMD_ADDR 0xF0 >> 1 */
#define CROS_CMD_ITE_SYNC 0
/* DBGR I2C addresses */
#define I2C_CMD_ADDR 0x5A
#define I2C_DATA_ADDR 0x35
#define I2C_BLOCK_ADDR 0x79
#define FTDI_I2C_FREQ 400000
/* I2C pins on the FTDI interface */
#define SCL_BIT BIT(0)
#define SDA_BIT BIT(1)
/* Chip ID register value */
#define CHIP_ID 0x8380
/* Embedded flash page size */
#define PAGE_SIZE (1<<8)
/* Embedded flash block write size for different programming modes. */
#define FTDI_BLOCK_WRITE_SIZE (1<<16)
/* JEDEC SPI Flash commands */
#define SPI_CMD_PAGE_PROGRAM 0x02
#define SPI_CMD_WRITE_DISABLE 0x04
#define SPI_CMD_READ_STATUS 0x05
#define SPI_CMD_WRITE_ENABLE 0x06
#define SPI_CMD_FAST_READ 0x0B
#define SPI_CMD_CHIP_ERASE 0x60
#define SPI_CMD_SECTOR_ERASE_1K 0xD7
#define SPI_CMD_SECTOR_ERASE_4K 0x20
#define SPI_CMD_WORD_PROGRAM 0xAD
#define SPI_CMD_EWSR 0x50 /* Enable Write Status Register */
#define SPI_CMD_WRSR 0x01 /* Write Status Register */
#define SPI_CMD_RDID 0x9F /* Read Flash ID */
/* Size for FTDI outgoing buffer */
#define FTDI_CMD_BUF_SIZE (1<<12)
/* Reset Status */
#define RSTS_VCCDO_PW_ON 0x40
#define RSTS_VFSPIPG 0x20
#define RSTS_HGRST 0x08
#define RSTS_GRST 0x04
/* I2C MUX Configuration: TCA9543 or PCA9546 */
#define I2C_MUX_CMD_ADDR 0x70
#define I2C_MUX_CMD_NONE 0x00
#define I2C_MUX_CMD_INAS 0x01
#define I2C_MUX_CMD_EC 0x02
/* Eflash Type*/
#define EFLASH_TYPE_8315 0x01
#define EFLASH_TYPE_KGD 0x02
#define EFLASH_TYPE_NONE 0xFF
uint8_t eflash_type;
uint8_t spi_cmd_sector_erase;
/* Embedded flash number of pages in a sector erase */
uint8_t sector_erase_pages;
static volatile sig_atomic_t exit_requested;
struct i2c_interface;
/* Config mostly comes from the command line. Defaults are set in main(). */
struct iteflash_config {
char *input_filename;
char *output_filename;
int send_waveform; /* boolean */
int erase; /* boolean */
int i2c_mux; /* boolean */
int debug; /* boolean */
int disable_watchdog; /* boolean */
int disable_protect_path; /* boolean */
int block_write_size;
int usb_interface;
int usb_vid;
int usb_pid;
char *usb_serial;
char *i2c_dev_path;
const struct i2c_interface *i2c_if;
size_t range_base;
size_t range_size;
};
struct common_hnd {
struct iteflash_config conf;
int flash_size;
int flash_cmd_v2; /* boolean */
int dbgr_addr_3bytes; /* boolean */
union {
int i2c_dev_fd;
struct usb_endpoint uep;
struct ftdi_context *ftdi_hnd;
};
};
struct cmds {
uint8_t addr;
uint8_t cmd;
};
/* For all callback return values, zero indicates success, non-zero failure. */
struct i2c_interface {
/* Optional, may be NULL. */
int (*interface_init)(struct common_hnd *chnd);
/* Always called if non-NULL, even if special waveform is skipped! */
/* Optional, may be NULL. */
int (*interface_post_waveform)(struct common_hnd *chnd);
/* Called exactly once if and only if interface_init() succeeded. */
/* Optional, may be NULL. */
int (*interface_shutdown)(struct common_hnd *chnd);
/* Optional, may be NULL (unsupported for this I2C interface type). */
int (*send_special_waveform)(struct common_hnd *chnd);
/* Required, must not be NULL. */
int (*byte_transfer)(struct common_hnd *chnd, uint8_t addr,
uint8_t *data, int write, int numbytes);
/* Required, must be positive. */
int default_block_write_size;
};
static int spi_flash_command_short(struct common_hnd *chnd,
uint8_t cmd, char *desc);
static void null_and_free(void **ptr)
{
void *holder;
if (*ptr) {
holder = *ptr;
*ptr = NULL;
free(holder);
}
}
/* This releases any memory owned by *conf. This does NOT free conf itself! */
/* Not all pointers in conf necessarily point to memory owned by it. */
static void config_release(struct iteflash_config *conf)
{
null_and_free((void **)&conf->input_filename);
null_and_free((void **)&conf->output_filename);
null_and_free((void **)&conf->usb_serial);
null_and_free((void **)&conf->i2c_dev_path);
}
/* number of bytes to send consecutively before checking for ACKs */
#define FTDI_TX_BUFFER_LIMIT 32
static inline int i2c_byte_transfer(struct common_hnd *chnd, uint8_t addr,
uint8_t *data, int write, int numbytes)
{
/* If we got a termination signal, stop sending data */
if (exit_requested)
return -1;
return chnd->conf.i2c_if->byte_transfer(chnd, addr, data, write,
numbytes);
}
static int linux_i2c_byte_transfer(struct common_hnd *chnd, uint8_t addr,
uint8_t *data, int write, int numbytes)
{
static const int nmsgs = 1;
int ret, extra_int;
struct i2c_msg i2cmsg = {};
struct i2c_rdwr_ioctl_data msgset = {};
i2cmsg.addr = addr;
if (!write)
i2cmsg.flags |= I2C_M_RD;
i2cmsg.buf = data;
i2cmsg.len = numbytes;
msgset.msgs = &i2cmsg;
msgset.nmsgs = nmsgs;
ret = ioctl(chnd->i2c_dev_fd, I2C_RDWR, &msgset);
if (ret < 0) {
extra_int = errno;
fprintf(stderr, "%s: ioctl() failed with return value %d and "
"errno %d\n", __func__, ret, extra_int);
if (ret == -1 && extra_int)
ret = -abs(extra_int);
} else if (ret < nmsgs) {
fprintf(stderr, "%s: failed to send %d of %d I2C messages\n",
__func__, (nmsgs - ret), nmsgs);
ret = -1;
} else {
ret = 0;
}
return ret;
}
static int i2c_add_send_byte(struct ftdi_context *ftdi, uint8_t *buf,
uint8_t *ptr, uint8_t *tbuf, int tcnt, int debug)
{
int ret, i, j, remaining_data, ack_idx;
int tx_buffered = 0;
static uint8_t ack[FTDI_TX_BUFFER_LIMIT];
uint8_t *b = ptr;
uint8_t failed_ack = 0;
for (i = 0; i < tcnt; i++) {
/* WORKAROUND: force SDA before sending the next byte */
*b++ = SET_BITS_LOW; *b++ = SDA_BIT; *b++ = SCL_BIT | SDA_BIT;
/* write byte */
*b++ = MPSSE_DO_WRITE | MPSSE_BITMODE | MPSSE_WRITE_NEG;
*b++ = 0x07; *b++ = *tbuf++;
/* prepare for ACK */
*b++ = SET_BITS_LOW; *b++ = 0; *b++ = SCL_BIT;
/* read ACK */
*b++ = MPSSE_DO_READ | MPSSE_BITMODE | MPSSE_LSB;
*b++ = 0;
*b++ = SEND_IMMEDIATE;
tx_buffered++;
/*
* On the last byte, or every FTDI_TX_BUFFER_LIMIT bytes, read
* the ACK bits.
