fpsensor: Refactor fpsensor tests into separate binaries

Using separate test binaries helps to prevent state from one set of
tests accidentally leaking into other tests. Ideally all unit tests
should be completely independent. Since there's a lot of global state in
the fpsensor code the separate test binaries should help prevent the
state from leaking across tests as we continue to add more.

Also, by having a 1:1 correspondence between test binaries and test
files, it's clearer what file (and functionality) each set of tests is
targeting.

BRANCH=none
BUG=none
TEST=make buildall -j

Change-Id: I937a5ffebfe61aa711efbbc2467d15d514fcfbae
Signed-off-by: Tom Hughes <tomhughes@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/c/chromiumos/platform/ec/+/1832748
Commit-Queue: Yicheng Li <yichengli@chromium.org>
Tested-by: Yicheng Li <yichengli@chromium.org>
Reviewed-by: Yicheng Li <yichengli@chromium.org>
This commit is contained in:
Tom Hughes 2019-09-23 16:04:20 -07:00 committed by Commit Bot
parent f74a01dc02
commit 1f5cc901ec
13 changed files with 885 additions and 807 deletions

View File

@ -6,6 +6,7 @@
mock-$(HAS_MOCK_FP_SENSOR) += fp_sensor_mock.o
mock-$(HAS_MOCK_FPSENSOR_DETECT) += fpsensor_detect_mock.o
mock-$(HAS_MOCK_FPSENSOR_STATE) += fpsensor_state_mock.o
mock-$(HAS_MOCK_MKBP_EVENTS) += mkbp_events_mock.o
mock-$(HAS_MOCK_ROLLBACK) += rollback_mock.o
mock-$(HAS_MOCK_TCPC) += tcpc_mock.o

View File

@ -0,0 +1,30 @@
/* Copyright 2020 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <stddef.h>
#include <string.h>
#include "common.h"
#include "ec_commands.h"
#include "test_util.h"
const uint8_t default_fake_tpm_seed[] = {
0xd9, 0x71, 0xaf, 0xc4, 0xcd, 0x36, 0xe3, 0x60, 0xf8, 0x5a, 0xa0,
0xa6, 0x2c, 0xb3, 0xf5, 0xe2, 0xeb, 0xb9, 0xd8, 0x2f, 0xb5, 0x78,
0x5c, 0x79, 0x82, 0xce, 0x06, 0x3f, 0xcc, 0x23, 0xb9, 0xe7,
};
BUILD_ASSERT(sizeof(default_fake_tpm_seed) == FP_CONTEXT_TPM_BYTES);
int fpsensor_state_mock_set_tpm_seed(
const uint8_t tpm_seed[FP_CONTEXT_TPM_BYTES])
{
struct ec_params_fp_seed params;
params.struct_version = FP_TEMPLATE_FORMAT_VERSION;
memcpy(params.seed, tpm_seed, FP_CONTEXT_TPM_BYTES);
return test_send_host_command(EC_CMD_FP_SEED, 0, &params,
sizeof(params), NULL, 0);
}

View File

@ -0,0 +1,18 @@
/* Copyright 2020 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef __MOCK_FPSENSOR_STATE_MOCK_H
#define __MOCK_FPSENSOR_STATE_MOCK_H
#include <stdbool.h>
#include <stdint.h>
#include "ec_commands.h"
extern const uint8_t default_fake_tpm_seed[FP_CONTEXT_TPM_BYTES];
int fpsensor_state_mock_set_tpm_seed(
const uint8_t tpm_seed[FP_CONTEXT_TPM_BYTES]);
#endif /* __MOCK_FPSENSOR_STATE_MOCK_H */

View File

@ -32,6 +32,8 @@ test-list-host += flash_log
test-list-host += float
test-list-host += fp
test-list-host += fpsensor
test-list-host += fpsensor_crypto
test-list-host += fpsensor_state
test-list-host += hooks
test-list-host += host_command
test-list-host += i2c_bitbang
@ -114,6 +116,8 @@ fan-y=fan.o
flash-y=flash.o
flash_log-y=flash_log.o
fpsensor-y=fpsensor.o
fpsensor_crypto-y=fpsensor_crypto.o
fpsensor_state-y=fpsensor_state.o
hooks-y=hooks.o
host_command-y=host_command.o
i2c_bitbang-y=i2c_bitbang.o

