curve25519: Move to third_party

curve25519 comes from boringssl as well, move it to that directory.

See git log for which boringssl commit the implementation comes from,
and changes that were applied.

BRANCH=none
BUG=chromium:884905
TEST=make buildall -j, which also include basic tests.

Change-Id: I1dee4795009c1e2034a181f6083d1f9445c87d41
Signed-off-by: Nicolas Boichat <drinkcat@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/c/chromiumos/platform/ec/+/1600946
Reviewed-by: Aseda Aboagye <aaboagye@chromium.org>
This commit is contained in:
Nicolas Boichat 2019-05-08 18:10:41 +09:00 committed by Commit Bot
parent 506fdc01b0
commit 71ef37803b
9 changed files with 1159 additions and 1153 deletions

View File

@ -1,821 +0,0 @@
/* Copyright 2015, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
/* This code is mostly taken from the ref10 version of Ed25519 in SUPERCOP
* 20141124 (http://bench.cr.yp.to/supercop.html). That code is released as
* public domain but this file has the ISC license just to keep licencing
* simple.
*
* The field functions are shared by Ed25519 and X25519 where possible. */
#include "curve25519.h"
#include "util.h"
/*
* fe means field element. Here the field is \Z/(2^255-19). An element t,
* entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
* t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on
* context.
*/
typedef int32_t fe[10];
static const int64_t kBottom25Bits = INT64_C(0x1ffffff);
static const int64_t kBottom26Bits = INT64_C(0x3ffffff);
static const int64_t kTop39Bits = INT64_C(0xfffffffffe000000);
static const int64_t kTop38Bits = INT64_C(0xfffffffffc000000);
static uint64_t load_3(const uint8_t *in) {
uint64_t result;
result = (uint64_t)in[0];
result |= ((uint64_t)in[1]) << 8;
result |= ((uint64_t)in[2]) << 16;
return result;
}
static uint64_t load_4(const uint8_t *in) {
uint64_t result;
result = (uint64_t)in[0];
result |= ((uint64_t)in[1]) << 8;
result |= ((uint64_t)in[2]) << 16;
result |= ((uint64_t)in[3]) << 24;
return result;
}
static void fe_frombytes(fe h, const uint8_t *s) {
/* Ignores top bit of h. */
int64_t h0 = load_4(s);
int64_t h1 = load_3(s + 4) << 6;
int64_t h2 = load_3(s + 7) << 5;
int64_t h3 = load_3(s + 10) << 3;
int64_t h4 = load_3(s + 13) << 2;
int64_t h5 = load_4(s + 16);
int64_t h6 = load_3(s + 20) << 7;
int64_t h7 = load_3(s + 23) << 5;
int64_t h8 = load_3(s + 26) << 4;
int64_t h9 = (load_3(s + 29) & 8388607) << 2;
int64_t carry0;
int64_t carry1;
int64_t carry2;
int64_t carry3;
int64_t carry4;
int64_t carry5;
int64_t carry6;
int64_t carry7;
int64_t carry8;
int64_t carry9;
carry9 = h9 + BIT(24); h0 += (carry9 >> 25) * 19; h9 -= carry9 & kTop39Bits;
carry1 = h1 + BIT(24); h2 += carry1 >> 25; h1 -= carry1 & kTop39Bits;
carry3 = h3 + BIT(24); h4 += carry3 >> 25; h3 -= carry3 & kTop39Bits;
carry5 = h5 + BIT(24); h6 += carry5 >> 25; h5 -= carry5 & kTop39Bits;
carry7 = h7 + BIT(24); h8 += carry7 >> 25; h7 -= carry7 & kTop39Bits;
carry0 = h0 + BIT(25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits;
carry2 = h2 + BIT(25); h3 += carry2 >> 26; h2 -= carry2 & kTop38Bits;
carry4 = h4 + BIT(25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits;
carry6 = h6 + BIT(25); h7 += carry6 >> 26; h6 -= carry6 & kTop38Bits;
carry8 = h8 + BIT(25); h9 += carry8 >> 26; h8 -= carry8 & kTop38Bits;
h[0] = h0;
h[1] = h1;
h[2] = h2;
h[3] = h3;
h[4] = h4;
h[5] = h5;
h[6] = h6;
h[7] = h7;
h[8] = h8;
h[9] = h9;
}
/* Preconditions:
* |h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
*
* Write p=2^255-19; q=floor(h/p).
* Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))).
*
* Proof:
* Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4.
* Also have |h-2^230 h9|<2^231 so |19 2^(-255)(h-2^230 h9)|<1/4.
*
* Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9).
* Then 0<y<1.
*
* Write r=h-pq.
* Have 0<=r<=p-1=2^255-20.
* Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1.
*
* Write x=r+19(2^-255)r+y.
* Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q.
*
* Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1))
* so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q. */
static void fe_tobytes(uint8_t *s, const fe h) {
int32_t h0 = h[0];
int32_t h1 = h[1];
int32_t h2 = h[2];
int32_t h3 = h[3];
int32_t h4 = h[4];
int32_t h5 = h[5];
int32_t h6 = h[6];
int32_t h7 = h[7];
int32_t h8 = h[8];
int32_t h9 = h[9];
int32_t q;
q = (19 * h9 + (((int32_t) 1) << 24)) >> 25;
q = (h0 + q) >> 26;
q = (h1 + q) >> 25;
q = (h2 + q) >> 26;
q = (h3 + q) >> 25;
q = (h4 + q) >> 26;
q = (h5 + q) >> 25;
q = (h6 + q) >> 26;
q = (h7 + q) >> 25;
q = (h8 + q) >> 26;
q = (h9 + q) >> 25;
/* Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20. */
h0 += 19 * q;
/* Goal: Output h-2^255 q, which is between 0 and 2^255-20. */
h1 += h0 >> 26; h0 &= kBottom26Bits;
h2 += h1 >> 25; h1 &= kBottom25Bits;
h3 += h2 >> 26; h2 &= kBottom26Bits;
h4 += h3 >> 25; h3 &= kBottom25Bits;
h5 += h4 >> 26; h4 &= kBottom26Bits;
h6 += h5 >> 25; h5 &= kBottom25Bits;
h7 += h6 >> 26; h6 &= kBottom26Bits;
h8 += h7 >> 25; h7 &= kBottom25Bits;
h9 += h8 >> 26; h8 &= kBottom26Bits;
h9 &= kBottom25Bits;
/* h10 = carry9 */
/* Goal: Output h0+...+2^255 h10-2^255 q, which is between 0 and 2^255-20.
* Have h0+...+2^230 h9 between 0 and 2^255-1;
* evidently 2^255 h10-2^255 q = 0.
* Goal: Output h0+...+2^230 h9. */
s[0] = h0 >> 0;
s[1] = h0 >> 8;
s[2] = h0 >> 16;
s[3] = (h0 >> 24) | ((uint32_t)(h1) << 2);
s[4] = h1 >> 6;
s[5] = h1 >> 14;
s[6] = (h1 >> 22) | ((uint32_t)(h2) << 3);
s[7] = h2 >> 5;
s[8] = h2 >> 13;
s[9] = (h2 >> 21) | ((uint32_t)(h3) << 5);
s[10] = h3 >> 3;
s[11] = h3 >> 11;
s[12] = (h3 >> 19) | ((uint32_t)(h4) << 6);
s[13] = h4 >> 2;
s[14] = h4 >> 10;
s[15] = h4 >> 18;
s[16] = h5 >> 0;
s[17] = h5 >> 8;
s[18] = h5 >> 16;
s[19] = (h5 >> 24) | ((uint32_t)(h6) << 1);
s[20] = h6 >> 7;
s[21] = h6 >> 15;
s[22] = (h6 >> 23) | ((uint32_t)(h7) << 3);
s[23] = h7 >> 5;
s[24] = h7 >> 13;
s[25] = (h7 >> 21) | ((uint32_t)(h8) << 4);
s[26] = h8 >> 4;
s[27] = h8 >> 12;
s[28] = (h8 >> 20) | ((uint32_t)(h9) << 6);
s[29] = h9 >> 2;
s[30] = h9 >> 10;
s[31] = h9 >> 18;
}
/* h = f */
static void fe_copy(fe h, const fe f) {
memmove(h, f, sizeof(int32_t) * 10);
}
/* h = 0 */
static void fe_0(fe h) { memset(h, 0, sizeof(int32_t) * 10); }
/* h = 1 */
static void fe_1(fe h) {
memset(h, 0, sizeof(int32_t) * 10);
h[0] = 1;
}
/* h = f + g
* Can overlap h with f or g.
*
* Preconditions:
* |f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
* |g| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
*
* Postconditions:
* |h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. */
static void fe_add(fe h, const fe f, const fe g) {
unsigned i;
for (i = 0; i < 10; i++) {
h[i] = f[i] + g[i];
}
}
/* h = f - g
* Can overlap h with f or g.
*
* Preconditions:
* |f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
* |g| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
*
* Postconditions:
* |h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. */
static void fe_sub(fe h, const fe f, const fe g) {
unsigned i;
for (i = 0; i < 10; i++) {
h[i] = f[i] - g[i];
}
}
/* h = f * g
* Can overlap h with f or g.
*
* Preconditions:
* |f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
* |g| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
*
* Postconditions:
* |h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc.
*
* Notes on implementation strategy:
*
* Using schoolbook multiplication.
* Karatsuba would save a little in some cost models.
*
* Most multiplications by 2 and 19 are 32-bit precomputations;
* cheaper than 64-bit postcomputations.
*
* There is one remaining multiplication by 19 in the carry chain;
* one *19 precomputation can be merged into this,
* but the resulting data flow is considerably less clean.
*
* There are 12 carries below.
* 10 of them are 2-way parallelizable and vectorizable.
* Can get away with 11 carries, but then data flow is much deeper.
*
* With tighter constraints on inputs can squeeze carries into int32. */
static void fe_mul(fe h, const fe f, const fe g) {
int32_t f0 = f[0];
int32_t f1 = f[1];
int32_t f2 = f[2];
int32_t f3 = f[3];
