plat/fvp: Support for extracting UART serial node info from DT

This patch introduces the populate function which leverages
a new driver to extract base address and clk frequency properties
of the uart serial node from HW_CONFIG device tree.

This patch also introduces fdt helper API fdtw_translate_address()
which helps in performing address translation.

Change-Id: I053628065ebddbde0c9cb3aa93d838619f502ee3
Signed-off-by: Madhukar Pappireddy <madhukar.pappireddy@arm.com>
This commit is contained in:
Madhukar Pappireddy 2020-03-24 10:03:34 -05:00
parent f1a1653ce1
commit 447870bf0d
6 changed files with 311 additions and 1 deletions

View File

@ -341,3 +341,199 @@ int fdt_get_stdout_node_offset(const void *dtb)
return fdt_path_offset(dtb, path);
}
/*******************************************************************************
* Only devices which are direct children of root node use CPU address domain.
* All other devices use addresses that are local to the device node and cannot
* directly used by CPU. Device tree provides an address translation mechanism
* through "ranges" property which provides mappings from local address space to
* parent address space. Since a device could be a child of a child node to the
* root node, there can be more than one level of address translation needed to
* map the device local address space to CPU address space.
* fdtw_translate_address() API performs address translation of a local address
* to a global address with help of various helper functions.
******************************************************************************/
static bool fdtw_xlat_hit(const uint32_t *value, int child_addr_size,
int parent_addr_size, int range_size, uint64_t base_address,
uint64_t *translated_addr)
{
uint64_t local_address, parent_address, addr_range;
local_address = fdt_read_prop_cells(value, child_addr_size);
parent_address = fdt_read_prop_cells(value + child_addr_size,
parent_addr_size);
addr_range = fdt_read_prop_cells(value + child_addr_size +
parent_addr_size,
range_size);
VERBOSE("DT: Address %llx mapped to %llx with range %llx\n",
local_address, parent_address, addr_range);
/* Perform range check */
if ((base_address < local_address) ||
(base_address >= local_address + addr_range)) {
return false;
}
/* Found hit for the addr range that needs to be translated */
*translated_addr = parent_address + (base_address - local_address);
VERBOSE("DT: child address %llx mapped to %llx in parent bus\n",
local_address, parent_address);
return true;
}
#define ILLEGAL_ADDR ULL(~0)
static uint64_t fdtw_search_all_xlat_entries(const void *dtb,
const struct fdt_property *ranges_prop,
int local_bus, uint64_t base_address)
{
uint64_t translated_addr;
const uint32_t *next_entry;
int parent_bus_node, nxlat_entries, length;
int self_addr_cells, parent_addr_cells, self_size_cells, ncells_xlat;
/*
* The number of cells in one translation entry in ranges is the sum of
* the following values:
* self#address-cells + parent#address-cells + self#size-cells
* Ex: the iofpga ranges property has one translation entry with 4 cells
* They represent iofpga#addr-cells + motherboard#addr-cells + iofpga#size-cells
* = 1 + 2 + 1
*/
parent_bus_node = fdt_parent_offset(dtb, local_bus);
self_addr_cells = fdt_address_cells(dtb, local_bus);
self_size_cells = fdt_size_cells(dtb, local_bus);
parent_addr_cells = fdt_address_cells(dtb, parent_bus_node);
/* Number of cells per translation entry i.e., mapping */
ncells_xlat = self_addr_cells + parent_addr_cells + self_size_cells;
assert(ncells_xlat > 0);
/*