View File

@ -3,815 +3,10 @@
* found in the LICENSE file.
*/
#include "common.h"
#include "ec_commands.h"
#include "fpsensor_crypto.h"
#include "fpsensor_state.h"
#include "host_command.h"
#include "mock/timer_mock.h"
#include "test_util.h"
#include "util.h"
static const uint8_t fake_rollback_secret[] = {
0xcf, 0xe3, 0x23, 0x76, 0x35, 0x04, 0xc2, 0x0f,
0x0d, 0xb6, 0x02, 0xa9, 0x68, 0xba, 0x2a, 0x61,
0x86, 0x2a, 0x85, 0xd1, 0xca, 0x09, 0x54, 0x8a,
0x6b, 0xe2, 0xe3, 0x38, 0xde, 0x5d, 0x59, 0x14,
};
static const uint8_t fake_tpm_seed[] = {
0xd9, 0x71, 0xaf, 0xc4, 0xcd, 0x36, 0xe3, 0x60,
0xf8, 0x5a, 0xa0, 0xa6, 0x2c, 0xb3, 0xf5, 0xe2,
0xeb, 0xb9, 0xd8, 0x2f, 0xb5, 0x78, 0x5c, 0x79,
0x82, 0xce, 0x06, 0x3f, 0xcc, 0x23, 0xb9, 0xe7,
};
static const uint8_t fake_positive_match_salt[] = {
0x04, 0x1f, 0x5a, 0xac, 0x5f, 0x79, 0x10, 0xaf,
0x04, 0x1d, 0x46, 0x3a, 0x5f, 0x08, 0xee, 0xcb,
};
static const uint8_t fake_user_id[] = {
0x28, 0xb5, 0x5a, 0x55, 0x57, 0x1b, 0x26, 0x88,
0xce, 0xc5, 0xd1, 0xfe, 0x1d, 0x58, 0x5b, 0x94,
0x51, 0xa2, 0x60, 0x49, 0x9f, 0xea, 0xb1, 0xea,
0xf7, 0x04, 0x2f, 0x0b, 0x20, 0xa5, 0x93, 0x64,
};
/*
* |expected_positive_match_secret_for_empty_user_id| is obtained by running
* BoringSSL locally.
* From https://boringssl.googlesource.com/boringssl
* commit 365b7a0fcbf273b1fa704d151059e419abd6cfb8
*
* Steps to reproduce:
*
* Open boringssl/crypto/hkdf/hkdf_test.cc
* Add the following case to static const HKDFTestVector kTests[]
*
* // test positive match secret
* {
* EVP_sha256,
* {
* // IKM:
* // fake_rollback_secret
* [ ***Copy 32 octets of fake_rollback_secret here*** ]
* // fake_tpm_seed
* [ ***Copy 32 octets of fake_tpm_seed here*** ]
* }, 64,
* {
* // fake_positive_match_salt
* [ ***Copy 16 octets of fake_positive_match_salt here*** ]
* }, 16,
* {
* // Info:
* // "positive_match_secret for user "
* 0x70, 0x6f, 0x73, 0x69, 0x74, 0x69, 0x76, 0x65,
* 0x5f, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x5f, 0x73,
* 0x65, 0x63, 0x72, 0x65, 0x74, 0x20, 0x66, 0x6f,
* 0x72, 0x20, 0x75, 0x73, 0x65, 0x72, 0x20,
* // user_id
* [ ***Type 32 octets of 0x00 here*** ]
* }, 63,
* { // Expected PRK:
* 0xc2, 0xff, 0x50, 0x2d, 0xb1, 0x7e, 0x87, 0xb1,
* 0x25, 0x36, 0x3a, 0x88, 0xe1, 0xdb, 0x4f, 0x98,
* 0x22, 0xb5, 0x66, 0x8c, 0xab, 0xb7, 0xc7, 0x5e,
* 0xd7, 0x56, 0xbe, 0xde, 0x82, 0x3f, 0xd0, 0x62,
* }, 32,
* 32, { // 32 = L = FP_POSITIVE_MATCH_SECRET_BYTES
* // Expected positive match secret:
* [ ***Copy 32 octets of expected positive_match_secret here*** ]
* }
* },
*
* Then from boringssl/ execute:
* mkdir build
* cd build
* cmake ..
* make
* cd ..
* go run util/all_tests.go
*/
static const uint8_t expected_positive_match_secret_for_empty_user_id[] = {
0x8d, 0xc4, 0x5b, 0xdf, 0x55, 0x1e, 0xa8, 0x72,
0xd6, 0xdd, 0xa1, 0x4c, 0xb8, 0xa1, 0x76, 0x2b,
0xde, 0x38, 0xd5, 0x03, 0xce, 0xe4, 0x74, 0x51,
0x63, 0x6c, 0x6a, 0x26, 0xa9, 0xb7, 0xfa, 0x68,
};
/*
* Same as |expected_positive_match_secret_for_empty_user_id| but use
* |fake_user_id| instead of all-zero user_id.
*/
static const uint8_t expected_positive_match_secret_for_fake_user_id[] = {
0x0d, 0xf5, 0xac, 0x7c, 0xad, 0x37, 0x0a, 0x66,
0x2f, 0x71, 0xf6, 0xc6, 0xca, 0x8a, 0x41, 0x69,
0x8a, 0xd3, 0xcf, 0x0b, 0xc4, 0x5a, 0x5f, 0x4d,
0x54, 0xeb, 0x7b, 0xad, 0x5d, 0x1b, 0xbe, 0x30,
};
static int rollback_should_fail;
/* Mock the rollback for unit test. */
int rollback_get_secret(uint8_t *secret)
{
if (rollback_should_fail)
return EC_ERROR_UNKNOWN;
memcpy(secret, fake_rollback_secret, sizeof(fake_rollback_secret));
return EC_SUCCESS;
}
static int check_seed_set_result(const int rv, const uint32_t expected,
const struct ec_response_fp_encryption_status *resp)
{
const uint32_t actual = resp->status & FP_ENC_STATUS_SEED_SET;
if (rv != EC_RES_SUCCESS || expected != actual) {
ccprintf("%s:%s(): rv = %d, seed is set: %d\n", __FILE__,
__func__, rv, actual);
return -1;
}
return EC_SUCCESS;
}
test_static int test_fp_enc_status_valid_flags(void)
{
/* Putting expected value here because test_static should take void */
const uint32_t expected = FP_ENC_STATUS_SEED_SET;
int rv;
struct ec_response_fp_encryption_status resp = { 0 };
rv = test_send_host_command(EC_CMD_FP_ENC_STATUS, 0,
NULL, 0,
&resp, sizeof(resp));
if (rv != EC_RES_SUCCESS) {
ccprintf("%s:%s(): failed to get encryption status. rv = %d\n",
__FILE__, __func__, rv);
return -1;
}
if (resp.valid_flags != expected) {
ccprintf("%s:%s(): expected valid flags 0x%08x, got 0x%08x\n",
__FILE__, __func__, expected, resp.valid_flags);
return -1;
}
return EC_RES_SUCCESS;
}
static int test_hkdf_expand_raw(const uint8_t *prk, size_t prk_size,
const uint8_t *info, size_t info_size,
const uint8_t *expected_okm, size_t okm_size)
{
uint8_t actual_okm[okm_size];
TEST_ASSERT(hkdf_expand(actual_okm, okm_size, prk, prk_size,
info, info_size) == EC_SUCCESS);
TEST_ASSERT_ARRAY_EQ(expected_okm, actual_okm, okm_size);
return EC_SUCCESS;
}
test_static int test_hkdf_expand(void)
{
/* Test vectors in https://tools.ietf.org/html/rfc5869#appendix-A */
static const uint8_t prk1[] = {
0x07, 0x77, 0x09, 0x36, 0x2c, 0x2e, 0x32, 0xdf,
0x0d, 0xdc, 0x3f, 0x0d, 0xc4, 0x7b, 0xba, 0x63,
0x90, 0xb6, 0xc7, 0x3b, 0xb5, 0x0f, 0x9c, 0x31,
0x22, 0xec, 0x84, 0x4a, 0xd7, 0xc2, 0xb3, 0xe5,
};
static const uint8_t info1[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9,
};
static const uint8_t expected_okm1[] = {
0x3c, 0xb2, 0x5f, 0x25, 0xfa, 0xac, 0xd5, 0x7a,
0x90, 0x43, 0x4f, 0x64, 0xd0, 0x36, 0x2f, 0x2a,
0x2d, 0x2d, 0x0a, 0x90, 0xcf, 0x1a, 0x5a, 0x4c,
0x5d, 0xb0, 0x2d, 0x56, 0xec, 0xc4, 0xc5, 0xbf,
0x34, 0x00, 0x72, 0x08, 0xd5, 0xb8, 0x87, 0x18,
0x58, 0x65,
};
static const uint8_t prk2[] = {
0x06, 0xa6, 0xb8, 0x8c, 0x58, 0x53, 0x36, 0x1a,
0x06, 0x10, 0x4c, 0x9c, 0xeb, 0x35, 0xb4, 0x5c,
0xef, 0x76, 0x00, 0x14, 0x90, 0x46, 0x71, 0x01,
0x4a, 0x19, 0x3f, 0x40, 0xc1, 0x5f, 0xc2, 0x44,
};
static const uint8_t info2[] = {
0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
};
static const uint8_t expected_okm2[] = {
0xb1, 0x1e, 0x39, 0x8d, 0xc8, 0x03, 0x27, 0xa1,
0xc8, 0xe7, 0xf7, 0x8c, 0x59, 0x6a, 0x49, 0x34,
0x4f, 0x01, 0x2e, 0xda, 0x2d, 0x4e, 0xfa, 0xd8,
0xa0, 0x50, 0xcc, 0x4c, 0x19, 0xaf, 0xa9, 0x7c,
0x59, 0x04, 0x5a, 0x99, 0xca, 0xc7, 0x82, 0x72,
0x71, 0xcb, 0x41, 0xc6, 0x5e, 0x59, 0x0e, 0x09,
0xda, 0x32, 0x75, 0x60, 0x0c, 0x2f, 0x09, 0xb8,
0x36, 0x77, 0x93, 0xa9, 0xac, 0xa3, 0xdb, 0x71,
0xcc, 0x30, 0xc5, 0x81, 0x79, 0xec, 0x3e, 0x87,
0xc1, 0x4c, 0x01, 0xd5, 0xc1, 0xf3, 0x43, 0x4f,
0x1d, 0x87,
};
static const uint8_t prk3[] = {
0x19, 0xef, 0x24, 0xa3, 0x2c, 0x71, 0x7b, 0x16,
0x7f, 0x33, 0xa9, 0x1d, 0x6f, 0x64, 0x8b, 0xdf,
0x96, 0x59, 0x67, 0x76, 0xaf, 0xdb, 0x63, 0x77,
0xac, 0x43, 0x4c, 0x1c, 0x29, 0x3c, 0xcb, 0x04,
};
static const uint8_t expected_okm3[] = {
0x8d, 0xa4, 0xe7, 0x75, 0xa5, 0x63, 0xc1, 0x8f,
0x71, 0x5f, 0x80, 0x2a, 0x06, 0x3c, 0x5a, 0x31,
0xb8, 0xa1, 0x1f, 0x5c, 0x5e, 0xe1, 0x87, 0x9e,
0xc3, 0x45, 0x4e, 0x5f, 0x3c, 0x73, 0x8d, 0x2d,
0x9d, 0x20, 0x13, 0x95, 0xfa, 0xa4, 0xb6, 0x1a,
0x96, 0xc8,
};
static uint8_t unused_output[SHA256_DIGEST_SIZE] = { 0 };
TEST_ASSERT(test_hkdf_expand_raw(prk1, sizeof(prk1), info1,
sizeof(info1), expected_okm1,
sizeof(expected_okm1))
== EC_SUCCESS);
TEST_ASSERT(test_hkdf_expand_raw(prk2, sizeof(prk2), info2,
sizeof(info2), expected_okm2,
sizeof(expected_okm2))
== EC_SUCCESS);
TEST_ASSERT(test_hkdf_expand_raw(prk3, sizeof(prk3), NULL, 0,
expected_okm3, sizeof(expected_okm3))
== EC_SUCCESS);
TEST_ASSERT(hkdf_expand(NULL, sizeof(unused_output), prk1,
sizeof(prk1), info1, sizeof(info1))
== EC_ERROR_INVAL);
TEST_ASSERT(hkdf_expand(unused_output, sizeof(unused_output),
NULL, sizeof(prk1), info1, sizeof(info1))
== EC_ERROR_INVAL);
TEST_ASSERT(hkdf_expand(unused_output, sizeof(unused_output),
prk1, sizeof(prk1), NULL, sizeof(info1))
== EC_ERROR_INVAL);
/* Info size too long. */
TEST_ASSERT(hkdf_expand(unused_output, sizeof(unused_output),
prk1, sizeof(prk1), info1, 1024)
== EC_ERROR_INVAL);