int32_t f4 = f[4];
int32_t f5 = f[5];
int32_t f6 = f[6];
int32_t f7 = f[7];
int32_t f8 = f[8];
int32_t f9 = f[9];
int32_t g0 = g[0];
int32_t g1 = g[1];
int32_t g2 = g[2];
int32_t g3 = g[3];
int32_t g4 = g[4];
int32_t g5 = g[5];
int32_t g6 = g[6];
int32_t g7 = g[7];
int32_t g8 = g[8];
int32_t g9 = g[9];
int32_t g1_19 = 19 * g1; /* 1.959375*2^29 */
int32_t g2_19 = 19 * g2; /* 1.959375*2^30; still ok */
int32_t g3_19 = 19 * g3;
int32_t g4_19 = 19 * g4;
int32_t g5_19 = 19 * g5;
int32_t g6_19 = 19 * g6;
int32_t g7_19 = 19 * g7;
int32_t g8_19 = 19 * g8;
int32_t g9_19 = 19 * g9;
int32_t f1_2 = 2 * f1;
int32_t f3_2 = 2 * f3;
int32_t f5_2 = 2 * f5;
int32_t f7_2 = 2 * f7;
int32_t f9_2 = 2 * f9;
int64_t f0g0 = f0 * (int64_t) g0;
int64_t f0g1 = f0 * (int64_t) g1;
int64_t f0g2 = f0 * (int64_t) g2;
int64_t f0g3 = f0 * (int64_t) g3;
int64_t f0g4 = f0 * (int64_t) g4;
int64_t f0g5 = f0 * (int64_t) g5;
int64_t f0g6 = f0 * (int64_t) g6;
int64_t f0g7 = f0 * (int64_t) g7;
int64_t f0g8 = f0 * (int64_t) g8;
int64_t f0g9 = f0 * (int64_t) g9;
int64_t f1g0 = f1 * (int64_t) g0;
int64_t f1g1_2 = f1_2 * (int64_t) g1;
int64_t f1g2 = f1 * (int64_t) g2;
int64_t f1g3_2 = f1_2 * (int64_t) g3;
int64_t f1g4 = f1 * (int64_t) g4;
int64_t f1g5_2 = f1_2 * (int64_t) g5;
int64_t f1g6 = f1 * (int64_t) g6;
int64_t f1g7_2 = f1_2 * (int64_t) g7;
int64_t f1g8 = f1 * (int64_t) g8;
int64_t f1g9_38 = f1_2 * (int64_t) g9_19;
int64_t f2g0 = f2 * (int64_t) g0;
int64_t f2g1 = f2 * (int64_t) g1;
int64_t f2g2 = f2 * (int64_t) g2;
int64_t f2g3 = f2 * (int64_t) g3;
int64_t f2g4 = f2 * (int64_t) g4;
int64_t f2g5 = f2 * (int64_t) g5;
int64_t f2g6 = f2 * (int64_t) g6;
int64_t f2g7 = f2 * (int64_t) g7;
int64_t f2g8_19 = f2 * (int64_t) g8_19;
int64_t f2g9_19 = f2 * (int64_t) g9_19;
int64_t f3g0 = f3 * (int64_t) g0;
int64_t f3g1_2 = f3_2 * (int64_t) g1;
int64_t f3g2 = f3 * (int64_t) g2;
int64_t f3g3_2 = f3_2 * (int64_t) g3;
int64_t f3g4 = f3 * (int64_t) g4;
int64_t f3g5_2 = f3_2 * (int64_t) g5;
int64_t f3g6 = f3 * (int64_t) g6;
int64_t f3g7_38 = f3_2 * (int64_t) g7_19;
int64_t f3g8_19 = f3 * (int64_t) g8_19;
int64_t f3g9_38 = f3_2 * (int64_t) g9_19;
int64_t f4g0 = f4 * (int64_t) g0;
int64_t f4g1 = f4 * (int64_t) g1;
int64_t f4g2 = f4 * (int64_t) g2;
int64_t f4g3 = f4 * (int64_t) g3;
int64_t f4g4 = f4 * (int64_t) g4;
int64_t f4g5 = f4 * (int64_t) g5;
int64_t f4g6_19 = f4 * (int64_t) g6_19;
int64_t f4g7_19 = f4 * (int64_t) g7_19;
int64_t f4g8_19 = f4 * (int64_t) g8_19;
int64_t f4g9_19 = f4 * (int64_t) g9_19;
int64_t f5g0 = f5 * (int64_t) g0;
int64_t f5g1_2 = f5_2 * (int64_t) g1;
int64_t f5g2 = f5 * (int64_t) g2;
int64_t f5g3_2 = f5_2 * (int64_t) g3;
int64_t f5g4 = f5 * (int64_t) g4;
int64_t f5g5_38 = f5_2 * (int64_t) g5_19;
int64_t f5g6_19 = f5 * (int64_t) g6_19;
int64_t f5g7_38 = f5_2 * (int64_t) g7_19;
int64_t f5g8_19 = f5 * (int64_t) g8_19;
int64_t f5g9_38 = f5_2 * (int64_t) g9_19;
int64_t f6g0 = f6 * (int64_t) g0;
int64_t f6g1 = f6 * (int64_t) g1;
int64_t f6g2 = f6 * (int64_t) g2;
int64_t f6g3 = f6 * (int64_t) g3;
int64_t f6g4_19 = f6 * (int64_t) g4_19;
int64_t f6g5_19 = f6 * (int64_t) g5_19;
int64_t f6g6_19 = f6 * (int64_t) g6_19;
int64_t f6g7_19 = f6 * (int64_t) g7_19;
int64_t f6g8_19 = f6 * (int64_t) g8_19;
int64_t f6g9_19 = f6 * (int64_t) g9_19;
int64_t f7g0 = f7 * (int64_t) g0;
int64_t f7g1_2 = f7_2 * (int64_t) g1;
int64_t f7g2 = f7 * (int64_t) g2;
int64_t f7g3_38 = f7_2 * (int64_t) g3_19;
int64_t f7g4_19 = f7 * (int64_t) g4_19;
int64_t f7g5_38 = f7_2 * (int64_t) g5_19;
int64_t f7g6_19 = f7 * (int64_t) g6_19;
int64_t f7g7_38 = f7_2 * (int64_t) g7_19;
int64_t f7g8_19 = f7 * (int64_t) g8_19;
int64_t f7g9_38 = f7_2 * (int64_t) g9_19;
int64_t f8g0 = f8 * (int64_t) g0;
int64_t f8g1 = f8 * (int64_t) g1;
int64_t f8g2_19 = f8 * (int64_t) g2_19;
int64_t f8g3_19 = f8 * (int64_t) g3_19;
int64_t f8g4_19 = f8 * (int64_t) g4_19;
int64_t f8g5_19 = f8 * (int64_t) g5_19;
int64_t f8g6_19 = f8 * (int64_t) g6_19;
int64_t f8g7_19 = f8 * (int64_t) g7_19;
int64_t f8g8_19 = f8 * (int64_t) g8_19;
int64_t f8g9_19 = f8 * (int64_t) g9_19;
int64_t f9g0 = f9 * (int64_t) g0;
int64_t f9g1_38 = f9_2 * (int64_t) g1_19;
int64_t f9g2_19 = f9 * (int64_t) g2_19;
int64_t f9g3_38 = f9_2 * (int64_t) g3_19;
int64_t f9g4_19 = f9 * (int64_t) g4_19;
int64_t f9g5_38 = f9_2 * (int64_t) g5_19;
int64_t f9g6_19 = f9 * (int64_t) g6_19;
int64_t f9g7_38 = f9_2 * (int64_t) g7_19;
int64_t f9g8_19 = f9 * (int64_t) g8_19;
int64_t f9g9_38 = f9_2 * (int64_t) g9_19;
int64_t h0 = f0g0+f1g9_38+f2g8_19+f3g7_38+f4g6_19+f5g5_38+f6g4_19+f7g3_38+f8g2_19+f9g1_38;
int64_t h1 = f0g1+f1g0 +f2g9_19+f3g8_19+f4g7_19+f5g6_19+f6g5_19+f7g4_19+f8g3_19+f9g2_19;
int64_t h2 = f0g2+f1g1_2 +f2g0 +f3g9_38+f4g8_19+f5g7_38+f6g6_19+f7g5_38+f8g4_19+f9g3_38;
int64_t h3 = f0g3+f1g2 +f2g1 +f3g0 +f4g9_19+f5g8_19+f6g7_19+f7g6_19+f8g5_19+f9g4_19;
int64_t h4 = f0g4+f1g3_2 +f2g2 +f3g1_2 +f4g0 +f5g9_38+f6g8_19+f7g7_38+f8g6_19+f9g5_38;
int64_t h5 = f0g5+f1g4 +f2g3 +f3g2 +f4g1 +f5g0 +f6g9_19+f7g8_19+f8g7_19+f9g6_19;
int64_t h6 = f0g6+f1g5_2 +f2g4 +f3g3_2 +f4g2 +f5g1_2 +f6g0 +f7g9_38+f8g8_19+f9g7_38;
int64_t h7 = f0g7+f1g6 +f2g5 +f3g4 +f4g3 +f5g2 +f6g1 +f7g0 +f8g9_19+f9g8_19;
int64_t h8 = f0g8+f1g7_2 +f2g6 +f3g5_2 +f4g4 +f5g3_2 +f6g2 +f7g1_2 +f8g0 +f9g9_38;
int64_t h9 = f0g9+f1g8 +f2g7 +f3g6 +f4g5 +f5g4 +f6g3 +f7g2 +f8g1 +f9g0 ;
int64_t carry0;
int64_t carry1;
int64_t carry2;
int64_t carry3;
int64_t carry4;
int64_t carry5;
int64_t carry6;
int64_t carry7;
int64_t carry8;
int64_t carry9;
/* |h0| <= (1.65*1.65*2^52*(1+19+19+19+19)+1.65*1.65*2^50*(38+38+38+38+38))
* i.e. |h0| <= 1.4*2^60; narrower ranges for h2, h4, h6, h8
* |h1| <= (1.65*1.65*2^51*(1+1+19+19+19+19+19+19+19+19))
* i.e. |h1| <= 1.7*2^59; narrower ranges for h3, h5, h7, h9 */
carry0 = h0 + BIT(25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits;
carry4 = h4 + BIT(25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits;
/* |h0| <= 2^25 */
/* |h4| <= 2^25 */
/* |h1| <= 1.71*2^59 */
/* |h5| <= 1.71*2^59 */
carry1 = h1 + BIT(24); h2 += carry1 >> 25; h1 -= carry1 & kTop39Bits;
carry5 = h5 + BIT(24); h6 += carry5 >> 25; h5 -= carry5 & kTop39Bits;
/* |h1| <= 2^24; from now on fits into int32 */
/* |h5| <= 2^24; from now on fits into int32 */
/* |h2| <= 1.41*2^60 */
/* |h6| <= 1.41*2^60 */
carry2 = h2 + BIT(25); h3 += carry2 >> 26; h2 -= carry2 & kTop38Bits;
carry6 = h6 + BIT(25); h7 += carry6 >> 26; h6 -= carry6 & kTop38Bits;
/* |h2| <= 2^25; from now on fits into int32 unchanged */
/* |h6| <= 2^25; from now on fits into int32 unchanged */
/* |h3| <= 1.71*2^59 */
/* |h7| <= 1.71*2^59 */
carry3 = h3 + BIT(24); h4 += carry3 >> 25; h3 -= carry3 & kTop39Bits;
carry7 = h7 + BIT(24); h8 += carry7 >> 25; h7 -= carry7 & kTop39Bits;
/* |h3| <= 2^24; from now on fits into int32 unchanged */
/* |h7| <= 2^24; from now on fits into int32 unchanged */
/* |h4| <= 1.72*2^34 */
/* |h8| <= 1.41*2^60 */
carry4 = h4 + BIT(25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits;
carry8 = h8 + BIT(25); h9 += carry8 >> 26; h8 -= carry8 & kTop38Bits;
/* |h4| <= 2^25; from now on fits into int32 unchanged */
/* |h8| <= 2^25; from now on fits into int32 unchanged */
/* |h5| <= 1.01*2^24 */
/* |h9| <= 1.71*2^59 */
carry9 = h9 + BIT(24); h0 += (carry9 >> 25) * 19; h9 -= carry9 & kTop39Bits;
/* |h9| <= 2^24; from now on fits into int32 unchanged */
/* |h0| <= 1.1*2^39 */
carry0 = h0 + BIT(25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits;
/* |h0| <= 2^25; from now on fits into int32 unchanged */
/* |h1| <= 1.01*2^24 */
h[0] = h0;
h[1] = h1;
h[2] = h2;
h[3] = h3;
h[4] = h4;
h[5] = h5;
h[6] = h6;
h[7] = h7;
h[8] = h8;
h[9] = h9;
}
/* h = f * f
* Can overlap h with f.
*
* Preconditions:
* |f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
*
* Postconditions:
* |h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc.
*
* See fe_mul.c for discussion of implementation strategy. */
static void fe_sq(fe h, const fe f) {
int32_t f0 = f[0];
int32_t f1 = f[1];
int32_t f2 = f[2];
int32_t f3 = f[3];
int32_t f4 = f[4];
int32_t f5 = f[5];
int32_t f6 = f[6];
int32_t f7 = f[7];
int32_t f8 = f[8];
int32_t f9 = f[9];
int32_t f0_2 = 2 * f0;
int32_t f1_2 = 2 * f1;