*/
if (i == tcnt-1 || (tx_buffered == FTDI_TX_BUFFER_LIMIT)) {
/* write data */
ret = ftdi_write_data(ftdi, buf, b - buf);
if (ret < 0) {
fprintf(stderr, "failed to write byte\n");
return ret;
}
/* read ACK bits */
remaining_data = tx_buffered;
ack_idx = 0;
do {
ret = ftdi_read_data(ftdi, &ack[ack_idx],
remaining_data);
if (ret < 0) {
fprintf(stderr, "read ACK failed\n");
return ret;
}
remaining_data -= ret;
ack_idx += ret;
} while (remaining_data);
for (j = 0; j < tx_buffered; j++) {
if ((ack[j] & 0x80) != 0)
failed_ack = ack[j];
}
/* check ACK bits */
if (ret < 0 || failed_ack) {
if (debug)
fprintf(stderr,
"write ACK fail: %d, 0x%02x\n",
ret, failed_ack);
return -ENXIO;
}
/* reset for next set of transactions */
b = ptr;
tx_buffered = 0;
}
}
return 0;
}
static int i2c_add_recv_bytes(struct ftdi_context *ftdi, uint8_t *buf,
uint8_t *ptr, uint8_t *rbuf, int rcnt)
{
int ret, i, rbuf_idx;
uint8_t *b = ptr;
for (i = 0; i < rcnt; i++) {
/* set SCL low */
*b++ = SET_BITS_LOW; *b++ = 0; *b++ = SCL_BIT;
/* read the byte on the wire */
*b++ = MPSSE_DO_READ; *b++ = 0; *b++ = 0;
if (i == rcnt - 1) {
/* NACK last byte */
*b++ = SET_BITS_LOW; *b++ = 0; *b++ = SCL_BIT;
*b++ = MPSSE_DO_WRITE | MPSSE_BITMODE | MPSSE_WRITE_NEG;
*b++ = 0; *b++ = 0xff; *b++ = SEND_IMMEDIATE;
} else {
/* ACK all other bytes */
*b++ = SET_BITS_LOW; *b++ = 0; *b++ = SCL_BIT | SDA_BIT;
*b++ = MPSSE_DO_WRITE | MPSSE_BITMODE | MPSSE_WRITE_NEG;
*b++ = 0; *b++ = 0; *b++ = SEND_IMMEDIATE;
}
}
ret = ftdi_write_data(ftdi, buf, b - buf);
if (ret < 0) {
fprintf(stderr, "failed to prepare read\n");
return ret;
}
rbuf_idx = 0;
do {
ret = ftdi_read_data(ftdi, &rbuf[rbuf_idx], rcnt);
if (ret < 0) {
fprintf(stderr, "read byte failed\n");
break;
}
rcnt -= ret;
rbuf_idx += ret;
} while (rcnt);
return ret;
}
#define USB_I2C_HEADER_SIZE 4
static int ccd_i2c_byte_transfer(struct common_hnd *chnd, uint8_t addr,
uint8_t *data, int write, int numbytes)
{
uint8_t usb_buffer[USB_I2C_HEADER_SIZE + numbytes +
(((!write * numbytes) > 0x7f) ? 2 : 0)];
size_t response_size;
size_t extra = 0;
/*
* Build a message following format described in ./include/usb_i2c.h.
*
* Hardcode port, the lowest 4 bits of the first byte, to 0; may need
* to make this a command line option.
*/
usb_buffer[0] = 0;
usb_buffer[1] = addr;
if (write) {
/*
* Write count might spill over into the top 4 bits of the
* first byte. We trust the caller not to pass numbytes
* exceeding (2^12 - 1).
*/
if (numbytes > 255)
usb_buffer[0] |= (numbytes >> 4) & 0xf0;
usb_buffer[2] = numbytes & 0xff;
usb_buffer[3] = 0;
memcpy(usb_buffer + USB_I2C_HEADER_SIZE, data, numbytes);
} else {
usb_buffer[2] = 0;
if (numbytes < 0x80) {
usb_buffer[3] = numbytes;
} else {
usb_buffer[3] = (numbytes & 0x7f) | 0x80;
usb_buffer[4] = numbytes >> 7;
usb_buffer[5] = 0;
extra = 2;
}
}
response_size = 0;
usb_trx(&chnd->uep, usb_buffer,
write ? sizeof(usb_buffer) : USB_I2C_HEADER_SIZE + extra,
usb_buffer, sizeof(usb_buffer), 1, &response_size);
if (response_size < (USB_I2C_HEADER_SIZE + (write ? 0 : numbytes))) {
fprintf(stderr, "%s: got too few bytes (%zd) in response\n",
__func__, response_size);
return -1;
}
if (usb_buffer[0]) {
uint32_t rv;
/*
* Error is reported as a 16 bit value in little endian byte
* order.
*/
rv = usb_buffer[1];
rv = (rv << 8) + usb_buffer[0];
fprintf(stderr, "%s: usb i2c error %d\n",
__func__,
(((uint16_t)usb_buffer[1]) << 8) + usb_buffer[0]);
return -rv;
}
if (!write)
memcpy(data, usb_buffer + USB_I2C_HEADER_SIZE, numbytes);
return 0;
}
static int ftdi_i2c_byte_transfer(struct common_hnd *chnd, uint8_t addr,
uint8_t *data, int write, int numbytes)
{
int ret, rets;
static uint8_t buf[FTDI_CMD_BUF_SIZE];
uint8_t *b;
uint8_t slave_addr;
struct ftdi_context *ftdi;
ret = 0;
b = buf;
ftdi = chnd->ftdi_hnd;
/* START condition */
/* SCL & SDA high */
*b++ = SET_BITS_LOW; *b++ = 0; *b++ = 0;
*b++ = SET_BITS_LOW; *b++ = 0; *b++ = 0;
/* SCL high, SDA low */
*b++ = SET_BITS_LOW; *b++ = 0; *b++ = SDA_BIT;
*b++ = SET_BITS_LOW; *b++ = 0; *b++ = SDA_BIT;
/* SCL low, SDA low */
*b++ = SET_BITS_LOW; *b++ = 0; *b++ = SCL_BIT | SDA_BIT;
*b++ = SET_BITS_LOW; *b++ = 0; *b++ = SCL_BIT | SDA_BIT;
/* send address */
slave_addr = (addr << 1) | (write ? 0 : 1);
ret = i2c_add_send_byte(ftdi, buf, b, &slave_addr, 1, chnd->conf.debug);
if (ret < 0) {
if (chnd->conf.debug)
fprintf(stderr, "address %02x failed\n", addr);
ret = -ENXIO;
goto exit_xfer;
}
b = buf;
if (write) /* write data */
ret = i2c_add_send_byte(ftdi, buf, b, data, numbytes,
chnd->conf.debug);
else /* read data */
ret = i2c_add_recv_bytes(ftdi, buf, b, data, numbytes);
exit_xfer:
b = buf;
/* STOP condition */
/* SCL high, SDA low */
*b++ = SET_BITS_LOW; *b++ = 0; *b++ = SDA_BIT;
*b++ = SET_BITS_LOW; *b++ = 0; *b++ = SDA_BIT;
/* SCL high, SDA high */
*b++ = SET_BITS_LOW; *b++ = 0; *b++ = 0;
*b++ = SET_BITS_LOW; *b++ = 0; *b++ = 0;
rets = ftdi_write_data(ftdi, buf, b - buf);
if (rets < 0)
fprintf(stderr, "failed to send STOP\n");
return ret;
}
static int i2c_write_byte(struct common_hnd *chnd, uint8_t cmd, uint8_t data)
{
int ret;
ret = i2c_byte_transfer(chnd, I2C_CMD_ADDR, &cmd, 1, 1);
if (ret < 0)
return -EIO;
ret = i2c_byte_transfer(chnd, I2C_DATA_ADDR, &data, 1, 1);
if (ret < 0)
return -EIO;
return 0;
}
static int i2c_read_byte(struct common_hnd *chnd, uint8_t cmd, uint8_t *data)
{
int ret;
ret = i2c_byte_transfer(chnd, I2C_CMD_ADDR, &cmd, 1, 1);
if (ret < 0)
return -EIO;
ret = i2c_byte_transfer(chnd, I2C_DATA_ADDR, data, 0, 1);
if (ret < 0)
return -EIO;
return 0;
}
/* Configure I2C MUX to choose EC Prog channel */
static int config_i2c_mux(struct common_hnd *chnd, uint8_t cmd)
{
int ret;
ret = i2c_byte_transfer(chnd, I2C_MUX_CMD_ADDR, &cmd, 1, 1);
if (ret < 0) {
fprintf(stderr, "Failed to configure I2C MUX.");
return -EIO;
}
return 0;
}
/* Get 3rd Byte Chip ID */
static int get_3rd_chip_id_byte(struct common_hnd *chnd, uint8_t *chip_id)
{
int ret = 0;
ret = i2c_write_byte(chnd, 0x80, 0xf0);
ret |= i2c_write_byte(chnd, 0x2f, 0x20);
ret |= i2c_write_byte(chnd, 0x2e, 0x85);
ret |= i2c_read_byte(chnd, 0x30, chip_id);
if (ret < 0)
fprintf(stderr, "Failed to get id of 3rd byte.");
return ret;
}
static int check_flashid(struct common_hnd *chnd)
{
int ret = 0;
uint8_t id[16], i;
struct cmds commands[] = {
{0x07, 0x7f},
{0x06, 0xff},
{0x04, 0x00},
{0x05, 0xfe},
{0x08, 0x00},
{0x05, 0xfd},
{0x08, 0x9f}
};
for (i = 0; i < ARRAY_SIZE(commands); i++) {
ret = i2c_write_byte(chnd, commands[i].addr, commands[i].cmd);
if (ret) {
fprintf(stderr, "Flash ID Failed : cmd %x ,data %x\n",
commands[i].addr, commands[i].cmd);
return ret;
}
}
ret = i2c_byte_transfer(chnd, I2C_DATA_ADDR, id, 0, 16);
if (ret < 0)
fprintf(stderr, "Check Flash ID FAILED\n");
if ((id[0] == 0xFF) && (id[1] == 0xFF) && (id[2] == 0xFE)) {
printf("EFLASH TYPE = 8315\n\r");
eflash_type = EFLASH_TYPE_8315;
} else if ((id[0] == 0xC8) || (id[0] == 0xEF)) {
printf("EFLASH TYPE = KGD\n\r");
eflash_type = EFLASH_TYPE_KGD;
} else {
printf("Invalid EFLASH TYPE : ");
printf("FLASH ID = %02x %02x %02x\n\r", id[0], id[1], id[2]);
eflash_type = EFLASH_TYPE_NONE;