/* OKM size too big. */
TEST_ASSERT(hkdf_expand(unused_output, 256 * SHA256_DIGEST_SIZE,
prk1, sizeof(prk1), info1, sizeof(info1))
== EC_ERROR_INVAL);
return EC_SUCCESS;
}
test_static int test_derive_encryption_key_failure_seed_not_set(void)
{
static uint8_t unused_key[SBP_ENC_KEY_LEN];
static const uint8_t unused_salt[FP_CONTEXT_ENCRYPTION_SALT_BYTES];
/* GIVEN that the TPM seed is not set. */
if (fp_tpm_seed_is_set()) {
ccprintf("%s:%s(): this test should be executed before setting"
" TPM seed.\n", __FILE__, __func__);
return -1;
}
/* THEN derivation will fail. */
TEST_ASSERT(derive_encryption_key(unused_key, unused_salt) ==
EC_ERROR_ACCESS_DENIED);
return EC_SUCCESS;
}
static int test_derive_encryption_key_raw(const uint32_t *user_id_,
const uint8_t *salt,
const uint8_t *expected_key)
{
uint8_t key[SBP_ENC_KEY_LEN];
int rv;
/*
* |user_id| is a global variable used as "info" in HKDF expand
* in derive_encryption_key().
*/
memcpy(user_id, user_id_, sizeof(user_id));
rv = derive_encryption_key(key, salt);
TEST_ASSERT(rv == EC_SUCCESS);
TEST_ASSERT_ARRAY_EQ(key, expected_key, sizeof(key));
/* Clear state to ensure test independence. */
memset(user_id, 0, sizeof(user_id));
return EC_SUCCESS;
}
test_static int test_derive_encryption_key(void)
{
/*
* These vectors are obtained by choosing the salt and the user_id
* (used as "info" in HKDF), and running BoringSSL's HKDF
* (https://boringssl.googlesource.com/boringssl/+/c0b4c72b6d4c6f4828a373ec454bd646390017d4/crypto/hkdf/)
* locally to get the output key. The IKM used in the run is the
* concatenation of |fake_rollback_secret| and |fake_tpm_seed|.
*/
static const uint32_t user_id1[] = {
0x608b1b0b, 0xe10d3d24, 0x0bbbe4e6, 0x807b36d9,
0x2a1f8abc, 0xea38104a, 0x562d9431, 0x64d721c5,
};
static const uint8_t salt1[] = {
0xd0, 0x88, 0x34, 0x15, 0xc0, 0xfa, 0x8e, 0x22,
0x9f, 0xb4, 0xd5, 0xa9, 0xee, 0xd3, 0x15, 0x19,
};
static const uint8_t key1[] = {
0xdb, 0x49, 0x6e, 0x1b, 0x67, 0x8a, 0x35, 0xc6,
0xa0, 0x9d, 0xb6, 0xa0, 0x13, 0xf4, 0x21, 0xb3,
};
static const uint32_t user_id2[] = {
0x2546a2ca, 0xf1891f7a, 0x44aad8b8, 0x0d6aac74,
0x6a4ab846, 0x9c279796, 0x5a72eae1, 0x8276d2a3,
};
static const uint8_t salt2[] = {
0x72, 0x6b, 0xc1, 0xe4, 0x64, 0xd4, 0xff, 0xa2,
0x5a, 0xac, 0x5b, 0x0b, 0x06, 0x67, 0xe1, 0x53,
};
static const uint8_t key2[] = {
0x8d, 0x53, 0xaf, 0x4c, 0x96, 0xa2, 0xee, 0x46,
0x9c, 0xe2, 0xe2, 0x6f, 0xe6, 0x66, 0x3d, 0x3a,
};
/*
* GIVEN that the TPM seed is set, and reading the rollback secret will
* succeed.
*/
TEST_ASSERT(fp_tpm_seed_is_set() && !rollback_should_fail);
/* THEN the derivation will succeed. */
TEST_ASSERT(test_derive_encryption_key_raw(user_id1, salt1, key1) ==
EC_SUCCESS);
TEST_ASSERT(test_derive_encryption_key_raw(user_id2, salt2, key2) ==
EC_SUCCESS);
return EC_SUCCESS;
}
test_static int test_derive_encryption_key_failure_rollback_fail(void)
{
static uint8_t unused_key[SBP_ENC_KEY_LEN];
static const uint8_t unused_salt[FP_CONTEXT_ENCRYPTION_SALT_BYTES];
/* GIVEN that reading the rollback secret will fail. */
rollback_should_fail = 1;
/* THEN the derivation will fail. */
TEST_ASSERT(derive_encryption_key(unused_key, unused_salt) ==
EC_ERROR_HW_INTERNAL);
/* GIVEN that reading the rollback secret will succeed. */
rollback_should_fail = 0;
/* GIVEN that the TPM seed has been set. */
TEST_ASSERT(fp_tpm_seed_is_set());
/* THEN the derivation will succeed. */
TEST_ASSERT(derive_encryption_key(unused_key, unused_salt) ==
EC_SUCCESS);
return EC_SUCCESS;
}
test_static int test_derive_new_pos_match_secret(void)
{
static uint8_t output[FP_POSITIVE_MATCH_SECRET_BYTES];
/* GIVEN that the encryption salt is not trivial. */
TEST_ASSERT(!bytes_are_trivial(fake_positive_match_salt,
sizeof(fake_positive_match_salt)));
/*
* GIVEN that the TPM seed is set, and reading the rollback secret will
* succeed.
*/
TEST_ASSERT(fp_tpm_seed_is_set() && !rollback_should_fail);
/* GIVEN that the salt is not trivial. */
TEST_ASSERT(!bytes_are_trivial(fake_positive_match_salt,
sizeof(fake_positive_match_salt)));
/* THEN the derivation will succeed. */
TEST_ASSERT(derive_positive_match_secret(output,
fake_positive_match_salt)
== EC_SUCCESS);
TEST_ASSERT_ARRAY_EQ(
output,
expected_positive_match_secret_for_empty_user_id,
sizeof(expected_positive_match_secret_for_empty_user_id));
/* Now change the user_id to be non-trivial. */
memcpy(user_id, fake_user_id, sizeof(fake_user_id));
TEST_ASSERT(derive_positive_match_secret(output,
fake_positive_match_salt)
== EC_SUCCESS);
TEST_ASSERT_ARRAY_EQ(
output,
expected_positive_match_secret_for_fake_user_id,
sizeof(expected_positive_match_secret_for_fake_user_id));
memset(user_id, 0, sizeof(user_id));
return EC_SUCCESS;
}
test_static int test_derive_positive_match_secret_fail_seed_not_set(void)
{
static uint8_t output[FP_POSITIVE_MATCH_SECRET_BYTES];
/* GIVEN that seed is not set. */
TEST_ASSERT(!fp_tpm_seed_is_set());
/* THEN EVEN IF the encryption salt is not trivial. */
TEST_ASSERT(!bytes_are_trivial(fake_positive_match_salt,
sizeof(fake_positive_match_salt)));
/* Deriving positive match secret will fail. */
TEST_ASSERT(derive_positive_match_secret(output,
fake_positive_match_salt)
== EC_ERROR_ACCESS_DENIED);
return EC_SUCCESS;
}
test_static int test_derive_positive_match_secret_fail_rollback_fail(void)
{
static uint8_t output[FP_POSITIVE_MATCH_SECRET_BYTES];
/* GIVEN that reading secret from anti-rollback block will fail. */
rollback_should_fail = 1;
/* THEN EVEN IF the encryption salt is not trivial. */
TEST_ASSERT(!bytes_are_trivial(fake_positive_match_salt,
sizeof(fake_positive_match_salt)));
/* Deriving positive match secret will fail. */
TEST_ASSERT(derive_positive_match_secret(output,
fake_positive_match_salt)
== EC_ERROR_HW_INTERNAL);
rollback_should_fail = 0;
return EC_SUCCESS;
}
test_static int test_derive_positive_match_secret_fail_salt_trivial(void)
{
static uint8_t output[FP_POSITIVE_MATCH_SECRET_BYTES];
/* GIVEN that the salt is trivial. */
static const uint8_t salt[FP_CONTEXT_ENCRYPTION_SALT_BYTES] = { 0 };
/* THEN deriving positive match secret will fail. */
TEST_ASSERT(derive_positive_match_secret(output, salt)
== EC_ERROR_INVAL);
return EC_SUCCESS;
}
test_static int test_fp_tpm_seed_not_set(void)
{
int rv;
struct ec_response_fp_encryption_status resp = { 0 };
/* Initially the seed should not have been set. */
rv = test_send_host_command(EC_CMD_FP_ENC_STATUS, 0,
NULL, 0,
&resp, sizeof(resp));
return check_seed_set_result(rv, 0, &resp);
}
test_static int test_set_fp_tpm_seed(void)
{
int rv;
struct ec_params_fp_seed params;
struct ec_response_fp_encryption_status resp = { 0 };
params.struct_version = FP_TEMPLATE_FORMAT_VERSION;
memcpy(params.seed, fake_tpm_seed, sizeof(fake_tpm_seed));
rv = test_send_host_command(EC_CMD_FP_SEED, 0,
&params, sizeof(params),
NULL, 0);
if (rv != EC_RES_SUCCESS) {
ccprintf("%s:%s(): rv = %d, set seed failed\n",
__FILE__, __func__, rv);
return -1;
}
/* Now seed should have been set. */
rv = test_send_host_command(EC_CMD_FP_ENC_STATUS, 0,
NULL, 0,
&resp, sizeof(resp));
return check_seed_set_result(rv, FP_ENC_STATUS_SEED_SET, &resp);
}
test_static int test_set_fp_tpm_seed_again(void)
{
int rv;
struct ec_params_fp_seed params;
struct ec_response_fp_encryption_status resp = { 0 };
params.struct_version = FP_TEMPLATE_FORMAT_VERSION;
params.seed[0] = 0;
rv = test_send_host_command(EC_CMD_FP_SEED, 0,
&params, sizeof(params),
NULL, 0);
if (rv != EC_RES_ACCESS_DENIED) {
ccprintf("%s:%s(): rv = %d, setting seed the second time "
"should result in EC_RES_ACCESS_DENIED but did not.\n",
__FILE__, __func__, rv);
return -1;
}
/* Now seed should still be set. */
rv = test_send_host_command(EC_CMD_FP_ENC_STATUS, 0,
NULL, 0,
&resp, sizeof(resp));
return check_seed_set_result(rv, FP_ENC_STATUS_SEED_SET, &resp);
}
test_static int test_fp_set_sensor_mode(void)
{
uint32_t requested_mode = 0;
uint32_t output_mode = 0;
/* Validate initial conditions */