int32_t f2_2 = 2 * f2;
int32_t f3_2 = 2 * f3;
int32_t f4_2 = 2 * f4;
int32_t f5_2 = 2 * f5;
int32_t f6_2 = 2 * f6;
int32_t f7_2 = 2 * f7;
int32_t f5_38 = 38 * f5; /* 1.959375*2^30 */
int32_t f6_19 = 19 * f6; /* 1.959375*2^30 */
int32_t f7_38 = 38 * f7; /* 1.959375*2^30 */
int32_t f8_19 = 19 * f8; /* 1.959375*2^30 */
int32_t f9_38 = 38 * f9; /* 1.959375*2^30 */
int64_t f0f0 = f0 * (int64_t) f0;
int64_t f0f1_2 = f0_2 * (int64_t) f1;
int64_t f0f2_2 = f0_2 * (int64_t) f2;
int64_t f0f3_2 = f0_2 * (int64_t) f3;
int64_t f0f4_2 = f0_2 * (int64_t) f4;
int64_t f0f5_2 = f0_2 * (int64_t) f5;
int64_t f0f6_2 = f0_2 * (int64_t) f6;
int64_t f0f7_2 = f0_2 * (int64_t) f7;
int64_t f0f8_2 = f0_2 * (int64_t) f8;
int64_t f0f9_2 = f0_2 * (int64_t) f9;
int64_t f1f1_2 = f1_2 * (int64_t) f1;
int64_t f1f2_2 = f1_2 * (int64_t) f2;
int64_t f1f3_4 = f1_2 * (int64_t) f3_2;
int64_t f1f4_2 = f1_2 * (int64_t) f4;
int64_t f1f5_4 = f1_2 * (int64_t) f5_2;
int64_t f1f6_2 = f1_2 * (int64_t) f6;
int64_t f1f7_4 = f1_2 * (int64_t) f7_2;
int64_t f1f8_2 = f1_2 * (int64_t) f8;
int64_t f1f9_76 = f1_2 * (int64_t) f9_38;
int64_t f2f2 = f2 * (int64_t) f2;
int64_t f2f3_2 = f2_2 * (int64_t) f3;
int64_t f2f4_2 = f2_2 * (int64_t) f4;
int64_t f2f5_2 = f2_2 * (int64_t) f5;
int64_t f2f6_2 = f2_2 * (int64_t) f6;
int64_t f2f7_2 = f2_2 * (int64_t) f7;
int64_t f2f8_38 = f2_2 * (int64_t) f8_19;
int64_t f2f9_38 = f2 * (int64_t) f9_38;
int64_t f3f3_2 = f3_2 * (int64_t) f3;
int64_t f3f4_2 = f3_2 * (int64_t) f4;
int64_t f3f5_4 = f3_2 * (int64_t) f5_2;
int64_t f3f6_2 = f3_2 * (int64_t) f6;
int64_t f3f7_76 = f3_2 * (int64_t) f7_38;
int64_t f3f8_38 = f3_2 * (int64_t) f8_19;
int64_t f3f9_76 = f3_2 * (int64_t) f9_38;
int64_t f4f4 = f4 * (int64_t) f4;
int64_t f4f5_2 = f4_2 * (int64_t) f5;
int64_t f4f6_38 = f4_2 * (int64_t) f6_19;
int64_t f4f7_38 = f4 * (int64_t) f7_38;
int64_t f4f8_38 = f4_2 * (int64_t) f8_19;
int64_t f4f9_38 = f4 * (int64_t) f9_38;
int64_t f5f5_38 = f5 * (int64_t) f5_38;
int64_t f5f6_38 = f5_2 * (int64_t) f6_19;
int64_t f5f7_76 = f5_2 * (int64_t) f7_38;
int64_t f5f8_38 = f5_2 * (int64_t) f8_19;
int64_t f5f9_76 = f5_2 * (int64_t) f9_38;
int64_t f6f6_19 = f6 * (int64_t) f6_19;
int64_t f6f7_38 = f6 * (int64_t) f7_38;
int64_t f6f8_38 = f6_2 * (int64_t) f8_19;
int64_t f6f9_38 = f6 * (int64_t) f9_38;
int64_t f7f7_38 = f7 * (int64_t) f7_38;
int64_t f7f8_38 = f7_2 * (int64_t) f8_19;
int64_t f7f9_76 = f7_2 * (int64_t) f9_38;
int64_t f8f8_19 = f8 * (int64_t) f8_19;
int64_t f8f9_38 = f8 * (int64_t) f9_38;
int64_t f9f9_38 = f9 * (int64_t) f9_38;
int64_t h0 = f0f0 +f1f9_76+f2f8_38+f3f7_76+f4f6_38+f5f5_38;
int64_t h1 = f0f1_2+f2f9_38+f3f8_38+f4f7_38+f5f6_38;
int64_t h2 = f0f2_2+f1f1_2 +f3f9_76+f4f8_38+f5f7_76+f6f6_19;
int64_t h3 = f0f3_2+f1f2_2 +f4f9_38+f5f8_38+f6f7_38;
int64_t h4 = f0f4_2+f1f3_4 +f2f2 +f5f9_76+f6f8_38+f7f7_38;
int64_t h5 = f0f5_2+f1f4_2 +f2f3_2 +f6f9_38+f7f8_38;
int64_t h6 = f0f6_2+f1f5_4 +f2f4_2 +f3f3_2 +f7f9_76+f8f8_19;
int64_t h7 = f0f7_2+f1f6_2 +f2f5_2 +f3f4_2 +f8f9_38;
int64_t h8 = f0f8_2+f1f7_4 +f2f6_2 +f3f5_4 +f4f4 +f9f9_38;
int64_t h9 = f0f9_2+f1f8_2 +f2f7_2 +f3f6_2 +f4f5_2;
int64_t carry0;
int64_t carry1;
int64_t carry2;
int64_t carry3;
int64_t carry4;
int64_t carry5;
int64_t carry6;
int64_t carry7;
int64_t carry8;
int64_t carry9;
carry0 = h0 + BIT(25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits;
carry4 = h4 + BIT(25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits;
carry1 = h1 + BIT(24); h2 += carry1 >> 25; h1 -= carry1 & kTop39Bits;
carry5 = h5 + BIT(24); h6 += carry5 >> 25; h5 -= carry5 & kTop39Bits;
carry2 = h2 + BIT(25); h3 += carry2 >> 26; h2 -= carry2 & kTop38Bits;
carry6 = h6 + BIT(25); h7 += carry6 >> 26; h6 -= carry6 & kTop38Bits;
carry3 = h3 + BIT(24); h4 += carry3 >> 25; h3 -= carry3 & kTop39Bits;
carry7 = h7 + BIT(24); h8 += carry7 >> 25; h7 -= carry7 & kTop39Bits;
carry4 = h4 + BIT(25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits;
carry8 = h8 + BIT(25); h9 += carry8 >> 26; h8 -= carry8 & kTop38Bits;
carry9 = h9 + BIT(24); h0 += (carry9 >> 25) * 19; h9 -= carry9 & kTop39Bits;
carry0 = h0 + BIT(25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits;
h[0] = h0;
h[1] = h1;
h[2] = h2;
h[3] = h3;
h[4] = h4;
h[5] = h5;
h[6] = h6;
h[7] = h7;
h[8] = h8;
h[9] = h9;
}
static void fe_invert(fe out, const fe z) {
fe t0;
fe t1;
fe t2;
fe t3;
int i;
fe_sq(t0, z);
fe_sq(t1, t0);
for (i = 1; i < 2; ++i) {
fe_sq(t1, t1);
}
fe_mul(t1, z, t1);
fe_mul(t0, t0, t1);
fe_sq(t2, t0);
fe_mul(t1, t1, t2);
fe_sq(t2, t1);
for (i = 1; i < 5; ++i) {
fe_sq(t2, t2);
}
fe_mul(t1, t2, t1);
fe_sq(t2, t1);
for (i = 1; i < 10; ++i) {
fe_sq(t2, t2);
}
fe_mul(t2, t2, t1);
fe_sq(t3, t2);
for (i = 1; i < 20; ++i) {
fe_sq(t3, t3);
}
fe_mul(t2, t3, t2);
fe_sq(t2, t2);
for (i = 1; i < 10; ++i) {
fe_sq(t2, t2);
}
fe_mul(t1, t2, t1);
fe_sq(t2, t1);
for (i = 1; i < 50; ++i) {
fe_sq(t2, t2);
}
fe_mul(t2, t2, t1);
fe_sq(t3, t2);
for (i = 1; i < 100; ++i) {
fe_sq(t3, t3);
}
fe_mul(t2, t3, t2);
fe_sq(t2, t2);
for (i = 1; i < 50; ++i) {
fe_sq(t2, t2);
}
fe_mul(t1, t2, t1);
fe_sq(t1, t1);
for (i = 1; i < 5; ++i) {
fe_sq(t1, t1);
}
fe_mul(out, t1, t0);
}
/* Replace (f,g) with (g,f) if b == 1;
* replace (f,g) with (f,g) if b == 0.
*
* Preconditions: b in {0,1}. */
static void fe_cswap(fe f, fe g, unsigned int b) {
unsigned i;
b = 0-b;
for (i = 0; i < 10; i++) {
int32_t x = f[i] ^ g[i];
x &= b;
f[i] ^= x;
g[i] ^= x;
}
}
/* h = f * 121666
* Can overlap h with f.
*
* Preconditions:
* |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
*
* Postconditions:
* |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. */
static void fe_mul121666(fe h, fe f) {
int32_t f0 = f[0];
int32_t f1 = f[1];
int32_t f2 = f[2];
int32_t f3 = f[3];
int32_t f4 = f[4];
int32_t f5 = f[5];
int32_t f6 = f[6];
int32_t f7 = f[7];
int32_t f8 = f[8];
int32_t f9 = f[9];
int64_t h0 = f0 * (int64_t) 121666;
int64_t h1 = f1 * (int64_t) 121666;
int64_t h2 = f2 * (int64_t) 121666;
int64_t h3 = f3 * (int64_t) 121666;
int64_t h4 = f4 * (int64_t) 121666;
int64_t h5 = f5 * (int64_t) 121666;
int64_t h6 = f6 * (int64_t) 121666;
int64_t h7 = f7 * (int64_t) 121666;
int64_t h8 = f8 * (int64_t) 121666;
int64_t h9 = f9 * (int64_t) 121666;
int64_t carry0;
int64_t carry1;
int64_t carry2;
int64_t carry3;
int64_t carry4;
int64_t carry5;
int64_t carry6;
int64_t carry7;
int64_t carry8;
int64_t carry9;
carry9 = h9 + BIT(24); h0 += (carry9 >> 25) * 19; h9 -= carry9 & kTop39Bits;
carry1 = h1 + BIT(24); h2 += carry1 >> 25; h1 -= carry1 & kTop39Bits;
carry3 = h3 + BIT(24); h4 += carry3 >> 25; h3 -= carry3 & kTop39Bits;
carry5 = h5 + BIT(24); h6 += carry5 >> 25; h5 -= carry5 & kTop39Bits;
carry7 = h7 + BIT(24); h8 += carry7 >> 25; h7 -= carry7 & kTop39Bits;
carry0 = h0 + BIT(25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits;
carry2 = h2 + BIT(25); h3 += carry2 >> 26; h2 -= carry2 & kTop38Bits;
carry4 = h4 + BIT(25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits;
carry6 = h6 + BIT(25); h7 += carry6 >> 26; h6 -= carry6 & kTop38Bits;
carry8 = h8 + BIT(25); h9 += carry8 >> 26; h8 -= carry8 & kTop38Bits;
h[0] = h0;
h[1] = h1;
h[2] = h2;
h[3] = h3;
h[4] = h4;
h[5] = h5;
h[6] = h6;
h[7] = h7;
h[8] = h8;
h[9] = h9;
}
void x25519_scalar_mult(uint8_t out[32],
const uint8_t scalar[32],
const uint8_t point[32]) {
fe x1, x2, z2, x3, z3, tmp0, tmp1;
unsigned swap;
int pos;
uint8_t e[32];
memcpy(e, scalar, 32);
e[0] &= 248;
e[31] &= 127;
e[31] |= 64;
fe_frombytes(x1, point);
fe_1(x2);
fe_0(z2);
fe_copy(x3, x1);
fe_1(z3);
swap = 0;
for (pos = 254; pos >= 0; --pos) {
unsigned b = 1 & (e[pos / 8] >> (pos & 7));
swap ^= b;
fe_cswap(x2, x3, swap);
fe_cswap(z2, z3, swap);
swap = b;
fe_sub(tmp0, x3, z3);
fe_sub(tmp1, x2, z2);
fe_add(x2, x2, z2);
fe_add(z2, x3, z3);
fe_mul(z3, tmp0, x2);
fe_mul(z2, z2, tmp1);
fe_sq(tmp0, tmp1);
fe_sq(tmp1, x2);
fe_add(x3, z3, z2);
fe_sub(z2, z3, z2);
fe_mul(x2, tmp1, tmp0);
fe_sub(tmp1, tmp1, tmp0);
fe_sq(z2, z2);
fe_mul121666(z3, tmp1);
fe_sq(x3, x3);
fe_add(tmp0, tmp0, z3);
fe_mul(z3, x1, z2);
fe_mul(z2, tmp1, tmp0);
}
fe_cswap(x2, x3, swap);
fe_cswap(z2, z3, swap);
fe_invert(z2, z2);
fe_mul(x2, x2, z2);
fe_tobytes(out, x2);
}