ret = -EINVAL;
}
return ret;
}
/* Fills in chnd->flash_size */
static int check_chipid(struct common_hnd *chnd)
{
int ret;
uint8_t ver = 0xff;
uint32_t id = 0xffff;
uint16_t v2[7] = {128, 192, 256, 384, 512, 0, 1024};
/*
* Chip Version is mapping from bit 3-0
* Flash size is mapping from bit 7-4
*
* Chip Version (bit 3-0)
* 0: AX
* 1: BX
* 2: CX
* 3: DX
*
* CX before flash size (bit 7-4)
* 0:128KB
* 4:192KB
* 8:256KB
*
* DX flash size(bit 7-4)
* 0:128KB
* 2:192KB
* 4:256KB
* 6:384KB
* 8:512KB
*
* flash size(bit 7-4) of it8xxx1 or it8xxx2 series
* 0:128KB
* 4:256KB
* 8:512KB
* C:1024KB
*/
ret = i2c_read_byte(chnd, 0x00, (uint8_t *)&id + 1);
if (ret < 0)
return ret;
ret = i2c_read_byte(chnd, 0x01, (uint8_t *)&id);
if (ret < 0)
return ret;
ret = i2c_read_byte(chnd, 0x02, &ver);
if (ret < 0)
return ret;
if ((id & 0xff00) != (CHIP_ID & 0xff00)) {
id |= 0xff0000;
ret = get_3rd_chip_id_byte(chnd, (uint8_t *)&id+2);
if (ret < 0)
return ret;
if ((id & 0xf000f) == 0x80001 || (id & 0xf000f) == 0x80002) {
chnd->flash_cmd_v2 = 1;
chnd->dbgr_addr_3bytes = 1;
} else {
fprintf(stderr, "Invalid chip id: %05x\n", id);
return -EINVAL;
}
} else {
chnd->dbgr_addr_3bytes = 0;
if ((ver & 0x0f) >= 0x03)
chnd->flash_cmd_v2 = 1;
else
chnd->flash_cmd_v2 = 0;
}
/* compute embedded flash size from CHIPVER field */
if (chnd->flash_cmd_v2)
chnd->flash_size = v2[(ver & 0xF0)>>5] * 1024;
else
chnd->flash_size = (128 + (ver & 0xF0)) * 1024;
if (chnd->flash_size == 0) {
fprintf(stderr, "Invalid Flash Size");
return -EINVAL;
}
printf("CHIPID %05x, CHIPVER %02x, Flash size %d kB\n", id, ver,
chnd->flash_size / 1024);
return 0;
}
/* DBGR Reset */
static int dbgr_reset(struct common_hnd *chnd, unsigned char val)
{
int ret = 0;
/* Reset CPU only, and we keep power state until flashing is done. */
if (chnd->dbgr_addr_3bytes)
ret |= i2c_write_byte(chnd, 0x80, 0xf0);
ret |= i2c_write_byte(chnd, 0x2f, 0x20);
ret |= i2c_write_byte(chnd, 0x2e, 0x06);
/* Enable the Reset Status by val */
ret |= i2c_write_byte(chnd, 0x30, val);
ret |= i2c_write_byte(chnd, 0x27, 0x80);
if (ret < 0)
fprintf(stderr, "DBGR RESET FAILED\n");
return 0;
}
/* Exit DBGR mode */
static int exit_dbgr_mode(struct common_hnd *chnd)
{
int ret = 0;
printf("Exit DBGR mode...\n");
if (chnd->dbgr_addr_3bytes)
ret |= i2c_write_byte(chnd, 0x80, 0xf0);
ret |= i2c_write_byte(chnd, 0x2f, 0x1c);
ret |= i2c_write_byte(chnd, 0x2e, 0x08);
ret |= i2c_write_byte(chnd, 0x30, BIT(4));
if (ret < 0)
fprintf(stderr, "EXIT DBGR MODE FAILED\n");
return 0;
}
/* DBGR reset GPIOs to default */
static int dbgr_reset_gpio(struct common_hnd *chnd)
{
int ret = 0;
printf("Reset GPIOs to default.\n");
if (chnd->dbgr_addr_3bytes)
ret |= i2c_write_byte(chnd, 0x80, 0xf0);
ret |= i2c_write_byte(chnd, 0x2f, 0x20);
ret |= i2c_write_byte(chnd, 0x2e, 0x07);
ret |= i2c_write_byte(chnd, 0x30, BIT(1));
if (ret < 0)
fprintf(stderr, "DBGR RESET GPIO FAILED\n");
return 0;
}
/* disable watchdog */
static int dbgr_disable_watchdog(struct common_hnd *chnd)
{
int ret = 0;
printf("Disabling watchdog...\n");
if (chnd->dbgr_addr_3bytes)
ret |= i2c_write_byte(chnd, 0x80, 0xf0);
ret |= i2c_write_byte(chnd, 0x2f, 0x1f);
ret |= i2c_write_byte(chnd, 0x2e, 0x05);
ret |= i2c_write_byte(chnd, 0x30, 0x30);
if (ret < 0)
fprintf(stderr, "DBGR DISABLE WATCHDOG FAILED!\n");
return ret;
}
/* disable protect path from DBGR */
static int dbgr_disable_protect_path(struct common_hnd *chnd)
{
int ret = 0, i;
printf("Disabling protect path...\n");
if (chnd->dbgr_addr_3bytes)
ret |= i2c_write_byte(chnd, 0x80, 0xf0);
ret |= i2c_write_byte(chnd, 0x2f, 0x20);
for (i = 0; i < 32; i++) {
ret |= i2c_write_byte(chnd, 0x2e, 0xa0+i);
ret |= i2c_write_byte(chnd, 0x30, 0);
}
if (ret < 0)
fprintf(stderr, "DISABLE PROTECT PATH FROM DBGR FAILED!\n");
return ret;
}
/* Enter follow mode and FSCE# high level */
static int spi_flash_follow_mode(struct common_hnd *chnd, char *desc)
{
int ret = 0;
ret |= i2c_write_byte(chnd, 0x07, 0x7f);
ret |= i2c_write_byte(chnd, 0x06, 0xff);
ret |= i2c_write_byte(chnd, 0x05, 0xfe);
ret |= i2c_write_byte(chnd, 0x04, 0x00);
ret |= i2c_write_byte(chnd, 0x08, 0x00);
ret = (ret ? -EIO : 0);
if (ret < 0)
fprintf(stderr, "Flash %s enter follow mode FAILED (%d)\n",
desc, ret);
return ret;
}
/* Exit follow mode */
static int spi_flash_follow_mode_exit(struct common_hnd *chnd, char *desc)
{
int ret = 0;
ret |= i2c_write_byte(chnd, 0x07, 0x00);
ret |= i2c_write_byte(chnd, 0x06, 0x00);
ret = (ret ? -EIO : 0);
if (ret < 0)
fprintf(stderr, "Flash %s exit follow mode FAILED (%d)\n",
desc, ret);
return ret;
}
/* Stop EC by sending follow mode command */
static int dbgr_stop_ec(struct common_hnd *chnd)
{
int ret = 0;
ret |= spi_flash_follow_mode(chnd, "enter follow mode");
ret |= spi_flash_follow_mode_exit(chnd, "exit follow mode");
if (ret < 0)
fprintf(stderr, "DBGR STOP EC FAILED!\n");
return ret;
}
/* SPI Flash generic command, short version */
static int spi_flash_command_short(struct common_hnd *chnd,
uint8_t cmd, char *desc)
{
int ret = 0;
ret |= i2c_write_byte(chnd, 0x05, 0xfe);
ret |= i2c_write_byte(chnd, 0x08, 0x00);
ret |= i2c_write_byte(chnd, 0x05, 0xfd);
ret |= i2c_write_byte(chnd, 0x08, cmd);
ret = (ret ? -EIO : 0);
if (ret < 0)
fprintf(stderr, "Flash CMD %s FAILED (%d)\n", desc, ret);
return ret;
}
/* SPI Flash set erase page */
static int spi_flash_set_erase_page(struct common_hnd *chnd,
int page, char *desc)
{
int ret = 0;
ret |= i2c_write_byte(chnd, 0x08, page >> 8);
ret |= i2c_write_byte(chnd, 0x08, page & 0xff);
ret |= i2c_write_byte(chnd, 0x08, 0);
ret = (ret ? -EIO : 0);
if (ret < 0)
fprintf(stderr, "Flash %s set page FAILED (%d)\n", desc, ret);
return ret;
}
/* Poll SPI Flash Read Status register until BUSY is reset */
static int spi_poll_busy(struct common_hnd *chnd, char *desc)
{
uint8_t reg = 0xff;
int ret = -EIO;
if (spi_flash_command_short(chnd, SPI_CMD_READ_STATUS,
"read status for busy bit") < 0) {
fprintf(stderr, "Flash %s wait busy cleared FAILED\n", desc);
goto failed_read_status;
}
while (1) {
if (i2c_byte_transfer(chnd, I2C_DATA_ADDR, &reg, 0, 1) < 0) {
fprintf(stderr, "Flash polling busy cleared FAILED\n");
break;
}
if ((reg & 0x01) == 0) {
/* busy bit cleared */
ret = 0;
break;
}
}
failed_read_status:
return ret;
}
static int spi_check_write_enable(struct common_hnd *chnd, char *desc)
{
uint8_t reg = 0xff;
int ret = -EIO;
if (spi_flash_command_short(chnd, SPI_CMD_READ_STATUS,
"read status for write enable bit") < 0) {
fprintf(stderr, "Flash %s wait WE FAILED\n", desc);
goto failed_read_status;
}
while (1) {
if (i2c_byte_transfer(chnd, I2C_DATA_ADDR, &reg, 0, 1) < 0) {
fprintf(stderr, "Flash polling WE FAILED\n");
break;
}
if ((reg & 0x03) == 2) {
/* busy bit cleared and WE bit set */
ret = 0;
break;
}
}
failed_read_status:
return ret;
}
static int ftdi_config_i2c(struct ftdi_context *ftdi)
{
int ret;
static const uint16_t divisor =
60000000 / (2 * FTDI_I2C_FREQ * 3 / 2 /* 3-phase CLK */) - 1;
uint8_t clock_buf[] = {
EN_3_PHASE,
DIS_DIV_5,
TCK_DIVISOR,
divisor & 0xff,
divisor >> 8};
ret = ftdi_set_latency_timer(ftdi, 16 /* ms */);
if (ret < 0)