TEST_ASSERT(FP_MAX_FINGER_COUNT == 5);
TEST_ASSERT(templ_valid == 0);
TEST_ASSERT(sensor_mode == 0);
/* GIVEN missing output parameter, THEN get error */
TEST_ASSERT(fp_set_sensor_mode(0, NULL) == EC_RES_INVALID_PARAM);
/* THEN sensor_mode is unchanged */
TEST_ASSERT(sensor_mode == 0);
/* GIVEN requested mode includes FP_MODE_DONT_CHANGE, THEN succeed */
TEST_ASSERT(sensor_mode == 0);
TEST_ASSERT(output_mode == 0);
requested_mode = FP_MODE_DONT_CHANGE;
TEST_ASSERT(fp_set_sensor_mode(requested_mode, &output_mode) ==
EC_RES_SUCCESS);
/* THEN sensor_mode is unchanged */
TEST_ASSERT(sensor_mode == 0);
/* THEN output_mode matches sensor_mode */
TEST_ASSERT(output_mode == sensor_mode);
/* GIVEN request to change to valid sensor mode */
TEST_ASSERT(sensor_mode == 0);
requested_mode = FP_MODE_ENROLL_SESSION;
/* THEN succeed */
TEST_ASSERT(fp_set_sensor_mode(requested_mode, &output_mode) ==
EC_RES_SUCCESS);
/* THEN requested mode is returned */
TEST_ASSERT(requested_mode == output_mode);
/* THEN sensor_mode is updated */
TEST_ASSERT(sensor_mode == requested_mode);
/* GIVEN max number of fingers already enrolled */
sensor_mode = 0;
output_mode = 0xdeadbeef;
templ_valid = FP_MAX_FINGER_COUNT;
requested_mode = FP_MODE_ENROLL_SESSION;
/* THEN additional enroll attempt will fail */
TEST_ASSERT(fp_set_sensor_mode(requested_mode, &output_mode) ==
EC_RES_INVALID_PARAM);
/* THEN output parameters is unchanged */
TEST_ASSERT(output_mode = 0xdeadbeef);
/* THEN sensor_mode is unchanged */
TEST_ASSERT(sensor_mode == 0);
/* Clear state to ensure test independence. */
templ_valid = 0;
return EC_SUCCESS;
}
static int test_enable_positive_match_secret_once(
struct positive_match_secret_state *dumb_state)
{
const int8_t kIndexToEnable = 0;
timestamp_t now = get_time();
TEST_ASSERT(fp_enable_positive_match_secret(
kIndexToEnable, dumb_state) == EC_SUCCESS);
TEST_ASSERT(dumb_state->template_matched == kIndexToEnable);
TEST_ASSERT(dumb_state->readable);
TEST_ASSERT(dumb_state->deadline.val == now.val + (5 * SECOND));
return EC_SUCCESS;
}
test_static int test_enable_positive_match_secret(void)
{
struct positive_match_secret_state dumb_state = {
.template_matched = FP_NO_SUCH_TEMPLATE,
.readable = false,
.deadline.val = 0,
};
TEST_ASSERT(test_enable_positive_match_secret_once(&dumb_state)
== EC_SUCCESS);
/* Trying to enable again before reading secret should fail. */
TEST_ASSERT(fp_enable_positive_match_secret(0, &dumb_state) ==
EC_ERROR_UNKNOWN);
TEST_ASSERT(dumb_state.template_matched == FP_NO_SUCH_TEMPLATE);
TEST_ASSERT(!dumb_state.readable);
TEST_ASSERT(dumb_state.deadline.val == 0);
return EC_SUCCESS;
}
test_static int test_disable_positive_match_secret(void)
{
struct positive_match_secret_state dumb_state = {
.template_matched = FP_NO_SUCH_TEMPLATE,
.readable = false,
.deadline.val = 0,
};
TEST_ASSERT(test_enable_positive_match_secret_once(&dumb_state)
== EC_SUCCESS);
fp_disable_positive_match_secret(&dumb_state);
TEST_ASSERT(dumb_state.template_matched == FP_NO_SUCH_TEMPLATE);
TEST_ASSERT(!dumb_state.readable);
TEST_ASSERT(dumb_state.deadline.val == 0);
return EC_SUCCESS;
}
test_static int test_command_read_match_secret(void)
{
int rv;
struct ec_params_fp_read_match_secret params;
struct ec_response_fp_read_match_secret resp;
timestamp_t now = get_time();
/* Invalid finger index should be rejected. */
params.fgr = FP_NO_SUCH_TEMPLATE;
rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
sizeof(params), NULL, 0);
TEST_ASSERT(rv == EC_RES_INVALID_PARAM);
params.fgr = FP_MAX_FINGER_COUNT;
rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
sizeof(params), NULL, 0);
TEST_ASSERT(rv == EC_RES_INVALID_PARAM);
memset(&resp, 0, sizeof(resp));
/* GIVEN that finger index is valid. */
params.fgr = 0;
/* GIVEN that positive match secret is enabled. */
fp_enable_positive_match_secret(params.fgr,
&positive_match_secret_state);
/* GIVEN that salt is non-trivial. */
memcpy(fp_positive_match_salt[0], fake_positive_match_salt,
sizeof(fp_positive_match_salt[0]));
/* THEN reading positive match secret should succeed. */
rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
sizeof(params), &resp, sizeof(resp));
if (rv != EC_RES_SUCCESS) {
ccprintf("%s:%s(): rv = %d\n", __FILE__, __func__, rv);
return -1;
}
/* AND the readable bit should be cleared after the read. */
TEST_ASSERT(positive_match_secret_state.readable == false);
TEST_ASSERT_ARRAY_EQ(
resp.positive_match_secret,
expected_positive_match_secret_for_empty_user_id,
sizeof(expected_positive_match_secret_for_empty_user_id));
/*
* Now try reading secret again.
* EVEN IF the deadline has not passed.
*/
positive_match_secret_state.deadline.val = now.val + 1 * SECOND;
rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
sizeof(params), NULL, 0);
/*
* This time the command should fail because the
* fp_pos_match_secret_readable bit is cleared when the secret was read
* the first time.
*/
TEST_ASSERT(rv == EC_RES_ACCESS_DENIED);
return EC_SUCCESS;
}
test_static int test_command_read_match_secret_wrong_finger(void)
{
int rv;
struct ec_params_fp_read_match_secret params;
/* GIVEN that the finger is not the matched or enrolled finger. */
params.fgr = 0;
/*
* GIVEN that positive match secret is enabled for a different
* finger.
*/
fp_enable_positive_match_secret(params.fgr + 1,
&positive_match_secret_state);
/* Reading secret will fail. */
rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
sizeof(params), NULL, 0);
TEST_ASSERT(rv == EC_RES_ACCESS_DENIED);
return EC_SUCCESS;
}
test_static int test_command_read_match_secret_timeout(void)
{
int rv;
struct ec_params_fp_read_match_secret params;
params.fgr = 0;
/* GIVEN that the read is too late. */
fp_enable_positive_match_secret(params.fgr,
&positive_match_secret_state);
set_time(positive_match_secret_state.deadline);
/* EVEN IF encryption salt is non-trivial. */
memcpy(fp_positive_match_salt[0], fake_positive_match_salt,
sizeof(fp_positive_match_salt[0]));
/* Reading secret will fail. */
rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
sizeof(params), NULL, 0);
TEST_ASSERT(rv == EC_RES_TIMEOUT);
return EC_SUCCESS;
}
test_static int test_command_read_match_secret_unreadable(void)
{
int rv;
struct ec_params_fp_read_match_secret params;
params.fgr = 0;
/* GIVEN that the readable bit is not set. */
fp_enable_positive_match_secret(params.fgr,
&positive_match_secret_state);
positive_match_secret_state.readable = false;
/* EVEN IF the finger is just matched. */
TEST_ASSERT(positive_match_secret_state.template_matched
== params.fgr);
/* EVEN IF encryption salt is non-trivial. */
memcpy(fp_positive_match_salt[0], fake_positive_match_salt,
sizeof(fp_positive_match_salt[0]));
/* Reading secret will fail. */
rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
sizeof(params), NULL, 0);
TEST_ASSERT(rv == EC_RES_ACCESS_DENIED);
return EC_SUCCESS;
}
void run_test(void)
{
/* These are independent of global state. */
RUN_TEST(test_hkdf_expand);
RUN_TEST(test_fp_set_sensor_mode);
/* These must be run before tpm seed is set. */
RUN_TEST(test_fp_enc_status_valid_flags);
RUN_TEST(test_fp_tpm_seed_not_set);
RUN_TEST(test_derive_encryption_key_failure_seed_not_set);
RUN_TEST(test_derive_positive_match_secret_fail_seed_not_set);
RUN_TEST(test_set_fp_tpm_seed);
/* These must be run after tpm seed is set. */
RUN_TEST(test_set_fp_tpm_seed_again);
RUN_TEST(test_derive_encryption_key);
RUN_TEST(test_derive_encryption_key_failure_rollback_fail);
RUN_TEST(test_derive_new_pos_match_secret);
RUN_TEST(test_derive_positive_match_secret_fail_rollback_fail);
RUN_TEST(test_derive_positive_match_secret_fail_salt_trivial);
RUN_TEST(test_enable_positive_match_secret);
RUN_TEST(test_disable_positive_match_secret);
RUN_TEST(test_command_read_match_secret);
RUN_TEST(test_command_read_match_secret_wrong_finger);
RUN_TEST(test_command_read_match_secret_timeout);
RUN_TEST(test_command_read_match_secret_unreadable);
/* No tests yet */
test_print_result();
}