1
common/curve25519-generic.c Symbolic link
View File

@ -0,0 +1 @@
../third_party/boringssl/common/curve25519-generic.c

View File

@ -1,65 +0,0 @@
/* Copyright 2015, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
/* This code is mostly taken from the ref10 version of Ed25519 in SUPERCOP
* 20141124 (http://bench.cr.yp.to/supercop.html). That code is released as
* public domain but this file has the ISC license just to keep licencing
* simple.
*
* The field functions are shared by Ed25519 and X25519 where possible. */
#include "common.h"
#include "curve25519.h"
#include "trng.h"
#include "util.h"
#define CRYPTO_memcmp safe_memcmp
#ifdef CONFIG_RNG
void X25519_keypair(uint8_t out_public_value[32], uint8_t out_private_key[32]) {
rand_bytes(out_private_key, 32);
/* All X25519 implementations should decode scalars correctly (see
* https://tools.ietf.org/html/rfc7748#section-5). However, if an
* implementation doesn't then it might interoperate with random keys a
* fraction of the time because they'll, randomly, happen to be correctly
* formed.
*
* Thus we do the opposite of the masking here to make sure that our private
* keys are never correctly masked and so, hopefully, any incorrect
* implementations are deterministically broken.
*
* This does not affect security because, although we're throwing away
* entropy, a valid implementation of scalarmult should throw away the exact
* same bits anyway. */
out_private_key[0] |= 7;
out_private_key[31] &= 63;
out_private_key[31] |= 128;
X25519_public_from_private(out_public_value, out_private_key);
}
#endif
int X25519(uint8_t out_shared_key[32], const uint8_t private_key[32],
const uint8_t peer_public_value[32]) {
static const uint8_t kZeros[32] = {0};
x25519_scalar_mult(out_shared_key, private_key, peer_public_value);
/* The all-zero output results when the input is a point of small order. */
return CRYPTO_memcmp(kZeros, out_shared_key, 32) != 0;
}
void X25519_public_from_private(uint8_t out_public_value[32],
const uint8_t private_key[32]) {
static const uint8_t kMongomeryBasePoint[32] = {9};
x25519_scalar_mult(out_public_value, private_key, kMongomeryBasePoint);
}

1
common/curve25519.c Symbolic link
View File

@ -0,0 +1 @@
../third_party/boringssl/common/curve25519.c

View File

@ -1,70 +0,0 @@
/* Copyright 2017 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef __CROS_EC_CURVE25519_H
#define __CROS_EC_CURVE25519_H
#include <stdint.h>
/* Curve25519.
*
* Curve25519 is an elliptic curve. See https://tools.ietf.org/html/rfc7748.
*/
/* X25519.
*
* X25519 is the Diffie-Hellman primitive built from curve25519. It is
* sometimes referred to as curve25519, but X25519 is a more precise
* name.
* See http://cr.yp.to/ecdh.html and https://tools.ietf.org/html/rfc7748.
*/
#define X25519_PRIVATE_KEY_LEN 32
#define X25519_PUBLIC_VALUE_LEN 32
/**
* Generate a public/private key pair.
* @param out_public_value generated public key.
* @param out_private_value generated private key.
*/
void X25519_keypair(uint8_t out_public_value[32], uint8_t out_private_key[32]);
/**
* Diffie-Hellman function.
* @param out_shared_key
* @param private_key
* @param out_public_value
* @return one on success and zero on error.
*
* X25519() writes a shared key to @out_shared_key that is calculated from the
* given private key and the peer's public value.
*
* Don't use the shared key directly, rather use a KDF and also include the two
* public values as inputs.
*/
int X25519(uint8_t out_shared_key[32], const uint8_t private_key[32],
const uint8_t peers_public_value[32]);
/**
* Compute the matching public key.
* @param out_public_value computed public key.
* @param private_key private key to use.
*
* X25519_public_from_private() calculates a Diffie-Hellman public value from
* the given private key and writes it to @out_public_value.
*/
void X25519_public_from_private(uint8_t out_public_value[32],
const uint8_t private_key[32]);
/*
* Low-level x25519 function, defined by either the generic or cortex-m0
* implementation. Must not be called directly.
*/
void x25519_scalar_mult(uint8_t out[32],
const uint8_t scalar[32],
const uint8_t point[32]);
#endif /* __CROS_EC_CURVE25519_H */

1
include/curve25519.h Symbolic link
View File

@ -0,0 +1 @@
../third_party/boringssl/include/curve25519.h

View File

@ -1,197 +0,0 @@
/* Copyright (c) 2015, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include "console.h"
#include "common.h"
#include "curve25519.h"
#include "test_util.h"
#include "timer.h"
#include "util.h"
#include "watchdog.h"
/*
* Define this to test 1 million iterations of x25519 (takes up to
* a few minutes on host, up to a few days on microcontroller).
*/
#undef TEST_X25519_1M_ITERATIONS
static int test_x25519(void)
{
/* Taken from https://tools.ietf.org/html/rfc7748#section-5.2 */
static const uint8_t scalar1[32] = {
0xa5, 0x46, 0xe3, 0x6b, 0xf0, 0x52, 0x7c, 0x9d,
0x3b, 0x16, 0x15, 0x4b, 0x82, 0x46, 0x5e, 0xdd,
0x62, 0x14, 0x4c, 0x0a, 0xc1, 0xfc, 0x5a, 0x18,
0x50, 0x6a, 0x22, 0x44, 0xba, 0x44, 0x9a, 0xc4,
};
static const uint8_t point1[32] = {
0xe6, 0xdb, 0x68, 0x67, 0x58, 0x30, 0x30, 0xdb,
0x35, 0x94, 0xc1, 0xa4, 0x24, 0xb1, 0x5f, 0x7c,
0x72, 0x66, 0x24, 0xec, 0x26, 0xb3, 0x35, 0x3b,
0x10, 0xa9, 0x03, 0xa6, 0xd0, 0xab, 0x1c, 0x4c,
};
static const uint8_t expected1[32] = {
0xc3, 0xda, 0x55, 0x37, 0x9d, 0xe9, 0xc6, 0x90,
0x8e, 0x94, 0xea, 0x4d, 0xf2, 0x8d, 0x08, 0x4f,
0x32, 0xec, 0xcf, 0x03, 0x49, 0x1c, 0x71, 0xf7,
0x54, 0xb4, 0x07, 0x55, 0x77, 0xa2, 0x85, 0x52,
};
static const uint8_t scalar2[32] = {
0x4b, 0x66, 0xe9, 0xd4, 0xd1, 0xb4, 0x67, 0x3c,
0x5a, 0xd2, 0x26, 0x91, 0x95, 0x7d, 0x6a, 0xf5,
0xc1, 0x1b, 0x64, 0x21, 0xe0, 0xea, 0x01, 0xd4,
0x2c, 0xa4, 0x16, 0x9e, 0x79, 0x18, 0xba, 0x0d,
};
static const uint8_t point2[32] = {
0xe5, 0x21, 0x0f, 0x12, 0x78, 0x68, 0x11, 0xd3,
0xf4, 0xb7, 0x95, 0x9d, 0x05, 0x38, 0xae, 0x2c,
0x31, 0xdb, 0xe7, 0x10, 0x6f, 0xc0, 0x3c, 0x3e,
0xfc, 0x4c, 0xd5, 0x49, 0xc7, 0x15, 0xa4, 0x93,
};
static const uint8_t expected2[32] = {
0x95, 0xcb, 0xde, 0x94, 0x76, 0xe8, 0x90, 0x7d,
0x7a, 0xad, 0xe4, 0x5c, 0xb4, 0xb8, 0x73, 0xf8,
0x8b, 0x59, 0x5a, 0x68, 0x79, 0x9f, 0xa1, 0x52,
0xe6, 0xf8, 0xf7, 0x64, 0x7a, 0xac, 0x79, 0x57,
};
uint8_t out[32];
X25519(out, scalar1, point1);
if (memcmp(expected1, out, sizeof(out)) != 0) {
ccprintf("X25519 test one failed.\n");
return 0;
}
X25519(out, scalar2, point2);
if (memcmp(expected2, out, sizeof(out)) != 0) {
ccprintf("X25519 test two failed.\n");
return 0;
}
return 1;
}
static int test_x25519_small_order(void)
{
static const uint8_t kSmallOrderPoint[32] = {
0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae,
0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a,
0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd,
0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8,
};
uint8_t out[32], private_key[32];
memset(private_key, 0x11, sizeof(private_key));
if (X25519(out, private_key, kSmallOrderPoint)) {
ccprintf("X25519 returned success with a small-order input.\n");
return 0;
}
return 1;
}
static int test_x25519_iterated(void)
{
/* Taken from https://tools.ietf.org/html/rfc7748#section-5.2 */
static const uint8_t expected_1K[32] = {
0x68, 0x4c, 0xf5, 0x9b, 0xa8, 0x33, 0x09, 0x55,
0x28, 0x00, 0xef, 0x56, 0x6f, 0x2f, 0x4d, 0x3c,
0x1c, 0x38, 0x87, 0xc4, 0x93, 0x60, 0xe3, 0x87,
0x5f, 0x2e, 0xb9, 0x4d, 0x99, 0x53, 0x2c, 0x51,
};
#ifdef TEST_X25519_1M_ITERATIONS
static const uint8_t expected_1M[32] = {
0x7c, 0x39, 0x11, 0xe0, 0xab, 0x25, 0x86, 0xfd,
0x86, 0x44, 0x97, 0x29, 0x7e, 0x57, 0x5e, 0x6f,
0x3b, 0xc6, 0x01, 0xc0, 0x88, 0x3c, 0x30, 0xdf,
0x5f, 0x4d, 0xd2, 0xd2, 0x4f, 0x66, 0x54, 0x24
};
#endif
uint8_t scalar[32] = {9}, point[32] = {9}, out[32];
unsigned i;
for (i = 0; i < 1000; i++) {
watchdog_reload();
X25519(out, scalar, point);
memcpy(point, scalar, sizeof(point));
memcpy(scalar, out, sizeof(scalar));
}
if (memcmp(expected_1K, scalar, sizeof(expected_1K)) != 0) {
ccprintf("1,000 iterations X25519 test failed\n");
return 0;
}
#ifdef TEST_X25519_1M_ITERATIONS
for (; i < 1000000; i++) {
watchdog_reload();
X25519(out, scalar, point);
memcpy(point, scalar, sizeof(point));
memcpy(scalar, out, sizeof(scalar));
if ((i % 10000) == 0)
ccprints("%d", i);
}
if (memcmp(expected_1M, scalar, sizeof(expected_1M)) != 0) {
ccprintf("1,000,000 iterations X25519 test failed\n");
return 0;
}
#endif
return 1;
}
static void test_x25519_speed(void)
{
static const uint8_t scalar1[32] = {
0xa5, 0x46, 0xe3, 0x6b, 0xf0, 0x52, 0x7c, 0x9d,
0x3b, 0x16, 0x15, 0x4b, 0x82, 0x46, 0x5e, 0xdd,
0x62, 0x14, 0x4c, 0x0a, 0xc1, 0xfc, 0x5a, 0x18,
0x50, 0x6a, 0x22, 0x44, 0xba, 0x44, 0x9a, 0xc4,
};
static const uint8_t point1[32] = {
0xe6, 0xdb, 0x68, 0x67, 0x58, 0x30, 0x30, 0xdb,
0x35, 0x94, 0xc1, 0xa4, 0x24, 0xb1, 0x5f, 0x7c,
0x72, 0x66, 0x24, 0xec, 0x26, 0xb3, 0x35, 0x3b,
0x10, 0xa9, 0x03, 0xa6, 0xd0, 0xab, 0x1c, 0x4c,
};
uint8_t out[32];
timestamp_t t0, t1;
X25519(out, scalar1, point1);
t0 = get_time();
X25519(out, scalar1, point1);
t1 = get_time();
ccprintf("X25519 duration %lld us\n", (long long)(t1.val - t0.val));
}
void run_test(void)
{
watchdog_reload();
/* do not check speed, just as a benchmark */
test_x25519_speed();
watchdog_reload();
if (!test_x25519() || !test_x25519_iterated() ||
!test_x25519_small_order()) {
test_fail();
return;
}
test_pass();
}

1
test/x25519.c Symbolic link
View File

@ -0,0 +1 @@
../third_party/boringssl/test/x25519.c

View File

@ -8,6 +8,8 @@ third_party {
value: "https://boringssl.googlesource.com/boringssl/"
}
version: "859679518d3433cdd0dd6cf534bd7bdb2a32dd60"
# TODO(crbug.com/884905): Refresh curve25519 to latest boringssl
# version_curve25519: "c034e2d3ce16df5f89134515bc113eb4f3a28e0e"
last_upgrade_date { year: 2018 month: 07 day: 05 }
license_type: NOTICE
local_modifications: "Adapted code to work with EC codebase."