* Find the number of translations(mappings) specified in the current
* `ranges` property. Note that length represents number of bytes and
* is stored in big endian mode.
*/
length = fdt32_to_cpu(ranges_prop->len);
nxlat_entries = (length/sizeof(uint32_t))/ncells_xlat;
assert(nxlat_entries > 0);
next_entry = (const uint32_t *)ranges_prop->data;
/* Iterate over the entries in the "ranges" */
for (int i = 0; i < nxlat_entries; i++) {
if (fdtw_xlat_hit(next_entry, self_addr_cells,
parent_addr_cells, self_size_cells, base_address,
&translated_addr)){
return translated_addr;
}
next_entry = next_entry + ncells_xlat;
}
INFO("DT: No translation found for address %llx in node %s\n",
base_address, fdt_get_name(dtb, local_bus, NULL));
return ILLEGAL_ADDR;
}
/*******************************************************************************
* address mapping needs to be done recursively starting from current node to
* root node through all intermediate parent nodes.
* Sample device tree is shown here:
smb@0,0 {
compatible = "simple-bus";
#address-cells = <2>;
#size-cells = <1>;
ranges = <0 0 0 0x08000000 0x04000000>,
<1 0 0 0x14000000 0x04000000>,
<2 0 0 0x18000000 0x04000000>,
<3 0 0 0x1c000000 0x04000000>,
<4 0 0 0x0c000000 0x04000000>,
<5 0 0 0x10000000 0x04000000>;
motherboard {
arm,v2m-memory-map = "rs1";
compatible = "arm,vexpress,v2m-p1", "simple-bus";
#address-cells = <2>;
#size-cells = <1>;
ranges;
iofpga@3,00000000 {
compatible = "arm,amba-bus", "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
ranges = <0 3 0 0x200000>;
v2m_serial1: uart@a0000 {
compatible = "arm,pl011", "arm,primecell";
reg = <0x0a0000 0x1000>;
interrupts = <0 6 4>;
clocks = <&v2m_clk24mhz>, <&v2m_clk24mhz>;
clock-names = "uartclk", "apb_pclk";
};
};
};
* As seen above, there are 3 levels of address translations needed. An empty
* `ranges` property denotes identity mapping (as seen in `motherboard` node).
* Each ranges property can map a set of child addresses to parent bus. Hence
* there can be more than 1 (translation) entry in the ranges property as seen
* in the `smb` node which has 6 translation entries.
******************************************************************************/
/* Recursive implementation */
uint64_t fdtw_translate_address(const void *dtb, int node,
uint64_t base_address)
{
int length, local_bus_node;
const char *node_name;
uint64_t global_address;
local_bus_node = fdt_parent_offset(dtb, node);
node_name = fdt_get_name(dtb, local_bus_node, NULL);
/*
* In the example given above, starting from the leaf node:
* uart@a000 represents the current node
* iofpga@3,00000000 represents the local bus
* motherboard represents the parent bus
*/
/* Read the ranges property */
const struct fdt_property *property = fdt_get_property(dtb,
local_bus_node, "ranges", &length);
if (property == NULL) {
if (local_bus_node == 0) {
/*
* root node doesn't have range property as addresses
* are in CPU address space.
*/
return base_address;
}
INFO("DT: Couldn't find ranges property in node %s\n",
node_name);
return ILLEGAL_ADDR;
} else if (length == 0) {
/* empty ranges indicates identity map to parent bus */
return fdtw_translate_address(dtb, local_bus_node, base_address);
}
VERBOSE("DT: Translation lookup in node %s at offset %d\n", node_name,
local_bus_node);
global_address = fdtw_search_all_xlat_entries(dtb, property,
local_bus_node, base_address);
if (global_address == ILLEGAL_ADDR) {
return ILLEGAL_ADDR;
}
/* Translate the local device address recursively */
return fdtw_translate_address(dtb, local_bus_node, global_address);
}