fprintf(stderr, "Cannot set latency\n");
ret = ftdi_set_bitmode(ftdi, 0, BITMODE_RESET);
if (ret < 0) {
fprintf(stderr, "Cannot reset MPSSE\n");
return -EIO;
}
ret = ftdi_set_bitmode(ftdi, 0, BITMODE_MPSSE);
if (ret < 0) {
fprintf(stderr, "Cannot enable MPSSE\n");
return -EIO;
}
ret = ftdi_usb_purge_buffers(ftdi);
if (ret < 0)
fprintf(stderr, "Cannot purge buffers\n");
/* configure the clock */
ret = ftdi_write_data(ftdi, clock_buf, sizeof(clock_buf));
if (ret < 0)
return ret;
return 0;
}
/* Special waveform definition */
#define SPECIAL_LEN_USEC 50000ULL /* us */
#define SPECIAL_FREQ 400000ULL
#define SPECIAL_PATTERN 0x0000020301010302ULL
#define SPECIAL_PATTERN_SDA_L_SCL_L 0x0000000000000000ULL
#define SPECIAL_PATTERN_SDA_H_SCL_L 0x0202020202020202ULL
#define SPECIAL_PATTERN_SDA_L_SCL_H 0x0101010101010101ULL
#define SPECIAL_PATTERN_SDA_H_SCL_H 0x0303030303030303ULL
#define TICK_COUNT 24
#define MSEC 1000
#define USEC 1000000
#define SPECIAL_BUFFER_SIZE \
(((SPECIAL_LEN_USEC * SPECIAL_FREQ * 2 / USEC) + 7) & ~7)
static int connect_to_ccd_i2c_bridge(struct common_hnd *chnd)
{
int rv;
rv = usb_findit(chnd->conf.usb_serial, chnd->conf.usb_vid,
chnd->conf.usb_pid, CR50_I2C_SUBCLASS,
CR50_I2C_PROTOCOL, &chnd->uep);
if (rv) {
fprintf(stderr, "%s: usb_findit returned error %d\n",
__func__, rv);
}
return rv;
}
static int ccd_trigger_special_waveform(struct common_hnd *chnd)
{
uint8_t response[20];
size_t rsize;
uint8_t req[] = {
0, /* Port 0. Might be necessary to modify. */
CROS_CMD_ADDR, /* Chrome OS dedicated address. */
1, /* Will send a single byte command. */
0, /* No need to read back anything. */
CROS_CMD_ITE_SYNC
};
usb_trx(&chnd->uep, req, sizeof(req), response, sizeof(response), 1,
&rsize);
if (rsize < USB_I2C_HEADER_SIZE)
return -1;
if (response[0])
return -response[0];
/*
* The target is about to get reset, let's shut down the USB
* connection.
*/
usb_shut_down(&chnd->uep);
sleep(3);
return connect_to_ccd_i2c_bridge(chnd);
}
static int ftdi_send_special_waveform(struct common_hnd *chnd)
{
int ret;
int i;
uint64_t *wave;
struct ftdi_context *ftdi = chnd->ftdi_hnd;
uint8_t release_lines[] = {SET_BITS_LOW, 0, 0};
wave = malloc(SPECIAL_BUFFER_SIZE);
if (!wave) {
fprintf(stderr, "malloc(%zu) failed\n",
(size_t)SPECIAL_BUFFER_SIZE);
return -1;
}
/* Reset the FTDI into a known state */
ret = ftdi_set_bitmode(ftdi, 0xFF, BITMODE_RESET);
if (ret) {
fprintf(stderr, "failed to reset FTDI\n");
goto free_and_return;
}
/*
* set the clock divider, so we output a new bitbang value every
* 2.5us.
*/
ret = ftdi_set_baudrate(ftdi, 160000);
if (ret) {
fprintf(stderr, "failed to set bitbang clock\n");
goto free_and_return;
}
/* Enable asynchronous bit-bang mode */
ret = ftdi_set_bitmode(ftdi, 0xFF, BITMODE_BITBANG);
if (ret) {
fprintf(stderr, "failed to set bitbang mode\n");
goto free_and_return;
}
/* do usb special waveform */
wave[0] = 0x0;
ftdi_write_data(ftdi, (uint8_t *)wave, 1);
usleep(5000);
/* program each special tick */
for (i = 0; i < TICK_COUNT; ) {
wave[i++] = SPECIAL_PATTERN_SDA_L_SCL_L;
wave[i++] = SPECIAL_PATTERN_SDA_H_SCL_L;
wave[i++] = SPECIAL_PATTERN_SDA_L_SCL_L;
}
wave[19] = SPECIAL_PATTERN_SDA_H_SCL_H;
/* fill the buffer with the waveform pattern */
for (i = TICK_COUNT; i < SPECIAL_BUFFER_SIZE / sizeof(uint64_t); i++)
wave[i] = SPECIAL_PATTERN;
ret = ftdi_write_data(ftdi, (uint8_t *)wave, SPECIAL_BUFFER_SIZE);
if (ret < 0)
fprintf(stderr, "Cannot output special waveform\n");
else
/* no error */
ret = 0;
/* clean everything to go back to regular I2C communication */
ftdi_usb_purge_buffers(ftdi);
ftdi_set_bitmode(ftdi, 0xff, BITMODE_RESET);
ftdi_config_i2c(ftdi);
ftdi_write_data(ftdi, release_lines, sizeof(release_lines));
free_and_return:
free(wave);
return ret;
}
static int send_special_waveform(struct common_hnd *chnd)
{
const int max_iterations = 10;
int ret;
int iterations;
if (!chnd->conf.i2c_if->send_special_waveform) {
fprintf(stderr, "This binary does not support sending the ITE "
"special waveform with the chosen I2C interface.\n");
return -1;
}
iterations = 0;
do {
ret = chnd->conf.i2c_if->send_special_waveform(chnd);
if (ret)
break;
/* wait for PLL stable for 5ms (plus remaining USB transfers) */
usleep(10 * MSEC);
/* Stop EC ASAP after sending special waveform. */
if (dbgr_stop_ec(chnd) >= 0) {
/*
* If we can talk to chip, then we can break the retry
* loop.
*/
ret = check_chipid(chnd);
} else {
ret = -1;
if (!(iterations % max_iterations))
fprintf(stderr, "!please reset EC if flashing"
" sequence is not starting!\n");
}
} while (ret && (iterations++ < max_iterations));
if (ret)
fprintf(stderr, "Failed to send special waveform!\n");
else
printf("Done with sending special waveform.\n");
return ret;
}
static int windex;
static const char wheel[] = {'|', '/', '-', '\\' };
static void draw_spinner(uint32_t remaining, uint32_t size)
{
int percent = (size - remaining)*100/size;
fprintf(stderr, "\r%c%3d%%", wheel[windex++], percent);
windex %= sizeof(wheel);
}
/* Note: this function must be called in follow mode */
static int spi_send_cmd_fast_read(struct common_hnd *chnd, uint32_t addr)
{
int ret = 0;
uint8_t cmd = 0x9;
/* Fast Read command */
ret = spi_flash_command_short(chnd, SPI_CMD_FAST_READ, "fast read");
/* Send address */
ret |= i2c_write_byte(chnd, 0x08, ((addr >> 16) & 0xff)); /* addr_h */
ret |= i2c_write_byte(chnd, 0x08, ((addr >> 8) & 0xff)); /* addr_m */
ret |= i2c_write_byte(chnd, 0x08, (addr & 0xff)); /* addr_l */
/* fake byte */
ret |= i2c_write_byte(chnd, 0x08, 0x00);
/* use i2c block read command */
ret |= i2c_byte_transfer(chnd, I2C_CMD_ADDR, &cmd, 1, 1);
if (ret < 0)
fprintf(stderr, "Send fast read command failed\n");
return ret;
}
static int command_read_pages(struct common_hnd *chnd, uint32_t address,
uint32_t size, uint8_t *buffer)
{
int res = -EIO;
uint32_t remaining = size;
int cnt;
if (address & 0xFF) {
fprintf(stderr, "page read requested at non-page boundary: "
"0x%X\n", address);
return -EINVAL;
}
if (spi_flash_follow_mode(chnd, "fast read") < 0)
goto failed_read;
if (spi_send_cmd_fast_read(chnd, address) < 0)
goto failed_read;
while (remaining) {
cnt = (remaining > PAGE_SIZE) ? PAGE_SIZE : remaining;
draw_spinner(remaining, size);
/* read page data */
res = i2c_byte_transfer(chnd, I2C_BLOCK_ADDR, buffer, 0, cnt);
if (res < 0) {
fprintf(stderr, "page data read failed\n");
goto failed_read;
}
address += cnt;
remaining -= cnt;
buffer += cnt;
/* We need to resend fast read command at 256KB boundary. */
if (!(address % 0x40000) && remaining) {
if (spi_send_cmd_fast_read(chnd, address) < 0)
goto failed_read;
}
}
/* No error so far */
res = size;
failed_read:
if (spi_flash_follow_mode_exit(chnd, "fast read") < 0)
res = -EIO;
return res;
}
static int command_write_pages(struct common_hnd *chnd, uint32_t address,
uint32_t size, uint8_t *buffer)
{
int res = -EIO;
int block_write_size = chnd->conf.block_write_size;
uint32_t remaining = size;
int cnt;
uint8_t addr_H, addr_M, addr_L;
uint8_t data;
if (spi_flash_follow_mode(chnd, "AAI write") < 0)
goto failed_write;
while (remaining) {
cnt = (remaining > block_write_size) ?