View File

@ -0,0 +1,821 @@
/* Copyright 2015, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
/* This code is mostly taken from the ref10 version of Ed25519 in SUPERCOP
* 20141124 (http://bench.cr.yp.to/supercop.html). That code is released as
* public domain but this file has the ISC license just to keep licencing
* simple.
*
* The field functions are shared by Ed25519 and X25519 where possible. */
#include "curve25519.h"
#include "util.h"
/*
* fe means field element. Here the field is \Z/(2^255-19). An element t,
* entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
* t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on
* context.
*/
typedef int32_t fe[10];
static const int64_t kBottom25Bits = INT64_C(0x1ffffff);
static const int64_t kBottom26Bits = INT64_C(0x3ffffff);
static const int64_t kTop39Bits = INT64_C(0xfffffffffe000000);
static const int64_t kTop38Bits = INT64_C(0xfffffffffc000000);
static uint64_t load_3(const uint8_t *in) {
uint64_t result;
result = (uint64_t)in[0];
result |= ((uint64_t)in[1]) << 8;
result |= ((uint64_t)in[2]) << 16;
return result;
}
static uint64_t load_4(const uint8_t *in) {
uint64_t result;
result = (uint64_t)in[0];
result |= ((uint64_t)in[1]) << 8;
result |= ((uint64_t)in[2]) << 16;
result |= ((uint64_t)in[3]) << 24;
return result;
}
static void fe_frombytes(fe h, const uint8_t *s) {
/* Ignores top bit of h. */
int64_t h0 = load_4(s);
int64_t h1 = load_3(s + 4) << 6;
int64_t h2 = load_3(s + 7) << 5;
int64_t h3 = load_3(s + 10) << 3;
int64_t h4 = load_3(s + 13) << 2;
int64_t h5 = load_4(s + 16);
int64_t h6 = load_3(s + 20) << 7;
int64_t h7 = load_3(s + 23) << 5;
int64_t h8 = load_3(s + 26) << 4;
int64_t h9 = (load_3(s + 29) & 8388607) << 2;
int64_t carry0;
int64_t carry1;
int64_t carry2;
int64_t carry3;
int64_t carry4;
int64_t carry5;
int64_t carry6;
int64_t carry7;
int64_t carry8;
int64_t carry9;
carry9 = h9 + BIT(24); h0 += (carry9 >> 25) * 19; h9 -= carry9 & kTop39Bits;
carry1 = h1 + BIT(24); h2 += carry1 >> 25; h1 -= carry1 & kTop39Bits;
carry3 = h3 + BIT(24); h4 += carry3 >> 25; h3 -= carry3 & kTop39Bits;
carry5 = h5 + BIT(24); h6 += carry5 >> 25; h5 -= carry5 & kTop39Bits;
carry7 = h7 + BIT(24); h8 += carry7 >> 25; h7 -= carry7 & kTop39Bits;
carry0 = h0 + BIT(25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits;
carry2 = h2 + BIT(25); h3 += carry2 >> 26; h2 -= carry2 & kTop38Bits;
carry4 = h4 + BIT(25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits;
carry6 = h6 + BIT(25); h7 += carry6 >> 26; h6 -= carry6 & kTop38Bits;
carry8 = h8 + BIT(25); h9 += carry8 >> 26; h8 -= carry8 & kTop38Bits;
h[0] = h0;
h[1] = h1;
h[2] = h2;
h[3] = h3;
h[4] = h4;
h[5] = h5;
h[6] = h6;
h[7] = h7;
h[8] = h8;
h[9] = h9;
}
/* Preconditions:
* |h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
*
* Write p=2^255-19; q=floor(h/p).
* Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))).
*
* Proof:
* Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4.
* Also have |h-2^230 h9|<2^231 so |19 2^(-255)(h-2^230 h9)|<1/4.
*
* Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9).
* Then 0<y<1.
*
* Write r=h-pq.
* Have 0<=r<=p-1=2^255-20.
* Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1.
*
* Write x=r+19(2^-255)r+y.
* Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q.
*
* Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1))
* so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q. */
static void fe_tobytes(uint8_t *s, const fe h) {
int32_t h0 = h[0];
int32_t h1 = h[1];
int32_t h2 = h[2];
int32_t h3 = h[3];
int32_t h4 = h[4];
int32_t h5 = h[5];
int32_t h6 = h[6];
int32_t h7 = h[7];
int32_t h8 = h[8];
int32_t h9 = h[9];
int32_t q;
q = (19 * h9 + (((int32_t) 1) << 24)) >> 25;
q = (h0 + q) >> 26;
q = (h1 + q) >> 25;
q = (h2 + q) >> 26;
q = (h3 + q) >> 25;
q = (h4 + q) >> 26;
q = (h5 + q) >> 25;
q = (h6 + q) >> 26;
q = (h7 + q) >> 25;
q = (h8 + q) >> 26;
q = (h9 + q) >> 25;
/* Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20. */
h0 += 19 * q;
/* Goal: Output h-2^255 q, which is between 0 and 2^255-20. */
h1 += h0 >> 26; h0 &= kBottom26Bits;
h2 += h1 >> 25; h1 &= kBottom25Bits;
h3 += h2 >> 26; h2 &= kBottom26Bits;
h4 += h3 >> 25; h3 &= kBottom25Bits;
h5 += h4 >> 26; h4 &= kBottom26Bits;
h6 += h5 >> 25; h5 &= kBottom25Bits;
h7 += h6 >> 26; h6 &= kBottom26Bits;
h8 += h7 >> 25; h7 &= kBottom25Bits;
h9 += h8 >> 26; h8 &= kBottom26Bits;
h9 &= kBottom25Bits;
/* h10 = carry9 */
/* Goal: Output h0+...+2^255 h10-2^255 q, which is between 0 and 2^255-20.
* Have h0+...+2^230 h9 between 0 and 2^255-1;
* evidently 2^255 h10-2^255 q = 0.
* Goal: Output h0+...+2^230 h9. */
s[0] = h0 >> 0;
s[1] = h0 >> 8;
s[2] = h0 >> 16;
s[3] = (h0 >> 24) | ((uint32_t)(h1) << 2);
s[4] = h1 >> 6;
s[5] = h1 >> 14;
s[6] = (h1 >> 22) | ((uint32_t)(h2) << 3);
s[7] = h2 >> 5;
s[8] = h2 >> 13;
s[9] = (h2 >> 21) | ((uint32_t)(h3) << 5);
s[10] = h3 >> 3;
s[11] = h3 >> 11;
s[12] = (h3 >> 19) | ((uint32_t)(h4) << 6);
s[13] = h4 >> 2;
s[14] = h4 >> 10;
s[15] = h4 >> 18;
s[16] = h5 >> 0;
s[17] = h5 >> 8;
s[18] = h5 >> 16;
s[19] = (h5 >> 24) | ((uint32_t)(h6) << 1);
s[20] = h6 >> 7;
s[21] = h6 >> 15;
s[22] = (h6 >> 23) | ((uint32_t)(h7) << 3);
s[23] = h7 >> 5;
s[24] = h7 >> 13;
s[25] = (h7 >> 21) | ((uint32_t)(h8) << 4);
s[26] = h8 >> 4;
s[27] = h8 >> 12;
s[28] = (h8 >> 20) | ((uint32_t)(h9) << 6);
s[29] = h9 >> 2;
s[30] = h9 >> 10;
s[31] = h9 >> 18;
}
/* h = f */
static void fe_copy(fe h, const fe f) {
memmove(h, f, sizeof(int32_t) * 10);
}
/* h = 0 */
static void fe_0(fe h) { memset(h, 0, sizeof(int32_t) * 10); }
/* h = 1 */
static void fe_1(fe h) {
memset(h, 0, sizeof(int32_t) * 10);
h[0] = 1;
}
/* h = f + g
* Can overlap h with f or g.
*
* Preconditions:
* |f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
* |g| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
*
* Postconditions:
* |h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. */
static void fe_add(fe h, const fe f, const fe g) {
unsigned i;
for (i = 0; i < 10; i++) {
h[i] = f[i] + g[i];
}
}
/* h = f - g
* Can overlap h with f or g.
*
* Preconditions:
* |f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
* |g| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
*
* Postconditions:
* |h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. */
static void fe_sub(fe h, const fe f, const fe g) {
unsigned i;
for (i = 0; i < 10; i++) {
h[i] = f[i] - g[i];
}
}
/* h = f * g
* Can overlap h with f or g.
*
* Preconditions:
* |f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
* |g| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
*
* Postconditions:
* |h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc.
*
* Notes on implementation strategy:
*
* Using schoolbook multiplication.
* Karatsuba would save a little in some cost models.
*
* Most multiplications by 2 and 19 are 32-bit precomputations;
* cheaper than 64-bit postcomputations.
*
* There is one remaining multiplication by 19 in the carry chain;
* one *19 precomputation can be merged into this,
* but the resulting data flow is considerably less clean.
*
* There are 12 carries below.
* 10 of them are 2-way parallelizable and vectorizable.
* Can get away with 11 carries, but then data flow is much deeper.
*
* With tighter constraints on inputs can squeeze carries into int32. */
static void fe_mul(fe h, const fe f, const fe g) {
int32_t f0 = f[0];
int32_t f1 = f[1];
int32_t f2 = f[2];
int32_t f3 = f[3];
int32_t f4 = f[4];
int32_t f5 = f[5];
int32_t f6 = f[6];
int32_t f7 = f[7];
int32_t f8 = f[8];
int32_t f9 = f[9];
int32_t g0 = g[0];
int32_t g1 = g[1];
int32_t g2 = g[2];
int32_t g3 = g[3];
int32_t g4 = g[4];
int32_t g5 = g[5];
int32_t g6 = g[6];
int32_t g7 = g[7];
int32_t g8 = g[8];
int32_t g9 = g[9];
int32_t g1_19 = 19 * g1; /* 1.959375*2^29 */
int32_t g2_19 = 19 * g2; /* 1.959375*2^30; still ok */
int32_t g3_19 = 19 * g3;
int32_t g4_19 = 19 * g4;
int32_t g5_19 = 19 * g5;