View File

@ -34,4 +34,7 @@ int fdt_get_reg_props_by_name(const void *dtb, int node, const char *name,
uintptr_t *base, size_t *size);
int fdt_get_stdout_node_offset(const void *dtb);
uint64_t fdtw_translate_address(const void *dtb, int bus_node,
uint64_t base_address);
#endif /* FDT_WRAPPERS_H */

View File

@ -13,6 +13,9 @@
struct gicv3_config_t gicv3_config;
struct hw_topology_t soc_topology;
struct uart_serial_config_t uart_serial_config;
#define ILLEGAL_ADDR ULL(~0)
int fconf_populate_gicv3_config(uintptr_t config)
{
@ -147,7 +150,8 @@ int fconf_populate_topology(uintptr_t config)
return -1;
}
INFO("CLUSTER ID: %d cpu-count: %d\n", cluster_count, cpus_per_cluster[cluster_count]);
VERBOSE("CLUSTER ID: %d cpu-count: %d\n", cluster_count,
cpus_per_cluster[cluster_count]);
/* Find the maximum number of cpus in any cluster */
max_cpu_per_cluster = MAX(max_cpu_per_cluster, cpus_per_cluster[cluster_count]);
@ -170,5 +174,95 @@ int fconf_populate_topology(uintptr_t config)
return 0;
}
int fconf_populate_uart_config(uintptr_t config)
{
int uart_node, node, err;
uintptr_t addr;
const char *path;
uint32_t phandle;
uint64_t translated_addr;
/* Necessary to work with libfdt APIs */
const void *hw_config_dtb = (const void *)config;
/*
* uart child node is indirectly referenced through its path which is
* specified in the `serial1` property of the "aliases" node.
* Note that TF-A boot console is mapped to serial0 while runtime
* console is mapped to serial1.
*/
path = fdt_get_alias(hw_config_dtb, "serial1");
if (path == NULL) {
ERROR("FCONF: Could not read serial1 property in aliases node\n");
return -1;
}
/* Find the offset of the uart serial node */
uart_node = fdt_path_offset(hw_config_dtb, path);
if (uart_node < 0) {
ERROR("FCONF: Failed to locate uart serial node using its path\n");
return -1;
}
/* uart serial node has its offset and size of address in reg property */
err = fdt_get_reg_props_by_index(hw_config_dtb, uart_node, 0, &addr,
NULL);
if (err < 0) {
ERROR("FCONF: Failed to read reg property of '%s' node\n",
"uart serial");
return err;
}
VERBOSE("FCONF: UART node address: %lx\n", addr);
/*
* Perform address translation of local device address to CPU address
* domain.
*/
translated_addr = fdtw_translate_address(hw_config_dtb,
uart_node, (uint64_t)addr);
if (translated_addr == ILLEGAL_ADDR) {
ERROR("FCONF: failed to translate UART node base address");
return -1;
}
uart_serial_config.uart_base = translated_addr;
VERBOSE("FCONF: UART serial device base address: %llx\n",
uart_serial_config.uart_base);
/*
* The phandle of the DT node which captures the clock info of uart
* serial node is specified in the "clocks" property.
*/
err = fdt_read_uint32(hw_config_dtb, uart_node, "clocks", &phandle);
if (err < 0) {
ERROR("FCONF: Could not read clocks property in uart serial node\n");
return err;
}
node = fdt_node_offset_by_phandle(hw_config_dtb, phandle);
if (node < 0) {
ERROR("FCONF: Failed to locate clk node using its path\n");
return node;
}
/*
* Retrieve clock frequency. We assume clock provider generates a fixed
* clock.
*/
err = fdt_read_uint32(hw_config_dtb, node, "clock-frequency",
&uart_serial_config.uart_clk);
if (err < 0) {
ERROR("FCONF: Could not read clock-frequency property in clk node\n");
return err;
}
VERBOSE("FCONF: UART serial device clk frequency: %x\n",
uart_serial_config.uart_clk);
return 0;
}
FCONF_REGISTER_POPULATOR(HW_CONFIG, gicv3_config, fconf_populate_gicv3_config);
FCONF_REGISTER_POPULATOR(HW_CONFIG, topology, fconf_populate_topology);
FCONF_REGISTER_POPULATOR(HW_CONFIG, uart_config, fconf_populate_uart_config);

View File

@ -14,6 +14,8 @@
#define hw_config__topology_getter(prop) soc_topology.prop
#define hw_config__uart_serial_config_getter(prop) uart_serial_config.prop
struct gicv3_config_t {
uintptr_t gicd_base;
uintptr_t gicr_base;
@ -26,10 +28,17 @@ struct hw_topology_t {
uint32_t plat_max_pwr_level;
};
struct uart_serial_config_t {
uint64_t uart_base;
uint32_t uart_clk;
};
int fconf_populate_gicv3_config(uintptr_t config);
int fconf_populate_topology(uintptr_t config);
int fconf_populate_uart_config(uintptr_t config);
extern struct gicv3_config_t gicv3_config;
extern struct hw_topology_t soc_topology;
extern struct uart_serial_config_t uart_serial_config;
#endif /* FCONF_HW_CONFIG_GETTER_H */

View File

@ -16,6 +16,7 @@
rom rom_lib_init
fdt fdt_getprop
fdt fdt_get_property
fdt fdt_getprop_namelen
fdt fdt_setprop_inplace
fdt fdt_check_header
@ -31,6 +32,9 @@ fdt fdt_size_cells
fdt fdt_parent_offset
fdt fdt_stringlist_search
fdt fdt_get_alias_namelen
fdt fdt_get_name
fdt fdt_get_alias
fdt fdt_node_offset_by_phandle
mbedtls mbedtls_asn1_get_alg
mbedtls mbedtls_asn1_get_alg_null
mbedtls mbedtls_asn1_get_bitstring_null

View File

@ -16,6 +16,7 @@
rom rom_lib_init
fdt fdt_getprop
fdt fdt_get_property
fdt fdt_getprop_namelen
fdt fdt_setprop_inplace
fdt fdt_check_header
@ -28,6 +29,9 @@ fdt fdt_stringlist_search
fdt fdt_get_alias_namelen
fdt fdt_path_offset
fdt fdt_path_offset_namelen
fdt fdt_get_name
fdt fdt_get_alias
fdt fdt_node_offset_by_phandle
mbedtls mbedtls_asn1_get_alg
mbedtls mbedtls_asn1_get_alg_null
mbedtls mbedtls_asn1_get_bitstring_null