block_write_size : remaining;
addr_H = (address >> 16) & 0xFF;
addr_M = (address >> 8) & 0xFF;
addr_L = address & 0xFF;
draw_spinner(remaining, size);
/* Write enable */
if (spi_flash_command_short(chnd, SPI_CMD_WRITE_ENABLE,
"write enable for AAI write") < 0)
goto failed_write;
/* Check write enable bit */
if (spi_check_write_enable(chnd, "AAI write") < 0)
goto failed_write;
/* Setup write */
if (spi_flash_command_short(chnd, SPI_CMD_WORD_PROGRAM,
"AAI write") < 0)
goto failed_write;
/* Set eflash page address */
res = i2c_byte_transfer(chnd, I2C_DATA_ADDR, &addr_H, 1, 1);
res |= i2c_byte_transfer(chnd, I2C_DATA_ADDR, &addr_M, 1, 1);
res |= i2c_byte_transfer(chnd, I2C_DATA_ADDR, &addr_L, 1, 1);
if (res < 0) {
fprintf(stderr, "Flash write set page FAILED (%d)\n",
res);
goto failed_write;
}
/* Wait until not busy */
if (spi_poll_busy(chnd, "AAI write") < 0)
goto failed_write;
/* Write up to block_write_size data */
res = i2c_write_byte(chnd, 0x10, 0x20);
res = i2c_byte_transfer(chnd, I2C_BLOCK_ADDR, buffer, 1, cnt);
buffer += cnt;
if (res < 0) {
fprintf(stderr, "Flash data write failed\n");
goto failed_write;
}
data = 0xFF;
res = i2c_byte_transfer(chnd, I2C_DATA_ADDR, &data, 1, 1);
res |= i2c_write_byte(chnd, 0x10, 0x00);
if (res < 0) {
fprintf(stderr, "Flash end data write FAILED (%d)\n",
res);
goto failed_write;
}
/* Write disable */
if (spi_flash_command_short(chnd, SPI_CMD_WRITE_DISABLE,
"write disable for AAI write") < 0)
goto failed_write;
/* Wait until available */
if (spi_poll_busy(chnd, "write disable for AAI write") < 0)
goto failed_write;
address += cnt;
remaining -= cnt;
}
draw_spinner(remaining, size);
/* No error so far */
res = size;
failed_write:
if (spi_flash_command_short(chnd, SPI_CMD_WRITE_DISABLE,
"write disable exit AAI write") < 0)
res = -EIO;
if (spi_flash_follow_mode_exit(chnd, "AAI write") < 0)
res = -EIO;
return res;
}
/*
* Test for spi page program command
*/
static int command_write_pages3(struct common_hnd *chnd, uint32_t address,
uint32_t size, uint8_t *buffer)
{
int ret = 0;
uint8_t addr_H, addr_M, addr_L;
/* SMB_SPI_Flash_Write_Enable */
if (spi_flash_command_short(chnd, SPI_CMD_WRITE_ENABLE,
"SPI Command Write Enable") < 0) {
ret = -EIO;
goto failed_write;
}
if (spi_flash_command_short(chnd, SPI_CMD_PAGE_PROGRAM,
"SPI_CMD_PAGE_PROGRAM") < 0) {
ret = -EIO;
goto failed_write;
}
addr_H = (address >> 16) & 0xFF;
addr_M = (address >> 8) & 0xFF;
addr_L = address & 0xFF;
ret = i2c_byte_transfer(chnd, I2C_DATA_ADDR, &addr_H, 1, 1);
ret |= i2c_byte_transfer(chnd, I2C_DATA_ADDR, &addr_M, 1, 1);
ret |= i2c_byte_transfer(chnd, I2C_DATA_ADDR, &addr_L, 1, 1);
ret |= i2c_byte_transfer(chnd, I2C_BLOCK_ADDR, buffer, 1, size);
if (ret < 0)
goto failed_write;
/* Wait until not busy */
if (spi_poll_busy(chnd, "Page Program") < 0)
ret = -EIO;
/* No error so far */
failed_write:
return ret;
}
static int command_erase(struct common_hnd *chnd, uint32_t len, uint32_t off)
{
int res = -EIO;
int page = 0;
uint32_t remaining = len;
printf("Erasing chip...\n");
if (off != 0 || len != chnd->flash_size) {
fprintf(stderr, "Only full chip erase is supported\n");
return -EINVAL;
}
if (spi_flash_follow_mode(chnd, "erase") < 0)
goto failed_erase;
while (remaining) {
draw_spinner(remaining, len);
if (spi_flash_command_short(chnd, SPI_CMD_WRITE_ENABLE,
"write enable for erase") < 0)
goto failed_erase;
if (spi_check_write_enable(chnd, "erase") < 0)
goto failed_erase;
/* do chip erase */
if (remaining == chnd->flash_size) {
if (spi_flash_command_short(chnd, SPI_CMD_CHIP_ERASE,
"chip erase") < 0)
goto failed_erase;
goto wait_busy_cleared;
}
/* do sector erase */
if (spi_flash_command_short(chnd, spi_cmd_sector_erase,
"sector erase") < 0)
goto failed_erase;
if (spi_flash_set_erase_page(chnd, page, "sector erase") < 0)
goto failed_erase;
wait_busy_cleared:
if (spi_poll_busy(chnd, "erase") < 0)
goto failed_erase;
if (spi_flash_command_short(chnd, SPI_CMD_WRITE_DISABLE,
"write disable for erase") < 0)
goto failed_erase;
if (remaining == chnd->flash_size) {
remaining = 0;
draw_spinner(remaining, len);
} else {
page += sector_erase_pages;
remaining -= sector_erase_pages * PAGE_SIZE;
}
}
/* No error so far */
printf("\n\rErasing Done.\n");
res = 0;
failed_erase:
if (spi_flash_command_short(chnd, SPI_CMD_WRITE_DISABLE,
"write disable exit erase") < 0)
res = -EIO;
if (spi_flash_follow_mode_exit(chnd, "erase") < 0)
res = -EIO;
return res;
}
/*
* This function can Erase First Sector or Erase All Sector by reset value
* Some F/W will produce the H/W watchdog reset and it will happen
* reset issue while flash.
* Add such function to prevent the reset issue.
*/
static int command_erase2(struct common_hnd *chnd, uint32_t len,
uint32_t off, uint32_t reset)
{
int res = -EIO;
int page = 0;
uint32_t remaining = len;
/*
* TODOD(b/<>):
* Using sector erase instead of chip erase
* For some new chip , the chip erase may not work
* well on the original flow
*/
printf("Erasing flash...erase size=%d\n", len);
if (off != 0 || len != chnd->flash_size) {
fprintf(stderr, "Only full chip erase is supported\n");
return -EINVAL;
}
if (spi_flash_follow_mode(chnd, "erase") < 0)
goto failed_erase;
while (remaining) {
draw_spinner(remaining, len);
if (spi_flash_command_short(chnd, SPI_CMD_WRITE_ENABLE,
"write enable for erase") < 0)
goto failed_erase;
if (spi_check_write_enable(chnd, "erase") < 0)
goto failed_erase;
/* do sector erase */
if (spi_flash_command_short(chnd, spi_cmd_sector_erase,
"sector erase") < 0)
goto failed_erase;
if (spi_flash_set_erase_page(chnd, page, "sector erase") < 0)
goto failed_erase;
if (spi_poll_busy(chnd, "erase") < 0)
goto failed_erase;
if (spi_flash_command_short(chnd, SPI_CMD_WRITE_DISABLE,
"write disable for erase") < 0)
goto failed_erase;
if (reset) {
printf("\n\rreset to prevent the watchdog reset...\n");
break;
}
page += sector_erase_pages;
remaining -= sector_erase_pages * PAGE_SIZE;
draw_spinner(remaining, len);
}
/* No error so far */
printf("\n\rErasing Done.\n");
res = 0;
failed_erase:
if (spi_flash_command_short(chnd, SPI_CMD_WRITE_DISABLE,
"write disable exit erase") < 0)
res = -EIO;
if (spi_flash_follow_mode_exit(chnd, "erase") < 0)
res = -EIO;
return res;
}
/* Return zero on success, a negative error value on failures. */
static int read_flash(struct common_hnd *chnd)
{
int res;
FILE *hnd;
uint8_t *buffer;
const char *filename = chnd->conf.input_filename;
size_t offset = chnd->conf.range_base;
size_t size;
if (!offset && !chnd->conf.range_size) {
size = chnd->flash_size;
} else {
/*
* Zero conf.range_size means the user did not enter range
* size in the command line.