View File

@ -6,5 +6,7 @@
#define CONFIG_TEST_MOCK_LIST \
MOCK(FP_SENSOR) \
MOCK(FPSENSOR_DETECT) \
MOCK(FPSENSOR_STATE) \
MOCK(MKBP_EVENTS) \
MOCK(ROLLBACK) \
MOCK(TIMER)

643
test/fpsensor_crypto.c Normal file
View File

@ -0,0 +1,643 @@
/* Copyright 2020 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <stdbool.h>
#include "common.h"
#include "ec_commands.h"
#include "fpsensor_crypto.h"
#include "fpsensor_state.h"
#include "mock/fpsensor_state_mock.h"
#include "mock/rollback_mock.h"
#include "mock/timer_mock.h"
#include "test_util.h"
#include "util.h"
static const uint8_t fake_positive_match_salt[] = {
0x04, 0x1f, 0x5a, 0xac, 0x5f, 0x79, 0x10, 0xaf,
0x04, 0x1d, 0x46, 0x3a, 0x5f, 0x08, 0xee, 0xcb,
};
static const uint8_t fake_user_id[] = {
0x28, 0xb5, 0x5a, 0x55, 0x57, 0x1b, 0x26, 0x88,
0xce, 0xc5, 0xd1, 0xfe, 0x1d, 0x58, 0x5b, 0x94,
0x51, 0xa2, 0x60, 0x49, 0x9f, 0xea, 0xb1, 0xea,
0xf7, 0x04, 0x2f, 0x0b, 0x20, 0xa5, 0x93, 0x64,
};
/*
* |expected_positive_match_secret_for_empty_user_id| is obtained by running
* BoringSSL locally.
* From https://boringssl.googlesource.com/boringssl
* commit 365b7a0fcbf273b1fa704d151059e419abd6cfb8
*
* Steps to reproduce:
*
* Open boringssl/crypto/hkdf/hkdf_test.cc
* Add the following case to static const HKDFTestVector kTests[]
*
* // test positive match secret
* {
* EVP_sha256,
* {
* // IKM:
* // fake_rollback_secret
* [ ***Copy 32 octets of fake_rollback_secret here*** ]
* // fake_tpm_seed
* [ ***Copy 32 octets of fake_tpm_seed here*** ]
* }, 64,
* {
* // fake_positive_match_salt
* [ ***Copy 16 octets of fake_positive_match_salt here*** ]
* }, 16,
* {
* // Info:
* // "positive_match_secret for user "
* 0x70, 0x6f, 0x73, 0x69, 0x74, 0x69, 0x76, 0x65,
* 0x5f, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x5f, 0x73,
* 0x65, 0x63, 0x72, 0x65, 0x74, 0x20, 0x66, 0x6f,
* 0x72, 0x20, 0x75, 0x73, 0x65, 0x72, 0x20,
* // user_id
* [ ***Type 32 octets of 0x00 here*** ]
* }, 63,
* { // Expected PRK:
* 0xc2, 0xff, 0x50, 0x2d, 0xb1, 0x7e, 0x87, 0xb1,
* 0x25, 0x36, 0x3a, 0x88, 0xe1, 0xdb, 0x4f, 0x98,
* 0x22, 0xb5, 0x66, 0x8c, 0xab, 0xb7, 0xc7, 0x5e,
* 0xd7, 0x56, 0xbe, 0xde, 0x82, 0x3f, 0xd0, 0x62,
* }, 32,
* 32, { // 32 = L = FP_POSITIVE_MATCH_SECRET_BYTES
* // Expected positive match secret:
* [ ***Copy 32 octets of expected positive_match_secret here*** ]
* }
* },
*
* Then from boringssl/ execute:
* mkdir build
* cd build
* cmake ..
* make
* cd ..
* go run util/all_tests.go
*/
static const uint8_t expected_positive_match_secret_for_empty_user_id[] = {
0x8d, 0xc4, 0x5b, 0xdf, 0x55, 0x1e, 0xa8, 0x72,
0xd6, 0xdd, 0xa1, 0x4c, 0xb8, 0xa1, 0x76, 0x2b,
0xde, 0x38, 0xd5, 0x03, 0xce, 0xe4, 0x74, 0x51,
0x63, 0x6c, 0x6a, 0x26, 0xa9, 0xb7, 0xfa, 0x68,
};
/*
* Same as |expected_positive_match_secret_for_empty_user_id| but use
* |fake_user_id| instead of all-zero user_id.
*/
static const uint8_t expected_positive_match_secret_for_fake_user_id[] = {
0x0d, 0xf5, 0xac, 0x7c, 0xad, 0x37, 0x0a, 0x66,
0x2f, 0x71, 0xf6, 0xc6, 0xca, 0x8a, 0x41, 0x69,
0x8a, 0xd3, 0xcf, 0x0b, 0xc4, 0x5a, 0x5f, 0x4d,
0x54, 0xeb, 0x7b, 0xad, 0x5d, 0x1b, 0xbe, 0x30,
};
static int test_hkdf_expand_raw(const uint8_t *prk, size_t prk_size,
const uint8_t *info, size_t info_size,
const uint8_t *expected_okm, size_t okm_size)
{
uint8_t actual_okm[okm_size];
TEST_ASSERT(hkdf_expand(actual_okm, okm_size, prk, prk_size,
info, info_size) == EC_SUCCESS);
TEST_ASSERT_ARRAY_EQ(expected_okm, actual_okm, okm_size);
return EC_SUCCESS;
}
test_static int test_hkdf_expand(void)
{
/* Test vectors in https://tools.ietf.org/html/rfc5869#appendix-A */
static const uint8_t prk1[] = {
0x07, 0x77, 0x09, 0x36, 0x2c, 0x2e, 0x32, 0xdf,
0x0d, 0xdc, 0x3f, 0x0d, 0xc4, 0x7b, 0xba, 0x63,
0x90, 0xb6, 0xc7, 0x3b, 0xb5, 0x0f, 0x9c, 0x31,
0x22, 0xec, 0x84, 0x4a, 0xd7, 0xc2, 0xb3, 0xe5,
};
static const uint8_t info1[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9,
};
static const uint8_t expected_okm1[] = {
0x3c, 0xb2, 0x5f, 0x25, 0xfa, 0xac, 0xd5, 0x7a,
0x90, 0x43, 0x4f, 0x64, 0xd0, 0x36, 0x2f, 0x2a,
0x2d, 0x2d, 0x0a, 0x90, 0xcf, 0x1a, 0x5a, 0x4c,
0x5d, 0xb0, 0x2d, 0x56, 0xec, 0xc4, 0xc5, 0xbf,
0x34, 0x00, 0x72, 0x08, 0xd5, 0xb8, 0x87, 0x18,
0x58, 0x65,
};
static const uint8_t prk2[] = {
0x06, 0xa6, 0xb8, 0x8c, 0x58, 0x53, 0x36, 0x1a,
0x06, 0x10, 0x4c, 0x9c, 0xeb, 0x35, 0xb4, 0x5c,
0xef, 0x76, 0x00, 0x14, 0x90, 0x46, 0x71, 0x01,
0x4a, 0x19, 0x3f, 0x40, 0xc1, 0x5f, 0xc2, 0x44,
};
static const uint8_t info2[] = {
0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
};
static const uint8_t expected_okm2[] = {
0xb1, 0x1e, 0x39, 0x8d, 0xc8, 0x03, 0x27, 0xa1,
0xc8, 0xe7, 0xf7, 0x8c, 0x59, 0x6a, 0x49, 0x34,
0x4f, 0x01, 0x2e, 0xda, 0x2d, 0x4e, 0xfa, 0xd8,
0xa0, 0x50, 0xcc, 0x4c, 0x19, 0xaf, 0xa9, 0x7c,
0x59, 0x04, 0x5a, 0x99, 0xca, 0xc7, 0x82, 0x72,
0x71, 0xcb, 0x41, 0xc6, 0x5e, 0x59, 0x0e, 0x09,
0xda, 0x32, 0x75, 0x60, 0x0c, 0x2f, 0x09, 0xb8,
0x36, 0x77, 0x93, 0xa9, 0xac, 0xa3, 0xdb, 0x71,
0xcc, 0x30, 0xc5, 0x81, 0x79, 0xec, 0x3e, 0x87,
0xc1, 0x4c, 0x01, 0xd5, 0xc1, 0xf3, 0x43, 0x4f,
0x1d, 0x87,
};
static const uint8_t prk3[] = {
0x19, 0xef, 0x24, 0xa3, 0x2c, 0x71, 0x7b, 0x16,
0x7f, 0x33, 0xa9, 0x1d, 0x6f, 0x64, 0x8b, 0xdf,
0x96, 0x59, 0x67, 0x76, 0xaf, 0xdb, 0x63, 0x77,
0xac, 0x43, 0x4c, 0x1c, 0x29, 0x3c, 0xcb, 0x04,
};
static const uint8_t expected_okm3[] = {
0x8d, 0xa4, 0xe7, 0x75, 0xa5, 0x63, 0xc1, 0x8f,
0x71, 0x5f, 0x80, 0x2a, 0x06, 0x3c, 0x5a, 0x31,
0xb8, 0xa1, 0x1f, 0x5c, 0x5e, 0xe1, 0x87, 0x9e,
0xc3, 0x45, 0x4e, 0x5f, 0x3c, 0x73, 0x8d, 0x2d,
0x9d, 0x20, 0x13, 0x95, 0xfa, 0xa4, 0xb6, 0x1a,
0x96, 0xc8,
};
static uint8_t unused_output[SHA256_DIGEST_SIZE] = { 0 };
TEST_ASSERT(test_hkdf_expand_raw(prk1, sizeof(prk1), info1,
sizeof(info1), expected_okm1,
sizeof(expected_okm1))
== EC_SUCCESS);
TEST_ASSERT(test_hkdf_expand_raw(prk2, sizeof(prk2), info2,
sizeof(info2), expected_okm2,
sizeof(expected_okm2))
== EC_SUCCESS);
TEST_ASSERT(test_hkdf_expand_raw(prk3, sizeof(prk3), NULL, 0,
expected_okm3, sizeof(expected_okm3))
== EC_SUCCESS);
TEST_ASSERT(hkdf_expand(NULL, sizeof(unused_output), prk1,
sizeof(prk1), info1, sizeof(info1))
== EC_ERROR_INVAL);
TEST_ASSERT(hkdf_expand(unused_output, sizeof(unused_output),
NULL, sizeof(prk1), info1, sizeof(info1))
== EC_ERROR_INVAL);
TEST_ASSERT(hkdf_expand(unused_output, sizeof(unused_output),
prk1, sizeof(prk1), NULL, sizeof(info1))
== EC_ERROR_INVAL);