int32_t g6_19 = 19 * g6;
int32_t g7_19 = 19 * g7;
int32_t g8_19 = 19 * g8;
int32_t g9_19 = 19 * g9;
int32_t f1_2 = 2 * f1;
int32_t f3_2 = 2 * f3;
int32_t f5_2 = 2 * f5;
int32_t f7_2 = 2 * f7;
int32_t f9_2 = 2 * f9;
int64_t f0g0 = f0 * (int64_t) g0;
int64_t f0g1 = f0 * (int64_t) g1;
int64_t f0g2 = f0 * (int64_t) g2;
int64_t f0g3 = f0 * (int64_t) g3;
int64_t f0g4 = f0 * (int64_t) g4;
int64_t f0g5 = f0 * (int64_t) g5;
int64_t f0g6 = f0 * (int64_t) g6;
int64_t f0g7 = f0 * (int64_t) g7;
int64_t f0g8 = f0 * (int64_t) g8;
int64_t f0g9 = f0 * (int64_t) g9;
int64_t f1g0 = f1 * (int64_t) g0;
int64_t f1g1_2 = f1_2 * (int64_t) g1;
int64_t f1g2 = f1 * (int64_t) g2;
int64_t f1g3_2 = f1_2 * (int64_t) g3;
int64_t f1g4 = f1 * (int64_t) g4;
int64_t f1g5_2 = f1_2 * (int64_t) g5;
int64_t f1g6 = f1 * (int64_t) g6;
int64_t f1g7_2 = f1_2 * (int64_t) g7;
int64_t f1g8 = f1 * (int64_t) g8;
int64_t f1g9_38 = f1_2 * (int64_t) g9_19;
int64_t f2g0 = f2 * (int64_t) g0;
int64_t f2g1 = f2 * (int64_t) g1;
int64_t f2g2 = f2 * (int64_t) g2;
int64_t f2g3 = f2 * (int64_t) g3;
int64_t f2g4 = f2 * (int64_t) g4;
int64_t f2g5 = f2 * (int64_t) g5;
int64_t f2g6 = f2 * (int64_t) g6;
int64_t f2g7 = f2 * (int64_t) g7;
int64_t f2g8_19 = f2 * (int64_t) g8_19;
int64_t f2g9_19 = f2 * (int64_t) g9_19;
int64_t f3g0 = f3 * (int64_t) g0;
int64_t f3g1_2 = f3_2 * (int64_t) g1;
int64_t f3g2 = f3 * (int64_t) g2;
int64_t f3g3_2 = f3_2 * (int64_t) g3;
int64_t f3g4 = f3 * (int64_t) g4;
int64_t f3g5_2 = f3_2 * (int64_t) g5;
int64_t f3g6 = f3 * (int64_t) g6;
int64_t f3g7_38 = f3_2 * (int64_t) g7_19;
int64_t f3g8_19 = f3 * (int64_t) g8_19;
int64_t f3g9_38 = f3_2 * (int64_t) g9_19;
int64_t f4g0 = f4 * (int64_t) g0;
int64_t f4g1 = f4 * (int64_t) g1;
int64_t f4g2 = f4 * (int64_t) g2;
int64_t f4g3 = f4 * (int64_t) g3;
int64_t f4g4 = f4 * (int64_t) g4;
int64_t f4g5 = f4 * (int64_t) g5;
int64_t f4g6_19 = f4 * (int64_t) g6_19;
int64_t f4g7_19 = f4 * (int64_t) g7_19;
int64_t f4g8_19 = f4 * (int64_t) g8_19;
int64_t f4g9_19 = f4 * (int64_t) g9_19;
int64_t f5g0 = f5 * (int64_t) g0;
int64_t f5g1_2 = f5_2 * (int64_t) g1;
int64_t f5g2 = f5 * (int64_t) g2;
int64_t f5g3_2 = f5_2 * (int64_t) g3;
int64_t f5g4 = f5 * (int64_t) g4;
int64_t f5g5_38 = f5_2 * (int64_t) g5_19;
int64_t f5g6_19 = f5 * (int64_t) g6_19;
int64_t f5g7_38 = f5_2 * (int64_t) g7_19;
int64_t f5g8_19 = f5 * (int64_t) g8_19;
int64_t f5g9_38 = f5_2 * (int64_t) g9_19;
int64_t f6g0 = f6 * (int64_t) g0;
int64_t f6g1 = f6 * (int64_t) g1;
int64_t f6g2 = f6 * (int64_t) g2;
int64_t f6g3 = f6 * (int64_t) g3;
int64_t f6g4_19 = f6 * (int64_t) g4_19;
int64_t f6g5_19 = f6 * (int64_t) g5_19;
int64_t f6g6_19 = f6 * (int64_t) g6_19;
int64_t f6g7_19 = f6 * (int64_t) g7_19;
int64_t f6g8_19 = f6 * (int64_t) g8_19;
int64_t f6g9_19 = f6 * (int64_t) g9_19;
int64_t f7g0 = f7 * (int64_t) g0;
int64_t f7g1_2 = f7_2 * (int64_t) g1;
int64_t f7g2 = f7 * (int64_t) g2;
int64_t f7g3_38 = f7_2 * (int64_t) g3_19;
int64_t f7g4_19 = f7 * (int64_t) g4_19;
int64_t f7g5_38 = f7_2 * (int64_t) g5_19;
int64_t f7g6_19 = f7 * (int64_t) g6_19;
int64_t f7g7_38 = f7_2 * (int64_t) g7_19;
int64_t f7g8_19 = f7 * (int64_t) g8_19;
int64_t f7g9_38 = f7_2 * (int64_t) g9_19;
int64_t f8g0 = f8 * (int64_t) g0;
int64_t f8g1 = f8 * (int64_t) g1;
int64_t f8g2_19 = f8 * (int64_t) g2_19;
int64_t f8g3_19 = f8 * (int64_t) g3_19;
int64_t f8g4_19 = f8 * (int64_t) g4_19;
int64_t f8g5_19 = f8 * (int64_t) g5_19;
int64_t f8g6_19 = f8 * (int64_t) g6_19;
int64_t f8g7_19 = f8 * (int64_t) g7_19;
int64_t f8g8_19 = f8 * (int64_t) g8_19;
int64_t f8g9_19 = f8 * (int64_t) g9_19;
int64_t f9g0 = f9 * (int64_t) g0;
int64_t f9g1_38 = f9_2 * (int64_t) g1_19;
int64_t f9g2_19 = f9 * (int64_t) g2_19;
int64_t f9g3_38 = f9_2 * (int64_t) g3_19;
int64_t f9g4_19 = f9 * (int64_t) g4_19;
int64_t f9g5_38 = f9_2 * (int64_t) g5_19;
int64_t f9g6_19 = f9 * (int64_t) g6_19;
int64_t f9g7_38 = f9_2 * (int64_t) g7_19;
int64_t f9g8_19 = f9 * (int64_t) g8_19;
int64_t f9g9_38 = f9_2 * (int64_t) g9_19;
int64_t h0 = f0g0+f1g9_38+f2g8_19+f3g7_38+f4g6_19+f5g5_38+f6g4_19+f7g3_38+f8g2_19+f9g1_38;
int64_t h1 = f0g1+f1g0 +f2g9_19+f3g8_19+f4g7_19+f5g6_19+f6g5_19+f7g4_19+f8g3_19+f9g2_19;
int64_t h2 = f0g2+f1g1_2 +f2g0 +f3g9_38+f4g8_19+f5g7_38+f6g6_19+f7g5_38+f8g4_19+f9g3_38;
int64_t h3 = f0g3+f1g2 +f2g1 +f3g0 +f4g9_19+f5g8_19+f6g7_19+f7g6_19+f8g5_19+f9g4_19;
int64_t h4 = f0g4+f1g3_2 +f2g2 +f3g1_2 +f4g0 +f5g9_38+f6g8_19+f7g7_38+f8g6_19+f9g5_38;
int64_t h5 = f0g5+f1g4 +f2g3 +f3g2 +f4g1 +f5g0 +f6g9_19+f7g8_19+f8g7_19+f9g6_19;
int64_t h6 = f0g6+f1g5_2 +f2g4 +f3g3_2 +f4g2 +f5g1_2 +f6g0 +f7g9_38+f8g8_19+f9g7_38;
int64_t h7 = f0g7+f1g6 +f2g5 +f3g4 +f4g3 +f5g2 +f6g1 +f7g0 +f8g9_19+f9g8_19;
int64_t h8 = f0g8+f1g7_2 +f2g6 +f3g5_2 +f4g4 +f5g3_2 +f6g2 +f7g1_2 +f8g0 +f9g9_38;
int64_t h9 = f0g9+f1g8 +f2g7 +f3g6 +f4g5 +f5g4 +f6g3 +f7g2 +f8g1 +f9g0 ;
int64_t carry0;
int64_t carry1;
int64_t carry2;
int64_t carry3;
int64_t carry4;
int64_t carry5;
int64_t carry6;
int64_t carry7;
int64_t carry8;
int64_t carry9;
/* |h0| <= (1.65*1.65*2^52*(1+19+19+19+19)+1.65*1.65*2^50*(38+38+38+38+38))
* i.e. |h0| <= 1.4*2^60; narrower ranges for h2, h4, h6, h8
* |h1| <= (1.65*1.65*2^51*(1+1+19+19+19+19+19+19+19+19))
* i.e. |h1| <= 1.7*2^59; narrower ranges for h3, h5, h7, h9 */
carry0 = h0 + BIT(25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits;
carry4 = h4 + BIT(25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits;
/* |h0| <= 2^25 */
/* |h4| <= 2^25 */
/* |h1| <= 1.71*2^59 */
/* |h5| <= 1.71*2^59 */
carry1 = h1 + BIT(24); h2 += carry1 >> 25; h1 -= carry1 & kTop39Bits;
carry5 = h5 + BIT(24); h6 += carry5 >> 25; h5 -= carry5 & kTop39Bits;
/* |h1| <= 2^24; from now on fits into int32 */
/* |h5| <= 2^24; from now on fits into int32 */
/* |h2| <= 1.41*2^60 */
/* |h6| <= 1.41*2^60 */
carry2 = h2 + BIT(25); h3 += carry2 >> 26; h2 -= carry2 & kTop38Bits;
carry6 = h6 + BIT(25); h7 += carry6 >> 26; h6 -= carry6 & kTop38Bits;
/* |h2| <= 2^25; from now on fits into int32 unchanged */
/* |h6| <= 2^25; from now on fits into int32 unchanged */
/* |h3| <= 1.71*2^59 */
/* |h7| <= 1.71*2^59 */
carry3 = h3 + BIT(24); h4 += carry3 >> 25; h3 -= carry3 & kTop39Bits;
carry7 = h7 + BIT(24); h8 += carry7 >> 25; h7 -= carry7 & kTop39Bits;
/* |h3| <= 2^24; from now on fits into int32 unchanged */
/* |h7| <= 2^24; from now on fits into int32 unchanged */
/* |h4| <= 1.72*2^34 */
/* |h8| <= 1.41*2^60 */
carry4 = h4 + BIT(25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits;
carry8 = h8 + BIT(25); h9 += carry8 >> 26; h8 -= carry8 & kTop38Bits;
/* |h4| <= 2^25; from now on fits into int32 unchanged */
/* |h8| <= 2^25; from now on fits into int32 unchanged */
/* |h5| <= 1.01*2^24 */
/* |h9| <= 1.71*2^59 */
carry9 = h9 + BIT(24); h0 += (carry9 >> 25) * 19; h9 -= carry9 & kTop39Bits;
/* |h9| <= 2^24; from now on fits into int32 unchanged */
/* |h0| <= 1.1*2^39 */
carry0 = h0 + BIT(25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits;
/* |h0| <= 2^25; from now on fits into int32 unchanged */
/* |h1| <= 1.01*2^24 */
h[0] = h0;
h[1] = h1;
h[2] = h2;
h[3] = h3;
h[4] = h4;
h[5] = h5;
h[6] = h6;
h[7] = h7;
h[8] = h8;
h[9] = h9;
}
/* h = f * f
* Can overlap h with f.
*
* Preconditions:
* |f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
*
* Postconditions:
* |h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc.
*
* See fe_mul.c for discussion of implementation strategy. */
static void fe_sq(fe h, const fe f) {
int32_t f0 = f[0];
int32_t f1 = f[1];
int32_t f2 = f[2];
int32_t f3 = f[3];
int32_t f4 = f[4];
int32_t f5 = f[5];
int32_t f6 = f[6];
int32_t f7 = f[7];
int32_t f8 = f[8];
int32_t f9 = f[9];
int32_t f0_2 = 2 * f0;
int32_t f1_2 = 2 * f1;
int32_t f2_2 = 2 * f2;
int32_t f3_2 = 2 * f3;
int32_t f4_2 = 2 * f4;
int32_t f5_2 = 2 * f5;
int32_t f6_2 = 2 * f6;
int32_t f7_2 = 2 * f7;
int32_t f5_38 = 38 * f5; /* 1.959375*2^30 */
int32_t f6_19 = 19 * f6; /* 1.959375*2^30 */