*/
if (chnd->conf.range_size)
size = chnd->conf.range_size;
else
size = chnd->flash_size - offset;
if (!size) {
fprintf(stderr,
"Error: not reading a zero sized range!\n");
return -EINVAL;
}
if ((size + offset) > chnd->flash_size) {
fprintf(stderr,
"Error: Read range exceeds flash size!\n");
return -EINVAL;
}
}
buffer = malloc(size);
if (!buffer) {
fprintf(stderr, "Cannot allocate %zd bytes\n", size);
return -ENOMEM;
}
hnd = fopen(filename, "w");
if (!hnd) {
fprintf(stderr, "Cannot open file %s for writing\n", filename);
free(buffer);
return -EIO;
}
printf("Reading %zd bytes at %#08zx\n", size, offset);
res = command_read_pages(chnd, offset, size, buffer);
if (res > 0) {
if (fwrite(buffer, res, 1, hnd) != 1)
fprintf(stderr, "Cannot write %s\n", filename);
}
printf("\r %d bytes read.\n", res);
fclose(hnd);
free(buffer);
return (res < 0) ? res : 0;
}
/* Return zero on success, a negative error value on failures. */
static int write_flash(struct common_hnd *chnd, const char *filename,
uint32_t offset)
{
int res, written;
FILE *hnd;
int size = chnd->flash_size;
uint8_t *buffer = malloc(size);
if (!buffer) {
fprintf(stderr, "%s: Cannot allocate %d bytes\n", __func__,
size);
return -ENOMEM;
}
hnd = fopen(filename, "r");
if (!hnd) {
fprintf(stderr, "%s: Cannot open file %s for reading\n",
__func__, filename);
free(buffer);
return -EIO;
}
res = fread(buffer, 1, size, hnd);
if (res <= 0) {
fprintf(stderr, "%s: Failed to read %d bytes from %s with "
"ferror() %d\n", __func__, size, filename, ferror(hnd));
free(buffer);
fclose(hnd);
return -EIO;
}
fclose(hnd);
printf("Writing %d bytes at 0x%08x\n", res, offset);
written = command_write_pages(chnd, offset, res, buffer);
if (written != res) {
fprintf(stderr, "%s: Error writing to flash\n", __func__);
free(buffer);
return -EIO;
}
printf("\n\rWriting Done.\n");
free(buffer);
return 0;
}
/*
* Return zero on success, a negative error value on failures.
*
* Change the program command to match the ITE Download
* The original flow may not work on the DX chip.
*
*/
static int write_flash2(struct common_hnd *chnd, const char *filename,
uint32_t offset)
{
int res;
int block_write_size = chnd->conf.block_write_size;
FILE *hnd;
int size = chnd->flash_size;
int cnt, two_bytes_sent, ret;
uint8_t addr_h, addr_m, addr_l, data_ff = 0xff;
uint8_t *buffer = malloc(size);
if (!buffer) {
fprintf(stderr, "%s: Cannot allocate %d bytes\n", __func__,
size);
return -ENOMEM;
}
hnd = fopen(filename, "r");
if (!hnd) {
fprintf(stderr, "%s: Cannot open file %s for reading\n",
__func__, filename);
free(buffer);
return -EIO;
}
res = fread(buffer, 1, size, hnd);
if (res <= 0) {
fprintf(stderr, "%s: Failed to read %d bytes from %s with "
"ferror() %d\n", __func__, size, filename, ferror(hnd));
fclose(hnd);
free(buffer);
return -EIO;
}
fclose(hnd);
/* Enter follow mode */
if (spi_flash_follow_mode(chnd, "AAI write") < 0) {
ret = -EIO;
goto failed_enter_mode;
}
printf("Writing %d bytes at 0x%08x.......\n", res, offset);
__send_aai_cmd:
addr_h = (offset >> 16) & 0xff;
addr_m = (offset >> 8) & 0xff;
addr_l = offset & 0xff;
/* write enable command */
ret = spi_flash_command_short(chnd, SPI_CMD_WRITE_ENABLE, "SPI WE");
/* AAI command */
ret |= spi_flash_command_short(chnd, SPI_CMD_WORD_PROGRAM, "SPI AAI");
/* address of AAI command */
ret |= i2c_byte_transfer(chnd, I2C_DATA_ADDR, &addr_h, 1, 1);
ret |= i2c_byte_transfer(chnd, I2C_DATA_ADDR, &addr_m, 1, 1);
ret |= i2c_byte_transfer(chnd, I2C_DATA_ADDR, &addr_l, 1, 1);
/* Send first two bytes of buffe */
ret |= i2c_byte_transfer(chnd, I2C_DATA_ADDR, &buffer[offset], 1, 1);
ret |= i2c_byte_transfer(chnd, I2C_DATA_ADDR, &buffer[offset+1], 1, 1);
/* we had sent two bytes */
offset += 2;
res -= 2;
two_bytes_sent = 1;
/* Wait until not busy */
if (spi_poll_busy(chnd, "wait busy bit cleared at AAI write ") < 0) {
ret = -EIO;
goto failed_write;
}
/* enable quick AAI mode */
ret |= i2c_write_byte(chnd, 0x10, 0x20);
if (ret < 0)
goto failed_write;
while (res) {
cnt = (res > block_write_size) ? block_write_size : res;
/* we had sent two bytes */
if (two_bytes_sent) {
two_bytes_sent = 0;
cnt -= 2;
}
if (i2c_byte_transfer(chnd, I2C_BLOCK_ADDR, &buffer[offset],
1, cnt) < 0) {
ret = -EIO;
goto failed_write;
}
res -= cnt;
offset += cnt;
draw_spinner(res, res + offset);
/* We need to resend aai write command at 256KB boundary. */
if (!(offset % 0x40000) && res) {
/* disable quick AAI mode */
i2c_byte_transfer(chnd, I2C_DATA_ADDR, &data_ff, 1, 1);
i2c_write_byte(chnd, 0x10, 0x00);
/* write disable command */
spi_flash_command_short(chnd, SPI_CMD_WRITE_DISABLE,
"SPI write disable");
goto __send_aai_cmd;
}
}
failed_write:
/* disable quick AAI mode */
i2c_byte_transfer(chnd, I2C_DATA_ADDR, &data_ff, 1, 1);
i2c_write_byte(chnd, 0x10, 0x00);
/* write disable command */
spi_flash_command_short(chnd, SPI_CMD_WRITE_DISABLE,
"SPI write disable");
failed_enter_mode:
/* exit follow mode */
spi_flash_follow_mode_exit(chnd, "AAI write");
if (ret < 0)
printf("\n\rWriting Failed.\n");
else
printf("\n\rWriting Done.\n");
free(buffer);
return ret;
}
/*
* Return zero on success, a negative error value on failures.
*
* Change the program command to match the ITE Download
* The original flow may not work on the DX chip.