/* Info size too long. */
TEST_ASSERT(hkdf_expand(unused_output, sizeof(unused_output),
prk1, sizeof(prk1), info1, 1024)
== EC_ERROR_INVAL);
/* OKM size too big. */
TEST_ASSERT(hkdf_expand(unused_output, 256 * SHA256_DIGEST_SIZE,
prk1, sizeof(prk1), info1, sizeof(info1))
== EC_ERROR_INVAL);
return EC_SUCCESS;
}
test_static int test_derive_encryption_key_failure_seed_not_set(void)
{
static uint8_t unused_key[SBP_ENC_KEY_LEN];
static const uint8_t unused_salt[FP_CONTEXT_ENCRYPTION_SALT_BYTES]
= { 0 };
/* GIVEN that the TPM seed is not set. */
if (fp_tpm_seed_is_set()) {
ccprintf("%s:%s(): this test should be executed before setting"
" TPM seed.\n",
__FILE__, __func__);
return -1;
}
/* THEN derivation will fail. */
TEST_ASSERT(derive_encryption_key(unused_key, unused_salt) ==
EC_ERROR_ACCESS_DENIED);
return EC_SUCCESS;
}
static int test_derive_encryption_key_raw(const uint32_t *user_id_,
const uint8_t *salt,
const uint8_t *expected_key)
{
uint8_t key[SBP_ENC_KEY_LEN];
int rv;
/*
* |user_id| is a global variable used as "info" in HKDF expand
* in derive_encryption_key().
*/
memcpy(user_id, user_id_, sizeof(user_id));
rv = derive_encryption_key(key, salt);
TEST_ASSERT(rv == EC_SUCCESS);
TEST_ASSERT_ARRAY_EQ(key, expected_key, sizeof(key));
memset(user_id, 0, sizeof(user_id));
return EC_SUCCESS;
}
test_static int test_derive_encryption_key(void)
{
/*
* These vectors are obtained by choosing the salt and the user_id
* (used as "info" in HKDF), and running boringSSL's HKDF
* (https://boringssl.googlesource.com/boringssl/+/c0b4c72b6d4c6f4828a373ec454bd646390017d4/crypto/hkdf/)
* locally to get the output key. The IKM used in the run is the
* concatenation of |fake_rollback_secret| and |fake_tpm_seed|.
*/
static const uint32_t user_id1[] = {
0x608b1b0b, 0xe10d3d24, 0x0bbbe4e6, 0x807b36d9,
0x2a1f8abc, 0xea38104a, 0x562d9431, 0x64d721c5,
};
static const uint8_t salt1[] = {
0xd0, 0x88, 0x34, 0x15, 0xc0, 0xfa, 0x8e, 0x22,
0x9f, 0xb4, 0xd5, 0xa9, 0xee, 0xd3, 0x15, 0x19,
};
static const uint8_t key1[] = {
0xdb, 0x49, 0x6e, 0x1b, 0x67, 0x8a, 0x35, 0xc6,
0xa0, 0x9d, 0xb6, 0xa0, 0x13, 0xf4, 0x21, 0xb3,
};
static const uint32_t user_id2[] = {
0x2546a2ca, 0xf1891f7a, 0x44aad8b8, 0x0d6aac74,
0x6a4ab846, 0x9c279796, 0x5a72eae1, 0x8276d2a3,
};
static const uint8_t salt2[] = {
0x72, 0x6b, 0xc1, 0xe4, 0x64, 0xd4, 0xff, 0xa2,
0x5a, 0xac, 0x5b, 0x0b, 0x06, 0x67, 0xe1, 0x53,
};
static const uint8_t key2[] = {
0x8d, 0x53, 0xaf, 0x4c, 0x96, 0xa2, 0xee, 0x46,
0x9c, 0xe2, 0xe2, 0x6f, 0xe6, 0x66, 0x3d, 0x3a,
};
/*
* GIVEN that the TPM seed is set, and reading the rollback secret will
* succeed.
*/
TEST_ASSERT(fp_tpm_seed_is_set() &&
!mock_ctrl_rollback.get_secret_fail);
/* THEN the derivation will succeed. */
TEST_ASSERT(test_derive_encryption_key_raw(user_id1, salt1, key1) ==
EC_SUCCESS);
TEST_ASSERT(test_derive_encryption_key_raw(user_id2, salt2, key2) ==
EC_SUCCESS);
return EC_SUCCESS;
}
test_static int test_derive_encryption_key_failure_rollback_fail(void)
{
static uint8_t unused_key[SBP_ENC_KEY_LEN];
static const uint8_t unused_salt[FP_CONTEXT_ENCRYPTION_SALT_BYTES]
= { 0 };
/* GIVEN that reading the rollback secret will fail. */
mock_ctrl_rollback.get_secret_fail = true;
/* THEN the derivation will fail. */
TEST_ASSERT(derive_encryption_key(unused_key, unused_salt) ==
EC_ERROR_HW_INTERNAL);
/* GIVEN that reading the rollback secret will succeed. */
mock_ctrl_rollback.get_secret_fail = false;
/* GIVEN that the TPM seed has been set. */
TEST_ASSERT(fp_tpm_seed_is_set());
/* THEN the derivation will succeed. */
TEST_ASSERT(derive_encryption_key(unused_key, unused_salt) ==
EC_SUCCESS);
return EC_SUCCESS;
}
test_static int test_derive_positive_match_secret_fail_seed_not_set(void)
{
static uint8_t output[FP_POSITIVE_MATCH_SECRET_BYTES];
/* GIVEN that seed is not set. */
TEST_ASSERT(!fp_tpm_seed_is_set());
/* THEN EVEN IF the encryption salt is not trivial. */
TEST_ASSERT(!bytes_are_trivial(fake_positive_match_salt,
sizeof(fake_positive_match_salt)));
/* Deriving positive match secret will fail. */
TEST_ASSERT(derive_positive_match_secret(output,
fake_positive_match_salt)
== EC_ERROR_ACCESS_DENIED);
return EC_SUCCESS;
}
test_static int test_derive_new_pos_match_secret(void)
{
static uint8_t output[FP_POSITIVE_MATCH_SECRET_BYTES];
/* First, for empty user_id. */
memset(user_id, 0, sizeof(user_id));
/* GIVEN that the encryption salt is not trivial. */
TEST_ASSERT(!bytes_are_trivial(fake_positive_match_salt,
sizeof(fake_positive_match_salt)));
/*
* GIVEN that the TPM seed is set, and reading the rollback secret will
* succeed.
*/
TEST_ASSERT(
fp_tpm_seed_is_set() && !mock_ctrl_rollback.get_secret_fail);
/* GIVEN that the salt is not trivial. */
TEST_ASSERT(!bytes_are_trivial(fake_positive_match_salt,
sizeof(fake_positive_match_salt)));
/* THEN the derivation will succeed. */
TEST_ASSERT(derive_positive_match_secret(output,
fake_positive_match_salt)
== EC_SUCCESS);
TEST_ASSERT_ARRAY_EQ(
output,
expected_positive_match_secret_for_empty_user_id,
sizeof(expected_positive_match_secret_for_empty_user_id));
/* Now change the user_id to be non-trivial. */
memcpy(user_id, fake_user_id, sizeof(fake_user_id));
TEST_ASSERT(derive_positive_match_secret(output,
fake_positive_match_salt)
== EC_SUCCESS);
TEST_ASSERT_ARRAY_EQ(
output,
expected_positive_match_secret_for_fake_user_id,
sizeof(expected_positive_match_secret_for_fake_user_id));
memset(user_id, 0, sizeof(user_id));
return EC_SUCCESS;
}
test_static int test_derive_positive_match_secret_fail_rollback_fail(void)
{
static uint8_t output[FP_POSITIVE_MATCH_SECRET_BYTES];
/* GIVEN that reading secret from anti-rollback block will fail. */
mock_ctrl_rollback.get_secret_fail = true;
/* THEN EVEN IF the encryption salt is not trivial. */
TEST_ASSERT(!bytes_are_trivial(fake_positive_match_salt,
sizeof(fake_positive_match_salt)));
/* Deriving positive match secret will fail. */
TEST_ASSERT(derive_positive_match_secret(output,
fake_positive_match_salt)
== EC_ERROR_HW_INTERNAL);
mock_ctrl_rollback.get_secret_fail = false;
return EC_SUCCESS;
}
test_static int test_derive_positive_match_secret_fail_salt_trivial(void)
{
static uint8_t output[FP_POSITIVE_MATCH_SECRET_BYTES];
/* GIVEN that the salt is trivial. */
static const uint8_t salt[FP_CONTEXT_ENCRYPTION_SALT_BYTES] = { 0 };
/* THEN deriving positive match secret will fail. */