int32_t f7_38 = 38 * f7; /* 1.959375*2^30 */
int32_t f8_19 = 19 * f8; /* 1.959375*2^30 */
int32_t f9_38 = 38 * f9; /* 1.959375*2^30 */
int64_t f0f0 = f0 * (int64_t) f0;
int64_t f0f1_2 = f0_2 * (int64_t) f1;
int64_t f0f2_2 = f0_2 * (int64_t) f2;
int64_t f0f3_2 = f0_2 * (int64_t) f3;
int64_t f0f4_2 = f0_2 * (int64_t) f4;
int64_t f0f5_2 = f0_2 * (int64_t) f5;
int64_t f0f6_2 = f0_2 * (int64_t) f6;
int64_t f0f7_2 = f0_2 * (int64_t) f7;
int64_t f0f8_2 = f0_2 * (int64_t) f8;
int64_t f0f9_2 = f0_2 * (int64_t) f9;
int64_t f1f1_2 = f1_2 * (int64_t) f1;
int64_t f1f2_2 = f1_2 * (int64_t) f2;
int64_t f1f3_4 = f1_2 * (int64_t) f3_2;
int64_t f1f4_2 = f1_2 * (int64_t) f4;
int64_t f1f5_4 = f1_2 * (int64_t) f5_2;
int64_t f1f6_2 = f1_2 * (int64_t) f6;
int64_t f1f7_4 = f1_2 * (int64_t) f7_2;
int64_t f1f8_2 = f1_2 * (int64_t) f8;
int64_t f1f9_76 = f1_2 * (int64_t) f9_38;
int64_t f2f2 = f2 * (int64_t) f2;
int64_t f2f3_2 = f2_2 * (int64_t) f3;
int64_t f2f4_2 = f2_2 * (int64_t) f4;
int64_t f2f5_2 = f2_2 * (int64_t) f5;
int64_t f2f6_2 = f2_2 * (int64_t) f6;
int64_t f2f7_2 = f2_2 * (int64_t) f7;
int64_t f2f8_38 = f2_2 * (int64_t) f8_19;
int64_t f2f9_38 = f2 * (int64_t) f9_38;
int64_t f3f3_2 = f3_2 * (int64_t) f3;
int64_t f3f4_2 = f3_2 * (int64_t) f4;
int64_t f3f5_4 = f3_2 * (int64_t) f5_2;
int64_t f3f6_2 = f3_2 * (int64_t) f6;
int64_t f3f7_76 = f3_2 * (int64_t) f7_38;
int64_t f3f8_38 = f3_2 * (int64_t) f8_19;
int64_t f3f9_76 = f3_2 * (int64_t) f9_38;
int64_t f4f4 = f4 * (int64_t) f4;
int64_t f4f5_2 = f4_2 * (int64_t) f5;
int64_t f4f6_38 = f4_2 * (int64_t) f6_19;
int64_t f4f7_38 = f4 * (int64_t) f7_38;
int64_t f4f8_38 = f4_2 * (int64_t) f8_19;
int64_t f4f9_38 = f4 * (int64_t) f9_38;
int64_t f5f5_38 = f5 * (int64_t) f5_38;
int64_t f5f6_38 = f5_2 * (int64_t) f6_19;
int64_t f5f7_76 = f5_2 * (int64_t) f7_38;
int64_t f5f8_38 = f5_2 * (int64_t) f8_19;
int64_t f5f9_76 = f5_2 * (int64_t) f9_38;
int64_t f6f6_19 = f6 * (int64_t) f6_19;
int64_t f6f7_38 = f6 * (int64_t) f7_38;
int64_t f6f8_38 = f6_2 * (int64_t) f8_19;
int64_t f6f9_38 = f6 * (int64_t) f9_38;
int64_t f7f7_38 = f7 * (int64_t) f7_38;
int64_t f7f8_38 = f7_2 * (int64_t) f8_19;
int64_t f7f9_76 = f7_2 * (int64_t) f9_38;
int64_t f8f8_19 = f8 * (int64_t) f8_19;
int64_t f8f9_38 = f8 * (int64_t) f9_38;
int64_t f9f9_38 = f9 * (int64_t) f9_38;
int64_t h0 = f0f0 +f1f9_76+f2f8_38+f3f7_76+f4f6_38+f5f5_38;
int64_t h1 = f0f1_2+f2f9_38+f3f8_38+f4f7_38+f5f6_38;
int64_t h2 = f0f2_2+f1f1_2 +f3f9_76+f4f8_38+f5f7_76+f6f6_19;
int64_t h3 = f0f3_2+f1f2_2 +f4f9_38+f5f8_38+f6f7_38;
int64_t h4 = f0f4_2+f1f3_4 +f2f2 +f5f9_76+f6f8_38+f7f7_38;
int64_t h5 = f0f5_2+f1f4_2 +f2f3_2 +f6f9_38+f7f8_38;
int64_t h6 = f0f6_2+f1f5_4 +f2f4_2 +f3f3_2 +f7f9_76+f8f8_19;
int64_t h7 = f0f7_2+f1f6_2 +f2f5_2 +f3f4_2 +f8f9_38;
int64_t h8 = f0f8_2+f1f7_4 +f2f6_2 +f3f5_4 +f4f4 +f9f9_38;
int64_t h9 = f0f9_2+f1f8_2 +f2f7_2 +f3f6_2 +f4f5_2;
int64_t carry0;
int64_t carry1;
int64_t carry2;
int64_t carry3;
int64_t carry4;
int64_t carry5;
int64_t carry6;
int64_t carry7;
int64_t carry8;
int64_t carry9;
carry0 = h0 + BIT(25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits;
carry4 = h4 + BIT(25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits;
carry1 = h1 + BIT(24); h2 += carry1 >> 25; h1 -= carry1 & kTop39Bits;
carry5 = h5 + BIT(24); h6 += carry5 >> 25; h5 -= carry5 & kTop39Bits;
carry2 = h2 + BIT(25); h3 += carry2 >> 26; h2 -= carry2 & kTop38Bits;
carry6 = h6 + BIT(25); h7 += carry6 >> 26; h6 -= carry6 & kTop38Bits;
carry3 = h3 + BIT(24); h4 += carry3 >> 25; h3 -= carry3 & kTop39Bits;
carry7 = h7 + BIT(24); h8 += carry7 >> 25; h7 -= carry7 & kTop39Bits;
carry4 = h4 + BIT(25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits;
carry8 = h8 + BIT(25); h9 += carry8 >> 26; h8 -= carry8 & kTop38Bits;
carry9 = h9 + BIT(24); h0 += (carry9 >> 25) * 19; h9 -= carry9 & kTop39Bits;
carry0 = h0 + BIT(25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits;
h[0] = h0;
h[1] = h1;
h[2] = h2;
h[3] = h3;
h[4] = h4;
h[5] = h5;
h[6] = h6;
h[7] = h7;
h[8] = h8;
h[9] = h9;
}
static void fe_invert(fe out, const fe z) {
fe t0;
fe t1;
fe t2;
fe t3;
int i;
fe_sq(t0, z);
fe_sq(t1, t0);
for (i = 1; i < 2; ++i) {
fe_sq(t1, t1);
}
fe_mul(t1, z, t1);
fe_mul(t0, t0, t1);
fe_sq(t2, t0);
fe_mul(t1, t1, t2);
fe_sq(t2, t1);
for (i = 1; i < 5; ++i) {
fe_sq(t2, t2);
}
fe_mul(t1, t2, t1);
fe_sq(t2, t1);
for (i = 1; i < 10; ++i) {
fe_sq(t2, t2);
}
fe_mul(t2, t2, t1);
fe_sq(t3, t2);
for (i = 1; i < 20; ++i) {
fe_sq(t3, t3);
}
fe_mul(t2, t3, t2);
fe_sq(t2, t2);
for (i = 1; i < 10; ++i) {
fe_sq(t2, t2);
}
fe_mul(t1, t2, t1);
fe_sq(t2, t1);
for (i = 1; i < 50; ++i) {
fe_sq(t2, t2);
}
fe_mul(t2, t2, t1);
fe_sq(t3, t2);
for (i = 1; i < 100; ++i) {
fe_sq(t3, t3);
}
fe_mul(t2, t3, t2);
fe_sq(t2, t2);
for (i = 1; i < 50; ++i) {
fe_sq(t2, t2);
}
fe_mul(t1, t2, t1);
fe_sq(t1, t1);
for (i = 1; i < 5; ++i) {
fe_sq(t1, t1);
}
fe_mul(out, t1, t0);
}
/* Replace (f,g) with (g,f) if b == 1;
* replace (f,g) with (f,g) if b == 0.
*
* Preconditions: b in {0,1}. */
static void fe_cswap(fe f, fe g, unsigned int b) {
unsigned i;
b = 0-b;
for (i = 0; i < 10; i++) {
int32_t x = f[i] ^ g[i];
x &= b;
f[i] ^= x;
g[i] ^= x;
}
}
/* h = f * 121666
* Can overlap h with f.
*
* Preconditions:
* |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
*
* Postconditions:
* |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. */
static void fe_mul121666(fe h, fe f) {
int32_t f0 = f[0];
int32_t f1 = f[1];
int32_t f2 = f[2];
int32_t f3 = f[3];
int32_t f4 = f[4];
int32_t f5 = f[5];
int32_t f6 = f[6];
int32_t f7 = f[7];
int32_t f8 = f[8];
int32_t f9 = f[9];
int64_t h0 = f0 * (int64_t) 121666;
int64_t h1 = f1 * (int64_t) 121666;
int64_t h2 = f2 * (int64_t) 121666;
int64_t h3 = f3 * (int64_t) 121666;
int64_t h4 = f4 * (int64_t) 121666;
int64_t h5 = f5 * (int64_t) 121666;
int64_t h6 = f6 * (int64_t) 121666;
int64_t h7 = f7 * (int64_t) 121666;
int64_t h8 = f8 * (int64_t) 121666;
int64_t h9 = f9 * (int64_t) 121666;
int64_t carry0;
int64_t carry1;
int64_t carry2;
int64_t carry3;
int64_t carry4;
int64_t carry5;
int64_t carry6;
int64_t carry7;
int64_t carry8;
int64_t carry9;
carry9 = h9 + BIT(24); h0 += (carry9 >> 25) * 19; h9 -= carry9 & kTop39Bits;
carry1 = h1 + BIT(24); h2 += carry1 >> 25; h1 -= carry1 & kTop39Bits;
carry3 = h3 + BIT(24); h4 += carry3 >> 25; h3 -= carry3 & kTop39Bits;
carry5 = h5 + BIT(24); h6 += carry5 >> 25; h5 -= carry5 & kTop39Bits;
carry7 = h7 + BIT(24); h8 += carry7 >> 25; h7 -= carry7 & kTop39Bits;
carry0 = h0 + BIT(25); h1 += carry0 >> 26; h0 -= carry0 & kTop38Bits;
carry2 = h2 + BIT(25); h3 += carry2 >> 26; h2 -= carry2 & kTop38Bits;
carry4 = h4 + BIT(25); h5 += carry4 >> 26; h4 -= carry4 & kTop38Bits;
carry6 = h6 + BIT(25); h7 += carry6 >> 26; h6 -= carry6 & kTop38Bits;
carry8 = h8 + BIT(25); h9 += carry8 >> 26; h8 -= carry8 & kTop38Bits;
h[0] = h0;
h[1] = h1;
h[2] = h2;
h[3] = h3;
h[4] = h4;
h[5] = h5;
h[6] = h6;
h[7] = h7;
h[8] = h8;
h[9] = h9;
}
void x25519_scalar_mult(uint8_t out[32],
const uint8_t scalar[32],
const uint8_t point[32]) {
fe x1, x2, z2, x3, z3, tmp0, tmp1;
unsigned swap;
int pos;
uint8_t e[32];
memcpy(e, scalar, 32);
e[0] &= 248;
e[31] &= 127;
e[31] |= 64;
fe_frombytes(x1, point);
fe_1(x2);
fe_0(z2);
fe_copy(x3, x1);
fe_1(z3);
swap = 0;
for (pos = 254; pos >= 0; --pos) {
unsigned b = 1 & (e[pos / 8] >> (pos & 7));
swap ^= b;
fe_cswap(x2, x3, swap);
fe_cswap(z2, z3, swap);
swap = b;
fe_sub(tmp0, x3, z3);
fe_sub(tmp1, x2, z2);
fe_add(x2, x2, z2);
fe_add(z2, x3, z3);
fe_mul(z3, tmp0, x2);
fe_mul(z2, z2, tmp1);
fe_sq(tmp0, tmp1);
fe_sq(tmp1, x2);
fe_add(x3, z3, z2);
fe_sub(z2, z3, z2);
fe_mul(x2, tmp1, tmp0);
fe_sub(tmp1, tmp1, tmp0);
fe_sq(z2, z2);
fe_mul121666(z3, tmp1);
fe_sq(x3, x3);
fe_add(tmp0, tmp0, z3);
fe_mul(z3, x1, z2);
fe_mul(z2, tmp1, tmp0);
}
fe_cswap(x2, x3, swap);
fe_cswap(z2, z3, swap);
fe_invert(z2, z2);
fe_mul(x2, x2, z2);
fe_tobytes(out, x2);
}