*
*/
static int write_flash3(struct common_hnd *chnd, const char *filename,
uint32_t offset)
{
int res, ret = 0;
int block_write_size = chnd->conf.block_write_size;
FILE *hnd;
int size = chnd->flash_size;
int cnt;
uint8_t *buf = malloc(size);
if (!buf) {
fprintf(stderr, "%s: Cannot allocate %d bytes\n", __func__,
size);
return -ENOMEM;
}
hnd = fopen(filename, "r");
if (!hnd) {
fprintf(stderr, "%s: Cannot open file %s for reading\n",
__func__, filename);
free(buf);
return -EIO;
}
res = fread(buf, 1, size, hnd);
if (res <= 0) {
fprintf(stderr, "%s: Failed to read %d bytes from %s with "
"ferror() %d\n", __func__, size, filename, ferror(hnd));
fclose(hnd);
free(buf);
return -EIO;
}
fclose(hnd);
printf("Writing %d bytes at 0x%08x.......\n", res, offset);
/* Enter follow mode */
ret = spi_flash_follow_mode(chnd, "Page program");
if (ret < 0)
goto failed_write;
/* Page program instruction allows up to 256 bytes */
if (block_write_size > 256)
block_write_size = 256;
while (res) {
cnt = (res > block_write_size) ? block_write_size : res;
if (command_write_pages3(chnd, offset, cnt, &buf[offset]) < 0) {
ret = -EIO;
goto failed_write;
}
res -= cnt;
offset += cnt;
draw_spinner(res, res + offset);
}
failed_write:
free(buf);
spi_flash_command_short(chnd, SPI_CMD_WRITE_DISABLE,
"SPI write disable");
spi_flash_follow_mode_exit(chnd, "Page program");
if (ret < 0)
fprintf(stderr, "%s: Error writing to flash\n", __func__);
else
printf("\n\rWriting Done.\n");
return ret;
}
/* Return zero on success, a non-zero value on failures. */
static int verify_flash(struct common_hnd *chnd, const char *filename,
uint32_t offset)
{
int res;
int file_size;
FILE *hnd;
uint8_t *buffer = malloc(chnd->flash_size);
uint8_t *buffer2 = malloc(chnd->flash_size);
if (!buffer || !buffer2) {
fprintf(stderr, "%s: Cannot allocate %d bytes\n", __func__,
chnd->flash_size);
free(buffer);
free(buffer2);
return -ENOMEM;
}
hnd = fopen(filename, "r");
if (!hnd) {
fprintf(stderr, "%s: Cannot open file %s for reading\n",
__func__, filename);
res = -EIO;
goto exit;
}
file_size = fread(buffer, 1, chnd->flash_size, hnd);
if (file_size <= 0) {
fprintf(stderr, "%s: Failed to read %d bytes from %s with "
"ferror() %d\n", __func__, chnd->flash_size, filename,
ferror(hnd));
fclose(hnd);
res = -EIO;
goto exit;
}
fclose(hnd);
printf("Verify %d bytes at 0x%08x\n", file_size, offset);
res = command_read_pages(chnd, offset, chnd->flash_size, buffer2);
if (res > 0)
res = memcmp(buffer, buffer2, file_size);
printf("\n\rVerify %s\n", res ? "Failed!" : "Done.");
exit:
free(buffer);
free(buffer2);
return res;
}
static struct ftdi_context *open_ftdi_device(int vid, int pid,
int interface, const char *serial)
{
struct ftdi_context *ftdi;
int ret;
ftdi = ftdi_new();
if (!ftdi) {
fprintf(stderr, "Cannot allocate context memory\n");
return NULL;
}
ret = ftdi_set_interface(ftdi, interface);
if (ret < 0) {
fprintf(stderr, "cannot set ftdi interface %d: %s(%d)\n",
interface, ftdi_get_error_string(ftdi), ret);
goto open_failed;
}
ret = ftdi_usb_open_desc(ftdi, vid, pid, NULL, serial);
if (ret < 0) {
fprintf(stderr, "unable to open ftdi device: %s(%d)\n",
ftdi_get_error_string(ftdi), ret);
goto open_failed;
}
return ftdi;
open_failed:
ftdi_free(ftdi);
return NULL;
}
static int linux_i2c_interface_init(struct common_hnd *chnd)
{
int err;
if (!chnd->conf.i2c_dev_path) {
fprintf(stderr, "Must set --i2c_dev_path when using "
"Linux i2c-dev interface.\n");
return -1;
}
printf("Attempting to open Linux i2c-dev path %s\n",
chnd->conf.i2c_dev_path);
chnd->i2c_dev_fd = open(chnd->conf.i2c_dev_path, O_RDWR);
if (chnd->i2c_dev_fd < 0) {
err = errno;
perror("Failed to open Linux i2c-dev file path with error");
fprintf(stderr, "Linux i2c-dev file path from --i2c_dev_path "
"is: %s\n", chnd->conf.i2c_dev_path);
return err ? err : -1;
}
printf("Successfully opened Linux i2c-dev path %s\n",
chnd->conf.i2c_dev_path);
return 0;
}
static int linux_i2c_interface_shutdown(struct common_hnd *chnd)
{
int err;
printf("Attempting to close Linux i2c-dev file descriptor %d\n",
chnd->i2c_dev_fd);
if (close(chnd->i2c_dev_fd)) {
err = errno;
perror("Failed to close Linux i2c-dev file descriptor with "
"error");
return err ? err : -1;
}
printf("Successfully closed Linux i2c-dev file descriptor %d\n",
chnd->i2c_dev_fd);
return 0;
}
static int ccd_i2c_interface_init(struct common_hnd *chnd)
{
chnd->conf.usb_vid = CR50_USB_VID;
chnd->conf.usb_pid = CR50_USB_PID;
return connect_to_ccd_i2c_bridge(chnd);
}
static int ccd_i2c_interface_shutdown(struct common_hnd *chnd)
{
usb_shut_down(&chnd->uep);
return 0;
}
static int ftdi_i2c_interface_init(struct common_hnd *chnd)
{
chnd->ftdi_hnd = open_ftdi_device(chnd->conf.usb_vid,
chnd->conf.usb_pid, chnd->conf.usb_interface,
chnd->conf.usb_serial);
if (chnd->ftdi_hnd == NULL)
return -1;
return 0;
}
static int ftdi_i2c_interface_post_waveform(struct common_hnd *chnd)
{
return chnd->conf.send_waveform ? 0 : ftdi_config_i2c(chnd->ftdi_hnd);
}
/* Close the FTDI USB handle */
static int ftdi_i2c_interface_shutdown(struct common_hnd *chnd)
{
ftdi_usb_close(chnd->ftdi_hnd);
ftdi_free(chnd->ftdi_hnd);
return 0;
}
static const struct i2c_interface linux_i2c_interface = {
.interface_init = linux_i2c_interface_init,
.interface_shutdown = linux_i2c_interface_shutdown,
.byte_transfer = linux_i2c_byte_transfer,
/*
* 254 bytes is the largest size that works with Servo Micro as of
* 2018-11-30. Odd numbers up to 255 result in corruption, and 256 or
* greater fails with a timeout from the I2C bus. Fixing that so this
* can be increased to match FTDI_BLOCK_WRITE_SIZE would be a useful
* speedup.
*
* 254 byte block sizes cause corruption with Ampton (using any kind of
* servo). 128 bytes is the largest block_write_size compatible with
* both Ampton and Servo Micro.
*
* See https://issuetracker.google.com/79684405 for background.
*/
.default_block_write_size = 128,
};
static const struct i2c_interface ccd_i2c_interface = {
.interface_init = ccd_i2c_interface_init,
.interface_shutdown = ccd_i2c_interface_shutdown,
.send_special_waveform = ccd_trigger_special_waveform,
.byte_transfer = ccd_i2c_byte_transfer,
.default_block_write_size = PAGE_SIZE,
};
static const struct i2c_interface ftdi_i2c_interface = {
.interface_init = ftdi_i2c_interface_init,
.interface_post_waveform = ftdi_i2c_interface_post_waveform,
.interface_shutdown = ftdi_i2c_interface_shutdown,
.send_special_waveform = ftdi_send_special_waveform,
.byte_transfer = ftdi_i2c_byte_transfer,
.default_block_write_size = FTDI_BLOCK_WRITE_SIZE,
};
static int post_waveform_work(struct common_hnd *chnd)
{
int ret;
if (chnd->conf.i2c_if->interface_post_waveform) {
ret = chnd->conf.i2c_if->interface_post_waveform(chnd);
if (ret)
return ret;
}
if (chnd->conf.disable_watchdog) {
ret = dbgr_disable_watchdog(chnd);
if (ret)
return ret;
}
if (chnd->conf.disable_protect_path) {
ret = dbgr_disable_protect_path(chnd);
if (ret)
return ret;
}
return 0;
}
static int strdup_with_errmsg(const char *source, char **dest, const char *name)
{
int ret = 0;
*dest = strdup(source);
if (!(*dest)) {
ret = errno ? errno : -1;
fprintf(stderr, "strdup() of %zu size string from %s failed.\n",
strlen(source), name);
}
return ret;
}
static const struct option longopts[] = {
{"block-write-size", 1, 0, 'b'},
{"debug", 0, 0, 'd'},
{"erase", 0, 0, 'e'},
{"help", 0, 0, 'h'},
{"i2c-dev-path", 1, 0, 'D'},
{"i2c-interface", 1, 0, 'c'},
{"i2c-mux", 0, 0, 'm'},
{"interface", 1, 0, 'i'},
{"nodisable-protect-path", 0, 0, 'Z'},
{"nodisable-watchdog", 0, 0, 'z'},
{"product", 1, 0, 'p'},
{"range", 1, 0, 'R'},
{"read", 1, 0, 'r'},
{"send-waveform", 1, 0, 'W'},
{"serial", 1, 0, 's'},
{"vendor", 1, 0, 'v'},
{"write", 1, 0, 'w'},
{NULL, 0, 0, 0}
};
static void display_usage(const char *program)
{
fprintf(stderr, "Usage: %s [-d] [-v <VID>] [-p <PID>] \\\n"
"\t[-c <linux|ccd|ftdi>] [-D /dev/i2c-<N>] [-i <1|2>] [-S] \\\n"
"\t[-s <serial>] [-e] [-r <file>] [-W <0|1|false|true>] \\\n"
"\t[-w <file>] [-R base[:size]] [-m] [-b <size>]\n",
program);
fprintf(stderr, "-d, --debug : Output debug traces.\n");
fprintf(stderr, "-e, --erase : Erase all the flash content.\n");
fprintf(stderr, "-c, --i2c-interface <linux|ccd|ftdi> : I2C interface "
"to use\n");
fprintf(stderr, "-D, --i2c-dev-path /dev/i2c-<N> : Path to "
"Linux i2c-dev file e.g. /dev/i2c-5;\n"
"\tonly applicable with --i2c-interface=linux\n");
fprintf(stderr, "-i, --interface <1> : FTDI interface: A=1, B=2,"
" ...\n");
fprintf(stderr, "-m, --i2c-mux : Enable i2c-mux (to EC).\n"
"\tSpecify this flag only if the board has an I2C MUX and\n"
"\tyou are not using servod.\n");
fprintf(stderr, "-b, --block-write-size <size> : Perform writes in\n"
"\tblocks of this many bytes.\n");
fprintf(stderr, "-p, --product <0x1234> : USB product ID\n");
fprintf(stderr, "-R, --range base[:size] : Allow to read or write"
" just a slice\n"
"\tof the file, starting at <base>:<size> bytes, or til\n"
"\tthe end of the file if <size> is not specified, expressed\n"
"\tin hex.\n");
fprintf(stderr, "-r, --read <file> : Read the flash content and"
" write it into <file>.\n");
fprintf(stderr, "-s, --serial <serialname> : USB serial string\n");
fprintf(stderr, "-v, --vendor <0x1234> : USB vendor ID\n");
fprintf(stderr, "-W, --send-waveform <0|1|false|true> : Send the"
" special waveform.\n"
"\tDefault is true. Set to false if ITE direct firmware\n"
"\tupdate mode has already been enabled.\n");
fprintf(stderr, "-w, --write <file> : Write <file> to flash.\n");
fprintf(stderr, "-z, --nodisable-watchdog : Do *not* disable EC "
"watchdog.\n");
fprintf(stderr, "-Z, --nodisable-protect-path : Do *not* disable EC "
"protect path.\n");
}
/*
* Parses -R command line option parameter, returns zero on success and
* -1 on errors (non hex values, missing values, etc.).