TEST_ASSERT(derive_positive_match_secret(output, salt)
== EC_ERROR_INVAL);
return EC_SUCCESS;
}
static int test_enable_positive_match_secret_once(
struct positive_match_secret_state *dumb_state)
{
const int8_t kIndexToEnable = 0;
timestamp_t now = get_time();
TEST_ASSERT(fp_enable_positive_match_secret(
kIndexToEnable, dumb_state) == EC_SUCCESS);
TEST_ASSERT(dumb_state->template_matched == kIndexToEnable);
TEST_ASSERT(dumb_state->readable);
TEST_ASSERT(dumb_state->deadline.val == now.val + (5 * SECOND));
return EC_SUCCESS;
}
test_static int test_enable_positive_match_secret(void)
{
struct positive_match_secret_state dumb_state = {
.template_matched = FP_NO_SUCH_TEMPLATE,
.readable = false,
.deadline.val = 0,
};
TEST_ASSERT(test_enable_positive_match_secret_once(&dumb_state)
== EC_SUCCESS);
/* Trying to enable again before reading secret should fail. */
TEST_ASSERT(fp_enable_positive_match_secret(0, &dumb_state) ==
EC_ERROR_UNKNOWN);
TEST_ASSERT(dumb_state.template_matched == FP_NO_SUCH_TEMPLATE);
TEST_ASSERT(!dumb_state.readable);
TEST_ASSERT(dumb_state.deadline.val == 0);
return EC_SUCCESS;
}
test_static int test_disable_positive_match_secret(void)
{
struct positive_match_secret_state dumb_state = {
.template_matched = FP_NO_SUCH_TEMPLATE,
.readable = false,
.deadline.val = 0,
};
TEST_ASSERT(test_enable_positive_match_secret_once(&dumb_state)
== EC_SUCCESS);
fp_disable_positive_match_secret(&dumb_state);
TEST_ASSERT(dumb_state.template_matched == FP_NO_SUCH_TEMPLATE);
TEST_ASSERT(!dumb_state.readable);
TEST_ASSERT(dumb_state.deadline.val == 0);
return EC_SUCCESS;
}
test_static int test_command_read_match_secret(void)
{
int rv;
struct ec_params_fp_read_match_secret params;
struct ec_response_fp_read_match_secret resp;
timestamp_t now = get_time();
/* For empty user_id. */
memset(user_id, 0, sizeof(user_id));
/* Invalid finger index should be rejected. */
params.fgr = FP_NO_SUCH_TEMPLATE;
rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
sizeof(params), NULL, 0);
TEST_ASSERT(rv == EC_RES_INVALID_PARAM);
params.fgr = FP_MAX_FINGER_COUNT;
rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
sizeof(params), NULL, 0);
TEST_ASSERT(rv == EC_RES_INVALID_PARAM);
memset(&resp, 0, sizeof(resp));
/* GIVEN that finger index is valid. */
params.fgr = 0;
/* GIVEN that positive match secret is enabled. */
fp_enable_positive_match_secret(params.fgr,
&positive_match_secret_state);
/* GIVEN that salt is non-trivial. */
memcpy(fp_positive_match_salt[0], fake_positive_match_salt,
sizeof(fp_positive_match_salt[0]));
/* THEN reading positive match secret should succeed. */
rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
sizeof(params), &resp, sizeof(resp));
if (rv != EC_RES_SUCCESS) {
ccprintf("%s:%s(): rv = %d\n", __FILE__, __func__, rv);
return -1;
}
/* AND the readable bit should be cleared after the read. */
TEST_ASSERT(positive_match_secret_state.readable == false);
TEST_ASSERT_ARRAY_EQ(
resp.positive_match_secret,
expected_positive_match_secret_for_empty_user_id,
sizeof(expected_positive_match_secret_for_empty_user_id));
/*
* Now try reading secret again.
* EVEN IF the deadline has not passed.
*/
positive_match_secret_state.deadline.val = now.val + 1 * SECOND;
rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
sizeof(params), NULL, 0);
/*
* This time the command should fail because the
* fp_pos_match_secret_readable bit is cleared when the secret was read
* the first time.
*/
TEST_ASSERT(rv == EC_RES_ACCESS_DENIED);
return EC_SUCCESS;
}
test_static int test_command_read_match_secret_wrong_finger(void)
{
int rv;
struct ec_params_fp_read_match_secret params;
/* GIVEN that the finger is not the matched or enrolled finger. */
params.fgr = 0;
/*
* GIVEN that positive match secret is enabled for a different
* finger.
*/
fp_enable_positive_match_secret(params.fgr + 1,
&positive_match_secret_state);
/* Reading secret will fail. */
rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
sizeof(params), NULL, 0);
TEST_ASSERT(rv == EC_RES_ACCESS_DENIED);
return EC_SUCCESS;
}
test_static int test_command_read_match_secret_timeout(void)
{
int rv;
struct ec_params_fp_read_match_secret params;
params.fgr = 0;
/* GIVEN that the read is too late. */
fp_enable_positive_match_secret(params.fgr,
&positive_match_secret_state);
set_time(positive_match_secret_state.deadline);
/* EVEN IF encryption salt is non-trivial. */
memcpy(fp_positive_match_salt[0], fake_positive_match_salt,
sizeof(fp_positive_match_salt[0]));
/* Reading secret will fail. */
rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
sizeof(params), NULL, 0);
TEST_ASSERT(rv == EC_RES_TIMEOUT);
return EC_SUCCESS;
}
test_static int test_command_read_match_secret_unreadable(void)
{
int rv;
struct ec_params_fp_read_match_secret params;
params.fgr = 0;
/* GIVEN that the readable bit is not set. */
fp_enable_positive_match_secret(params.fgr,
&positive_match_secret_state);
positive_match_secret_state.readable = false;
/* EVEN IF the finger is just matched. */
TEST_ASSERT(positive_match_secret_state.template_matched
== params.fgr);
/* EVEN IF encryption salt is non-trivial. */
memcpy(fp_positive_match_salt[0], fake_positive_match_salt,
sizeof(fp_positive_match_salt[0]));
/* Reading secret will fail. */
rv = test_send_host_command(EC_CMD_FP_READ_MATCH_SECRET, 0, &params,
sizeof(params), NULL, 0);
TEST_ASSERT(rv == EC_RES_ACCESS_DENIED);
return EC_SUCCESS;
}
void run_test(void)
{
RUN_TEST(test_hkdf_expand);
RUN_TEST(test_derive_encryption_key_failure_seed_not_set);
RUN_TEST(test_derive_positive_match_secret_fail_seed_not_set);
/*
* Set the TPM seed here because it can only be set once and cannot be
* cleared.
*/
ASSERT(fpsensor_state_mock_set_tpm_seed(default_fake_tpm_seed) ==
EC_SUCCESS);
/* The following test requires TPM seed to be already set. */
RUN_TEST(test_derive_encryption_key);
RUN_TEST(test_derive_encryption_key_failure_rollback_fail);
RUN_TEST(test_derive_new_pos_match_secret);
RUN_TEST(test_derive_positive_match_secret_fail_rollback_fail);
RUN_TEST(test_derive_positive_match_secret_fail_salt_trivial);
RUN_TEST(test_enable_positive_match_secret);
RUN_TEST(test_disable_positive_match_secret);
RUN_TEST(test_command_read_match_secret);
RUN_TEST(test_command_read_match_secret_wrong_finger);
RUN_TEST(test_command_read_match_secret_timeout);
RUN_TEST(test_command_read_match_secret_unreadable);
test_print_result();
}