View File

@ -0,0 +1,65 @@
/* Copyright 2015, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
/* This code is mostly taken from the ref10 version of Ed25519 in SUPERCOP
* 20141124 (http://bench.cr.yp.to/supercop.html). That code is released as
* public domain but this file has the ISC license just to keep licencing
* simple.
*
* The field functions are shared by Ed25519 and X25519 where possible. */
#include "common.h"
#include "curve25519.h"
#include "trng.h"
#include "util.h"
#define CRYPTO_memcmp safe_memcmp
#ifdef CONFIG_RNG
void X25519_keypair(uint8_t out_public_value[32], uint8_t out_private_key[32]) {
rand_bytes(out_private_key, 32);
/* All X25519 implementations should decode scalars correctly (see
* https://tools.ietf.org/html/rfc7748#section-5). However, if an
* implementation doesn't then it might interoperate with random keys a
* fraction of the time because they'll, randomly, happen to be correctly
* formed.
*
* Thus we do the opposite of the masking here to make sure that our private
* keys are never correctly masked and so, hopefully, any incorrect
* implementations are deterministically broken.
*
* This does not affect security because, although we're throwing away
* entropy, a valid implementation of scalarmult should throw away the exact
* same bits anyway. */
out_private_key[0] |= 7;
out_private_key[31] &= 63;
out_private_key[31] |= 128;
X25519_public_from_private(out_public_value, out_private_key);
}
#endif
int X25519(uint8_t out_shared_key[32], const uint8_t private_key[32],
const uint8_t peer_public_value[32]) {
static const uint8_t kZeros[32] = {0};
x25519_scalar_mult(out_shared_key, private_key, peer_public_value);
/* The all-zero output results when the input is a point of small order. */
return CRYPTO_memcmp(kZeros, out_shared_key, 32) != 0;
}
void X25519_public_from_private(uint8_t out_public_value[32],
const uint8_t private_key[32]) {
static const uint8_t kMongomeryBasePoint[32] = {9};
x25519_scalar_mult(out_public_value, private_key, kMongomeryBasePoint);
}

View File

@ -0,0 +1,70 @@
/* Copyright 2017 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef __CROS_EC_CURVE25519_H
#define __CROS_EC_CURVE25519_H
#include <stdint.h>
/* Curve25519.
*
* Curve25519 is an elliptic curve. See https://tools.ietf.org/html/rfc7748.
*/
/* X25519.
*
* X25519 is the Diffie-Hellman primitive built from curve25519. It is
* sometimes referred to as curve25519, but X25519 is a more precise
* name.
* See http://cr.yp.to/ecdh.html and https://tools.ietf.org/html/rfc7748.
*/
#define X25519_PRIVATE_KEY_LEN 32
#define X25519_PUBLIC_VALUE_LEN 32
/**
* Generate a public/private key pair.
* @param out_public_value generated public key.
* @param out_private_value generated private key.
*/
void X25519_keypair(uint8_t out_public_value[32], uint8_t out_private_key[32]);
/**
* Diffie-Hellman function.
* @param out_shared_key
* @param private_key
* @param out_public_value
* @return one on success and zero on error.
*
* X25519() writes a shared key to @out_shared_key that is calculated from the
* given private key and the peer's public value.
*
* Don't use the shared key directly, rather use a KDF and also include the two
* public values as inputs.
*/
int X25519(uint8_t out_shared_key[32], const uint8_t private_key[32],
const uint8_t peers_public_value[32]);
/**
* Compute the matching public key.
* @param out_public_value computed public key.
* @param private_key private key to use.
*
* X25519_public_from_private() calculates a Diffie-Hellman public value from
* the given private key and writes it to @out_public_value.
*/
void X25519_public_from_private(uint8_t out_public_value[32],
const uint8_t private_key[32]);
/*
* Low-level x25519 function, defined by either the generic or cortex-m0
* implementation. Must not be called directly.
*/
void x25519_scalar_mult(uint8_t out[32],
const uint8_t scalar[32],
const uint8_t point[32]);
#endif /* __CROS_EC_CURVE25519_H */

197
third_party/boringssl/test/x25519.c vendored Normal file
View File

@ -0,0 +1,197 @@
/* Copyright (c) 2015, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include "console.h"
#include "common.h"
#include "curve25519.h"
#include "test_util.h"
#include "timer.h"
#include "util.h"
#include "watchdog.h"
/*
* Define this to test 1 million iterations of x25519 (takes up to
* a few minutes on host, up to a few days on microcontroller).
*/
#undef TEST_X25519_1M_ITERATIONS
static int test_x25519(void)
{
/* Taken from https://tools.ietf.org/html/rfc7748#section-5.2 */
static const uint8_t scalar1[32] = {
0xa5, 0x46, 0xe3, 0x6b, 0xf0, 0x52, 0x7c, 0x9d,
0x3b, 0x16, 0x15, 0x4b, 0x82, 0x46, 0x5e, 0xdd,
0x62, 0x14, 0x4c, 0x0a, 0xc1, 0xfc, 0x5a, 0x18,
0x50, 0x6a, 0x22, 0x44, 0xba, 0x44, 0x9a, 0xc4,
};
static const uint8_t point1[32] = {
0xe6, 0xdb, 0x68, 0x67, 0x58, 0x30, 0x30, 0xdb,
0x35, 0x94, 0xc1, 0xa4, 0x24, 0xb1, 0x5f, 0x7c,
0x72, 0x66, 0x24, 0xec, 0x26, 0xb3, 0x35, 0x3b,
0x10, 0xa9, 0x03, 0xa6, 0xd0, 0xab, 0x1c, 0x4c,
};
static const uint8_t expected1[32] = {
0xc3, 0xda, 0x55, 0x37, 0x9d, 0xe9, 0xc6, 0x90,
0x8e, 0x94, 0xea, 0x4d, 0xf2, 0x8d, 0x08, 0x4f,
0x32, 0xec, 0xcf, 0x03, 0x49, 0x1c, 0x71, 0xf7,
0x54, 0xb4, 0x07, 0x55, 0x77, 0xa2, 0x85, 0x52,
};
static const uint8_t scalar2[32] = {
0x4b, 0x66, 0xe9, 0xd4, 0xd1, 0xb4, 0x67, 0x3c,
0x5a, 0xd2, 0x26, 0x91, 0x95, 0x7d, 0x6a, 0xf5,
0xc1, 0x1b, 0x64, 0x21, 0xe0, 0xea, 0x01, 0xd4,
0x2c, 0xa4, 0x16, 0x9e, 0x79, 0x18, 0xba, 0x0d,
};
static const uint8_t point2[32] = {
0xe5, 0x21, 0x0f, 0x12, 0x78, 0x68, 0x11, 0xd3,
0xf4, 0xb7, 0x95, 0x9d, 0x05, 0x38, 0xae, 0x2c,
0x31, 0xdb, 0xe7, 0x10, 0x6f, 0xc0, 0x3c, 0x3e,
0xfc, 0x4c, 0xd5, 0x49, 0xc7, 0x15, 0xa4, 0x93,
};
static const uint8_t expected2[32] = {
0x95, 0xcb, 0xde, 0x94, 0x76, 0xe8, 0x90, 0x7d,
0x7a, 0xad, 0xe4, 0x5c, 0xb4, 0xb8, 0x73, 0xf8,
0x8b, 0x59, 0x5a, 0x68, 0x79, 0x9f, 0xa1, 0x52,
0xe6, 0xf8, 0xf7, 0x64, 0x7a, 0xac, 0x79, 0x57,
};
uint8_t out[32];
X25519(out, scalar1, point1);
if (memcmp(expected1, out, sizeof(out)) != 0) {
ccprintf("X25519 test one failed.\n");
return 0;
}
X25519(out, scalar2, point2);
if (memcmp(expected2, out, sizeof(out)) != 0) {
ccprintf("X25519 test two failed.\n");
return 0;
}
return 1;
}
static int test_x25519_small_order(void)
{
static const uint8_t kSmallOrderPoint[32] = {
0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae,
0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a,
0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd,
0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8,
};
uint8_t out[32], private_key[32];
memset(private_key, 0x11, sizeof(private_key));
if (X25519(out, private_key, kSmallOrderPoint)) {
ccprintf("X25519 returned success with a small-order input.\n");
return 0;
}
return 1;
}
static int test_x25519_iterated(void)
{
/* Taken from https://tools.ietf.org/html/rfc7748#section-5.2 */
static const uint8_t expected_1K[32] = {
0x68, 0x4c, 0xf5, 0x9b, 0xa8, 0x33, 0x09, 0x55,
0x28, 0x00, 0xef, 0x56, 0x6f, 0x2f, 0x4d, 0x3c,
0x1c, 0x38, 0x87, 0xc4, 0x93, 0x60, 0xe3, 0x87,
0x5f, 0x2e, 0xb9, 0x4d, 0x99, 0x53, 0x2c, 0x51,
};
#ifdef TEST_X25519_1M_ITERATIONS
static const uint8_t expected_1M[32] = {
0x7c, 0x39, 0x11, 0xe0, 0xab, 0x25, 0x86, 0xfd,
0x86, 0x44, 0x97, 0x29, 0x7e, 0x57, 0x5e, 0x6f,
0x3b, 0xc6, 0x01, 0xc0, 0x88, 0x3c, 0x30, 0xdf,
0x5f, 0x4d, 0xd2, 0xd2, 0x4f, 0x66, 0x54, 0x24
};
#endif
uint8_t scalar[32] = {9}, point[32] = {9}, out[32];
unsigned i;
for (i = 0; i < 1000; i++) {
watchdog_reload();
X25519(out, scalar, point);
memcpy(point, scalar, sizeof(point));
memcpy(scalar, out, sizeof(scalar));
}
if (memcmp(expected_1K, scalar, sizeof(expected_1K)) != 0) {
ccprintf("1,000 iterations X25519 test failed\n");
return 0;
}
#ifdef TEST_X25519_1M_ITERATIONS
for (; i < 1000000; i++) {
watchdog_reload();
X25519(out, scalar, point);
memcpy(point, scalar, sizeof(point));
memcpy(scalar, out, sizeof(scalar));
if ((i % 10000) == 0)
ccprints("%d", i);
}
if (memcmp(expected_1M, scalar, sizeof(expected_1M)) != 0) {
ccprintf("1,000,000 iterations X25519 test failed\n");
return 0;
}
#endif
return 1;
}
static void test_x25519_speed(void)
{
static const uint8_t scalar1[32] = {
0xa5, 0x46, 0xe3, 0x6b, 0xf0, 0x52, 0x7c, 0x9d,
0x3b, 0x16, 0x15, 0x4b, 0x82, 0x46, 0x5e, 0xdd,
0x62, 0x14, 0x4c, 0x0a, 0xc1, 0xfc, 0x5a, 0x18,
0x50, 0x6a, 0x22, 0x44, 0xba, 0x44, 0x9a, 0xc4,
};
static const uint8_t point1[32] = {
0xe6, 0xdb, 0x68, 0x67, 0x58, 0x30, 0x30, 0xdb,
0x35, 0x94, 0xc1, 0xa4, 0x24, 0xb1, 0x5f, 0x7c,
0x72, 0x66, 0x24, 0xec, 0x26, 0xb3, 0x35, 0x3b,
0x10, 0xa9, 0x03, 0xa6, 0xd0, 0xab, 0x1c, 0x4c,
};
uint8_t out[32];
timestamp_t t0, t1;
X25519(out, scalar1, point1);
t0 = get_time();
X25519(out, scalar1, point1);
t1 = get_time();
ccprintf("X25519 duration %lld us\n", (long long)(t1.val - t0.val));
}
void run_test(void)
{
watchdog_reload();
/* do not check speed, just as a benchmark */
test_x25519_speed();
watchdog_reload();
if (!test_x25519() || !test_x25519_iterated() ||
!test_x25519_small_order()) {
test_fail();
return;
}
test_pass();
}