*/
static int parse_range_options(char *str, struct iteflash_config *conf)
{
char *size;
if (!str) {
fprintf(stderr, "missing range base address specification\n");
return -1;
}
conf->range_base = strtoull(str, &size, 16);
if (!size || !*size)
return 0;
if (*size++ != ':') {
fprintf(stderr, "wrong range base address specification\n");
return -1;
}
if (!*size) {
fprintf(stderr, "missing range size specification\n");
return -1;
}
conf->range_size = strtoull(size, &size, 16);
if ((size && *size) || !conf->range_size) {
fprintf(stderr, "wrong range size specification\n");
return -1;
}
return 0;
}
static int parse_parameters(int argc, char **argv, struct iteflash_config *conf)
{
int opt, idx, ret = 0;
while (!ret &&
(opt = getopt_long(argc, argv, "?b:c:D:dehi:mp:R:r:s:uv:W:w:Zz",
longopts, &idx)) != -1) {
switch (opt) {
case 'b':
conf->block_write_size = strtol(optarg, NULL, 10);
break;
case 'c':
if (!strcasecmp(optarg, "linux")) {
conf->i2c_if = &linux_i2c_interface;
} else if (!strcasecmp(optarg, "ccd")) {
conf->i2c_if = &ccd_i2c_interface;
} else if (!strcasecmp(optarg, "ftdi")) {
conf->i2c_if = &ftdi_i2c_interface;
} else {
fprintf(stderr, "Unexpected -c / "
"--i2c-interface value: %s\n", optarg);
ret = -1;
}
break;
case 'D':
ret = strdup_with_errmsg(optarg, &conf->i2c_dev_path,
"-D / --i2c-dev-path");
break;
case 'd':
conf->debug = 1;
break;
case 'e':
conf->erase = 1;
break;
case 'h':
case '?':
display_usage(argv[0]);
ret = 2;
break;
case 'i':
conf->usb_interface = strtol(optarg, NULL, 10);
break;
case 'm':
conf->i2c_mux = 1;
break;
case 'p':
conf->usb_pid = strtol(optarg, NULL, 16);
break;
case 'R':
ret = parse_range_options(optarg, conf);
break;
case 'r':
ret = strdup_with_errmsg(optarg, &conf->input_filename,
"-r / --read");
break;
case 's':
ret = strdup_with_errmsg(optarg, &conf->usb_serial,
"-s / --serial");
break;
case 'v':
conf->usb_vid = strtol(optarg, NULL, 16);
break;
case 'W':
if (!strcmp(optarg, "0") ||
!strcasecmp(optarg, "false")) {
conf->send_waveform = 0;
break;
}
if (!strcmp(optarg, "1") ||
!strcasecmp(optarg, "true")) {
conf->send_waveform = 1;
break;
}
fprintf(stderr, "Unexpected -W / --special-waveform "
"value: %s\n", optarg);
ret = -1;
break;
case 'w':
ret = strdup_with_errmsg(optarg, &conf->output_filename,
"-w / --write");
break;
case 'z':
conf->disable_watchdog = 0;
break;
case 'Z':
conf->disable_protect_path = 0;
break;
}
}
if (ret)
config_release(conf);
return ret;
}
static void sighandler(int signum)
{
printf("\nCaught signal %d: %s\nExiting...\n",
signum, sys_siglist[signum]);
exit_requested = 1;
}
static void register_sigaction(void)
{
struct sigaction sigact;
sigact.sa_handler = sighandler;
sigemptyset(&sigact.sa_mask);
sigact.sa_flags = 0;
sigaction(SIGINT, &sigact, NULL);
sigaction(SIGTERM, &sigact, NULL);
sigaction(SIGQUIT, &sigact, NULL);
}
int main(int argc, char **argv)
{
int ret = 1, other_ret;
struct common_hnd chnd = {
/* Default flag settings. */
.conf = {
.send_waveform = 1,
.disable_watchdog = 1,
.disable_protect_path = 1,
.usb_interface = SERVO_INTERFACE,
.usb_vid = SERVO_USB_VID,
.usb_pid = SERVO_USB_PID,
.i2c_if = &ftdi_i2c_interface,
},
};
/* Parse command line options */
other_ret = parse_parameters(argc, argv, &chnd.conf);
if (other_ret)
return other_ret;
/* Fill in block_write_size if not set from command line. */
if (!chnd.conf.block_write_size)
chnd.conf.block_write_size =
chnd.conf.i2c_if->default_block_write_size;
/* Open the communications channel. */
if (chnd.conf.i2c_if->interface_init &&
chnd.conf.i2c_if->interface_init(&chnd))
goto return_after_parse;
/* Register signal handler after opening the communications channel. */
register_sigaction();
if (chnd.conf.i2c_mux) {
printf("configuring I2C MUX to EC.\n");
if (config_i2c_mux(&chnd, I2C_MUX_CMD_EC))
goto return_after_init;
}
/* Trigger embedded monitor detection */
if (chnd.conf.send_waveform) {
if (send_special_waveform(&chnd))
goto return_after_init;
} else {
/* Stop EC ASAP after sending special waveform. */
dbgr_stop_ec(&chnd);
ret = check_chipid(&chnd);
if (ret) {
fprintf(stderr, "Failed to get ITE chip ID. This "
"could be because the ITE direct firmware "
"update (DFU) mode is not enabled.\n");
goto return_after_init;
}
}
/* Turn off power rails by reset GPIOs to default (input). */
dbgr_reset_gpio(&chnd);
check_flashid(&chnd);
ret = post_waveform_work(&chnd);
if (ret)
goto return_after_init;
if (chnd.conf.input_filename) {
ret = read_flash(&chnd);
if (ret)
goto return_after_init;
}
switch (eflash_type) {
case EFLASH_TYPE_8315:
sector_erase_pages = 4;
spi_cmd_sector_erase = SPI_CMD_SECTOR_ERASE_1K;
break;
case EFLASH_TYPE_KGD:
sector_erase_pages = 16;
spi_cmd_sector_erase = SPI_CMD_SECTOR_ERASE_4K;
break;
default:
printf("Invalid EFLASH TYPE!");
ret = -EINVAL;
break;
}
if (ret)
goto return_after_init;
if (chnd.conf.erase) {
if (chnd.flash_cmd_v2)
/* Do Normal Erase Function */
command_erase2(&chnd, chnd.flash_size, 0, 0);
else
command_erase(&chnd, chnd.flash_size, 0);
/* Call DBGR Rest to clear the EC lock status after erasing */
dbgr_reset(&chnd, RSTS_VCCDO_PW_ON|RSTS_HGRST|RSTS_GRST);
}
if (chnd.conf.output_filename) {
if (chnd.flash_cmd_v2)
switch (eflash_type) {
case EFLASH_TYPE_8315:
ret = write_flash2(&chnd,
chnd.conf.output_filename, 0);
break;
case EFLASH_TYPE_KGD:
ret = write_flash3(&chnd,
chnd.conf.output_filename, 0);
break;
default:
printf("Invalid EFLASH TYPE!");
ret = -EINVAL;
break;
}
else
ret = write_flash(&chnd, chnd.conf.output_filename, 0);
if (ret)
goto return_after_init;
ret = verify_flash(&chnd, chnd.conf.output_filename, 0);
if (ret)
goto return_after_init;
}
/* Normal exit */
ret = 0;
return_after_init:
/*
* Exit DBGR mode. This ensures EC won't hold clock/data pins of I2C.
* Avoid resetting EC here because flash_ec will after iteflash exits.
* This avoids double reset after flash sequence.
*/
exit_dbgr_mode(&chnd);
if (chnd.conf.i2c_mux) {
printf("configuring I2C MUX to none.\n");
config_i2c_mux(&chnd, I2C_MUX_CMD_NONE);
}
if (chnd.conf.i2c_if->interface_shutdown) {
other_ret = chnd.conf.i2c_if->interface_shutdown(&chnd);
if (!ret && other_ret)
ret = other_ret;
}
return_after_parse:
config_release(&chnd.conf);
return ret;
}