View File

@ -0,0 +1 @@
fpsensor.mocklist

View File

@ -0,0 +1 @@
fpsensor.tasklist

180
test/fpsensor_state.c Normal file
View File

@ -0,0 +1,180 @@
/* Copyright 2020 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <stdbool.h>
#include "common.h"
#include "ec_commands.h"
#include "fpsensor_state.h"
#include "mock/fpsensor_state_mock.h"
#include "test_util.h"
#include "util.h"
test_static int test_fp_enc_status_valid_flags(void)
{
/* Putting expected value here because test_static should take void */
const uint32_t expected = FP_ENC_STATUS_SEED_SET;
int rv;
struct ec_response_fp_encryption_status resp = { 0 };
rv = test_send_host_command(EC_CMD_FP_ENC_STATUS, 0, NULL, 0, &resp,
sizeof(resp));
if (rv != EC_RES_SUCCESS) {
ccprintf("%s:%s(): failed to get encryption status. rv = %d\n",
__FILE__, __func__, rv);
return -1;
}
if (resp.valid_flags != expected) {
ccprintf("%s:%s(): expected valid flags 0x%08x, got 0x%08x\n",
__FILE__, __func__, expected, resp.valid_flags);
return -1;
}
return EC_RES_SUCCESS;
}
static int
check_seed_set_result(const int rv, const uint32_t expected,
const struct ec_response_fp_encryption_status *resp)
{
const uint32_t actual = resp->status & FP_ENC_STATUS_SEED_SET;
if (rv != EC_RES_SUCCESS || expected != actual) {
ccprintf("%s:%s(): rv = %d, seed is set: %d\n", __FILE__,
__func__, rv, actual);
return -1;
}
return EC_SUCCESS;
}
test_static int test_fp_tpm_seed_not_set(void)
{
int rv;
struct ec_response_fp_encryption_status resp = { 0 };
/* Initially the seed should not have been set. */
rv = test_send_host_command(EC_CMD_FP_ENC_STATUS, 0, NULL, 0, &resp,
sizeof(resp));
return check_seed_set_result(rv, 0, &resp);
}
test_static int test_set_fp_tpm_seed(void)
{
int rv;
struct ec_params_fp_seed params;
struct ec_response_fp_encryption_status resp = { 0 };
params.struct_version = FP_TEMPLATE_FORMAT_VERSION;
memcpy(params.seed, default_fake_tpm_seed,
sizeof(default_fake_tpm_seed));
rv = test_send_host_command(EC_CMD_FP_SEED, 0, &params, sizeof(params),
NULL, 0);
if (rv != EC_RES_SUCCESS) {
ccprintf("%s:%s(): rv = %d, set seed failed\n", __FILE__,
__func__, rv);
return -1;
}
/* Now seed should have been set. */
rv = test_send_host_command(EC_CMD_FP_ENC_STATUS, 0, NULL, 0, &resp,
sizeof(resp));
return check_seed_set_result(rv, FP_ENC_STATUS_SEED_SET, &resp);
}
test_static int test_set_fp_tpm_seed_again(void)
{
int rv;
struct ec_params_fp_seed params;
struct ec_response_fp_encryption_status resp = { 0 };
TEST_ASSERT(fp_tpm_seed_is_set());
params.struct_version = FP_TEMPLATE_FORMAT_VERSION;
memcpy(params.seed, default_fake_tpm_seed,
sizeof(default_fake_tpm_seed));
rv = test_send_host_command(EC_CMD_FP_SEED, 0, &params, sizeof(params),
NULL, 0);
if (rv != EC_RES_ACCESS_DENIED) {
ccprintf("%s:%s(): rv = %d, setting seed the second time "
"should result in EC_RES_ACCESS_DENIED but did not.\n",
__FILE__, __func__, rv);
return -1;
}
/* Now seed should still be set. */
rv = test_send_host_command(EC_CMD_FP_ENC_STATUS, 0, NULL, 0, &resp,
sizeof(resp));
return check_seed_set_result(rv, FP_ENC_STATUS_SEED_SET, &resp);
}
test_static int test_fp_set_sensor_mode(void)
{
uint32_t requested_mode = 0;
uint32_t output_mode = 0;
/* Validate initial conditions */
TEST_ASSERT(FP_MAX_FINGER_COUNT == 5);
TEST_ASSERT(templ_valid == 0);
TEST_ASSERT(sensor_mode == 0);
/* GIVEN missing output parameter, THEN get error */
TEST_ASSERT(fp_set_sensor_mode(0, NULL) == EC_RES_INVALID_PARAM);
/* THEN sensor_mode is unchanged */
TEST_ASSERT(sensor_mode == 0);
/* GIVEN requested mode includes FP_MODE_DONT_CHANGE, THEN succeed */
TEST_ASSERT(sensor_mode == 0);
TEST_ASSERT(output_mode == 0);
requested_mode = FP_MODE_DONT_CHANGE;
TEST_ASSERT(fp_set_sensor_mode(requested_mode, &output_mode) ==
EC_RES_SUCCESS);
/* THEN sensor_mode is unchanged */
TEST_ASSERT(sensor_mode == 0);
/* THEN output_mode matches sensor_mode */
TEST_ASSERT(output_mode == sensor_mode);
/* GIVEN request to change to valid sensor mode */
TEST_ASSERT(sensor_mode == 0);
requested_mode = FP_MODE_ENROLL_SESSION;
/* THEN succeed */
TEST_ASSERT(fp_set_sensor_mode(requested_mode, &output_mode) ==
EC_RES_SUCCESS);
/* THEN requested mode is returned */
TEST_ASSERT(requested_mode == output_mode);
/* THEN sensor_mode is updated */
TEST_ASSERT(sensor_mode == requested_mode);
/* GIVEN max number of fingers already enrolled */
sensor_mode = 0;
output_mode = 0xdeadbeef;
templ_valid = FP_MAX_FINGER_COUNT;
requested_mode = FP_MODE_ENROLL_SESSION;
/* THEN additional enroll attempt will fail */
TEST_ASSERT(fp_set_sensor_mode(requested_mode, &output_mode) ==
EC_RES_INVALID_PARAM);
/* THEN output parameters is unchanged */
TEST_ASSERT(output_mode = 0xdeadbeef);
/* THEN sensor_mode is unchanged */
TEST_ASSERT(sensor_mode == 0);
return EC_SUCCESS;
}
void run_test(void)
{
RUN_TEST(test_fp_enc_status_valid_flags);
RUN_TEST(test_fp_tpm_seed_not_set);
RUN_TEST(test_set_fp_tpm_seed);
RUN_TEST(test_set_fp_tpm_seed_again);
RUN_TEST(test_fp_set_sensor_mode);
test_print_result();
}

View File

@ -0,0 +1 @@
fpsensor.mocklist

View File

@ -0,0 +1 @@
./fpsensor.tasklist

View File

@ -84,7 +84,8 @@
#define CONFIG_MAG_CALIBRATE
#endif
#ifdef TEST_FPSENSOR
#if defined(TEST_FPSENSOR) || defined(TEST_FPSENSOR_STATE) || \
defined(TEST_FPSENSOR_CRYPTO)
#define CONFIG_AES
#define CONFIG_AES_GCM
#define CONFIG_ROLLBACK_SECRET_SIZE 32